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Effect of surfaces on the size-dependent elastic state of
nano-inhomogeneities
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The effect of surface energies, strains, and stresses on the size-dependent elastic state of embedded
inhomogeneities are investigated. At nanolength scales, due to the increasing surface-to-volume
ratio, surface effects become important and induce a size dependency in the otherwise
size-independent classical elasticity solutions. In this letter, closed-form expressions are derived for
the elastic state of eigenstrained spherical inhomogeneities with surface effects using a variational
formulation. Our results indicate that surface elasticity can significantly alter the fundamental nature

of stress state at nanometer length scales. Additional applications of our work on nanostructures
such as quantum dots, composites, etc. are implied20083 American Institute of Physics.
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Classical elasticity does not admit intrinsic size dependindependent elastic solutions. Currently, no formulation ex-
dence in the elastic solutions of inclusions and inhomogenests which combines surface elasticity with Eshelby’s formal-
ities. At nanolength scales, however, size effects often besm to analyze inhomogeneities with size-dependent surface
come prominent, the causes of which need to be explicitheffects. See, for example, comprehensive reviews by fura
addressed especially with an increasing interest in the gerand Muraet al In this letter, we reformulate the inhomoge-
eral area of nanotechnologgnd nanomechanics in particu- neity problem in terms of generalized energy functionals
lar). For structures with sizes>100 nm, typically, the (rather than the stress-based approach of Eshélpgrmit-
surface-to-volume ratio is negligible and the effective prop-ting a simple way to include surface/interface effects.
erties are governed by classical bulk elastic strain energy A generic and mathematical exposition on surface elas-
through a fourth order elastic stiffness tens@foung’s  ticity has been presented by Gurtin and MurddéiThey
modulusE, and Poisson ratie for isotropic materials On ~ have also presented simple applications of surface elasticity
the other hand, it is well known that surfaces and interface$0 the analysis of an isolate@inembeddedsphere, infinite
in solids behave differently from their bulk counterparts. Thecylinder, and square crystal under a residual surface tension
technological significance of surfaces is likely to be impor-loading” Recently, Miller and Shendyhave explored the
tant in nanostructures due to their high surface-to-voluméffect of surfaces in isolated structural elements like nanos-
ratios, in quantum dots, nanocomposites, and other optoele€a|e beams and plates. Their article, however, is not directed
tromechanical structures. The strain energy in these stru@t inclusions or inhomogeneities. Cammarata, in particular,

tures can be dramatically altered by surface effects and hendé€sents some example of surface effects in thin flnas. _
both their local and macroscopic properties. method to solve the generalized inhomogeneity problem is

In work, a pioneering Eshelbysolved the general prob- proposed followed by an application to the problem of stress

lem of the elastic state of dnhomogeneitgontainingeigen- ~ concentration near a nanovoid. Other applications of our
strainslocated within a foreign material and subjected to an"VOrk. i-€.,(i) the determination of overall properties of com-

applied external stress. Here, inhomogeneities are defined gsites with surface effects arid) the size-dependent inter-

embedded objects with material properties differing from the d?gl:?}sgggiﬁgg\:‘viéroe strain state of quantum dots, will be
surrounding host material or matrix while eigenstrains are ’ .
9 9 The surface stress tenser'™° is related to the defor-

stress-free strains such as lattice parameter mismatch, ther- i
mal expansion, inelastic strains, etc. Eshelby’s work forméﬂat'on dependent surface eneigfe .s) by:

the backbone for analyzing several problems of interest in

materials science, solid-state physics, and mechanics of com-  gurface ar

posites. In its present form, Eshelby’s formalisthdoes not Tap 700 98 ap’ @
include the effects of elastic surface properties., residual

surface tension, surface modudf inhomogeneities and their where,e 4 is the 2x 2 strain tensor for surfaces,; repre-
elastic state as it is entirely based on bulk properties. Akents the Kronecker delta for surfaces whilds the residual
submicron inhomogeneity length scales the properties of thgyrface tension. The presence of surface stress gives rise to a
inhomogeneity surface/interface are expected to play a rolfonclassical boundary condition, which in combination with

in the determination of the nanoinhomogeneity elastic statethe surface stress—strain relations and the equations of clas-
This increasing role of surface elasticity at smaller lengthsical elasticity form a coupled system of field equations. Un-
scales induces a size effect in the otherwise classical sizeter the assumption that the surface adheres to the bulk with-
out slipping, and in the absence of body forces, the
“Author to whom correspondence should be addressed; electronic maifduilibrium and constitutive equations for isotropic case can
sharma@crd.ge.com be summarized &%’
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In the bulk: 17

O-ibjlf}k: 0 (2a) 1.65F

O-ibjmk: Cijkie=[N6ij 01+ (i 6j1 + 61 i) e -

On the surfacel/interface:

bulk surface_ . bulk __ _surface
OpaNptOpap =0; g NNi=0,5 Kap

Stress Concentration

(2b)
Uzu;face: 7_Otsﬁa_F Z(MS_ 0) 5,378 ya+ ()\SJ" 70)8775 a?

