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Effect of surfaces on the size-dependent elastic state of
nano-inhomogeneities

P. Sharma,a) S. Ganti, and N. Bhate
General Electric Corporate Research and Development, Niskayuna, New York 12309

~Received 28 May 2002; accepted 29 November 2002!

The effect of surface energies, strains, and stresses on the size-dependent elastic state of embedded
inhomogeneities are investigated. At nanolength scales, due to the increasing surface-to-volume
ratio, surface effects become important and induce a size dependency in the otherwise
size-independent classical elasticity solutions. In this letter, closed-form expressions are derived for
the elastic state of eigenstrained spherical inhomogeneities with surface effects using a variational
formulation. Our results indicate that surface elasticity can significantly alter the fundamental nature
of stress state at nanometer length scales. Additional applications of our work on nanostructures
such as quantum dots, composites, etc. are implied. ©2003 American Institute of Physics.
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Classical elasticity does not admit intrinsic size dep
dence in the elastic solutions of inclusions and inhomoge
ities. At nanolength scales, however, size effects often
come prominent, the causes of which need to be explic
addressed especially with an increasing interest in the g
eral area of nanotechnology~and nanomechanics in particu
lar!. For structures with sizes.100 nm, typically, the
surface-to-volume ratio is negligible and the effective pro
erties are governed by classical bulk elastic strain ene
through a fourth order elastic stiffness tensor~Young’s
modulusE, and Poisson ration for isotropic materials!. On
the other hand, it is well known that surfaces and interfa
in solids behave differently from their bulk counterparts. T
technological significance of surfaces is likely to be imp
tant in nanostructures due to their high surface-to-volu
ratios, in quantum dots, nanocomposites, and other optoe
tromechanical structures. The strain energy in these st
tures can be dramatically altered by surface effects and h
both their local and macroscopic properties.

In work, a pioneering Eshelby,1 solved the general prob
lem of the elastic state of aninhomogeneitycontainingeigen-
strains located within a foreign material and subjected to
applied external stress. Here, inhomogeneities are define
embedded objects with material properties differing from
surrounding host material or matrix while eigenstrains
stress-free strains such as lattice parameter mismatch,
mal expansion, inelastic strains, etc. Eshelby’s work for
the backbone for analyzing several problems of interes
materials science, solid-state physics, and mechanics of c
posites. In its present form, Eshelby’s formalism1–3 does not
include the effects of elastic surface properties~e.g., residual
surface tension, surface moduli! of inhomogeneities and thei
elastic state as it is entirely based on bulk properties.
submicron inhomogeneity length scales the properties of
inhomogeneity surface/interface are expected to play a
in the determination of the nanoinhomogeneity elastic st
This increasing role of surface elasticity at smaller len
scales induces a size effect in the otherwise classical s

a!Author to whom correspondence should be addressed; electronic
sharma@crd.ge.com
5350003-6951/2003/82(4)/535/3/$20.00
Downloaded 22 Jan 2003 to 192.35.44.3. Redistribution subject to AIP
-
e-
e-
ly
n-

-
y

s

-
e
c-
c-
ce

as
e
e
er-
s
in
m-

t
e
le
e.
h
e-

independent elastic solutions. Currently, no formulation
ists which combines surface elasticity with Eshelby’s form
ism to analyze inhomogeneities with size-dependent sur
effects. See, for example, comprehensive reviews by Mu3

and Muraet al.4 In this letter, we reformulate the inhomoge
neity problem in terms of generalized energy function
~rather than the stress-based approach of Eshelby!,1 permit-
ting