where,\ andu are the Lameonstants for the isotropic bulk

material. Isotropic interfaces or surfaces can be characterize

by surface Lame&onstants\®, u° (which render the surface

energy deformation dependgfitand residual surface ten-

sion, 7° (under unstrained conditiopsHere, k.5 represents s 5 Ho‘i""Nanomeiers 15 2 25

the curvature tensor of the surface or interfang,is the

normal vector on the interface or surface, and finaliljyis FIG. 1. Stress concentration as a function of surface properties and void

the infinitesimal strain tensor angl; is the corresponding radius.(@ Solution with surface modulus2K, Al [1 0 0} (b) solution

stress tensor. It is noted that only certain strain componeng%:iﬂoi?n;aﬁagoiﬂﬁtgoT'enslEBTO{d)AISElluSOg’V\(,ﬁ)h CIS?JS;;CCZI fno(l)tétlz?ﬂs

. . . . v Iebehvg ,

appear within the constitutive law for surfaces due to the 2—2k Al [1 1 1] (¢) solution with surface modulasnominalK, Al [1 1 1].

X 2 nature of the surface stress tenfae., strains normal to

the surface are excludedThus, the Greek indices take on o ) ) o

values 1 and 2 while Latin subscripts adopt values 1 througfpuPstituting, Eq(5) in Eq. (4), using the constitutive Egs.

3. Conventional summation rules apply unless otherwisé?) @nd taking the variation of the total energy with respect to

noted. the displacement fields, we obt&nEq. (6a): Euler’s equa-
We now consider a spherical inhomogeneity, of radiudion fo_r the integrand in bolt.h t_he inhomogeneity and matrix

Ro, located in an infinite matrix, and undergoing a dilatationdomains; Eq.(6b): the equilibrium of the bulk and surface

eigenstrain(generally, but not necessarily, nonzera.e., forces at the interface; and E¢6c): the natural boundary

eX=e,—ch—e*, and subjected to far-field triaxial stress condition:

©

o”. The bulk and surface elastic energy densities of an

inhomogeneity-matrix system can be given as: , 22U au
. 1 r a—rz——Zr E—ZUZO, (6@
v :EAA(SH)ZJFMASUSU_3KA8*8ii? (39
s + _ 20’20
\p surface. f dSJS“BO'S'BdSSE ) (3b) Orr = Oy :R_ ) (6b)
surface 0 “ “ 0 r=R,

where,A represents either the inhomogeneity 6r the ma-

trix M, K, is the bulk modulus €\, +2u,/3), ¢* the Trelrmw=0". (60)
eigenstrain which is finite in the inhomogeneity and zero

outside of it. The superscripts" is used to emphasize the ) ) ) )

surface terms. The free energy of the spherically symmetria—he general solutions to the differential equation of &

. 2 . . . .
system, in the presence of surface effects, can then be writtétf Simply.r _and 1f*. Using a linear complnatlon of the
general solutions to Eq6a), we can now writeu(r) as:

as:
Ro &S
H=47Tf rZ\IfF“'kdr+4wR§f i ofdes) u(r)=Ar+Br 2r<R,
0 0
. Cr+Dr ?r>Ry, (7
+477fR r2w kg, (4)
0

WhereA, B, C, andD are constants to be determined
The Euler—Lagrange equations and the appropriate boundafgom the boundary conditions and Eqéb) and (6c). Two
conditions are obtained by setting the variation of the freeboundary conditions are immediately obviods:at the cen-
energy to be zero, i.egl1=0. ter of the inhomogeneity(r) must approach zero arid) at
The spherically symmetric problem leads to a displacejpoints infinitely far away from the inhomogeneity, the stress
ment field that is radially symmetric, i.es=u(r). The cor- field must approach the applied stress, iresz©, o— ™.
responding infinitesimal strain components in spherical polaiThese restrictions rend&=0 andC=¢"/Ky=¢”. Here,
basis are: Km=Amt2un/3 is the matrix bulk modulus. Furthermore,
displacements must be continuous, thuigr —Ry)|=u"(r
u u u (5) —Ry) which givesA=g"+ D/Rg. Finally, the condition in

. . S S
Err= 70 €007 €9 7 €90 € p_ - . . . . . .
or P x % Ry Eq. (6b) is applied. The final solution is obtained as:
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(BKy+4upme”+3Ke* —27,/Ry
dpup+ 3K, +2K3/R, '

(3Ky+4uy)e”+3K,e* —27%R,
A+ 3K, +2K%R,

r<R,

u(r)= R3 ®
o o 0
€ r—z, r>Ro

er

whereK =2 (us+\g) is introduced in this letter as the “sur- from Ref. 9, are:[1 0 0], A;=3.48912 N/m, us=

face modulus.” Strain can be obtained as derivatifeg. @ —6.2178 N/m=K = —5.457 N/m, while for[1 1 1], they
(5)] of u(r) and the stresses, by using Eg), can be ex- are:\s=6.842 N/m,us=—0.3755 N/m=K¢=12.932 N/m.
pressed as: The stress concentration of the spherical cavity under
r<Ry: hydrostatic tension is plotted as a function of the cavity ra-
dius Ry in Fig. 1 for two different sets of surface properties
Trr (1) = 09p(1) = 0g4(T) (corresponding t¢1 0 O] Al and[1 1 1] Al). To investigate a
(BKy+4um)e”+3K,e* —275/Rg broader range of surface properties, curves of surface modu-

(93 |us twice that of Al[1 0 0] and Al[1 1 1] are also shown. As
shown in Fig. 1, surface effects cause the stress concentra-
r>Ro: tion to reduce(increase with decreasing pore size whég,
Toe(r)=0%%(r) >0 (Ks<0). The classical caséwithout surface effecjs
corresponds td&K;=0 and is, as expected, independent of

B 4up+ 3K, + 2K /Ry ’

— 24y (BKm+4um)e”+3Ke* —27/Rg pore size. Below a critical void radius the void will sinter.
A+ 3K+ 2K /Ry This effect, as mentioned earlier, is closely related to the
RS residual surface tension and applied load and is not investi-
—e” | =2+ 3Ky e”. (9b)  gated here.
r To summarize, we have reformulated the inhomogeneity

The stress component, can be derived similarly. Note that Problem to include the size dependent surface and interface
the surface effects enter the equations Wa and 7, effects on its elastic state. Our derived equations have several
weighted appropriately by the curvature R3) of the inho-  applications that are omitted here for the sake of brevity and
mogeneity_ Makinng arbitrar”y |arge can tri\/ia”y retrieve will be discussed elsewhere. Quantum dots, which are often
the classical solution. Interestingly, the stresses and strains few nanometers in size, have their optoelectronic properties
the inhomogeneity are uniform much like the classical ¢ase.severely affected by lattice mismatch related eigenstrains. It
We will now present app"cation of our work to the clas- can be inferred from our work that in the traditional sizes of
sical problem of stress concentration at a void. The expreiuantum dotg2-30 nm), surface effects are likely to influ-

sions, though, are quite general and can be app“ed to argnce the strain distributions and hence their Optoelectronic
material property combinations. properties. Our derived equations can be directly used to

For a void,K,= u,=0, ¢* =0, in Eq.(9). To determine  Provide interfacial elasticity corrections to the size-
the stress concentration, we tet:R,. The stress concentra- dependent strain state of quantum dfs). (8)]. Another

tion is then given by: application of this work is that surface effects can now be
T 1/1-2(rele”+Kg)I3KyRy ea§|Iy included in t_he determination of effective elastic prop-
SC.=— =1+ 3 TTK70 R erties of a composite. As shown by several autliseg, e.g.,
Teo =R, T Kd2umRo Nemat-Nasser and Hdf), effective bulk modulus of a com-

(10 posite is easily calculated once the single inhomogeneity so-

In subsequent numerical results we sgt0, to study the ution is known[provided by our work in Eq(9) for sym-
effect of surface elastic constait,. Effects of residual sur- Metric loading. The effective properties will then, unlike the
face tensioriwhich is closely related to the phenomenon of classical solutions, become size dependent.

classical sinteringcan be investigated through EQ@)— 13, D. Eshelby, Proc. R. Soc. London, Ser24d, 376 (1957).

(10). Furthermore, results can then be presented independeny. p. Eshelby, Proc. R. Soc. London, Ser282, 561 (1959.

of loading conditions. Note that E¢LO) trivially gives 1.5as  *T. Mura, Micro-Mechanics of Defects of Solidilartinus Nijhoff, Hague,
the stress concentration for the classical elasticity case whep-987- _ .

. . . . . . T. Mura, H. M. Shodja, and Y. Hirose, Appl. Mech. R&@, S118(1996.
either surface modulus is small or void radius is relatively s\, = Gurtin and A. Murdoch. Arch. Ration. Mech. An&i7 291(1975.
large (typically >25 nm). The numerical results are pre- 6m. E. Gurtin, J. Weissmuller, and F. Larche, Philos. Mag7# 1093
sented for aluminum using free-surface properties computegl(199& _ _
by previous researchers using the embedded atom methogcg- E ﬁf”g'r”a?]r(‘jdvA'BMgL‘t?‘%h)} 'I’\}ta rljétgs::gglf&;mfégﬁt%gw
(EAM) molecular dynam_lc§.The aut_hors in Ref. 8 indicate _9R. C. Cammarata, K. Sieradzki, and F. Spaepen, J. Appl. Fify.227
different surface properties depending upon crystallographic (2000.
orientation. Accordingly, we present numerical results for'°R. C. Cammarata, Prog. Surf. Sd6, 1 (1994.

. . h . 11 i iati ice-
two different orientations one for which the surface moduli . M. Gelfand_and S. V. FominCalculus of Variations(Prentice-Hall,
Englewood Cliffs, NJ, 19683
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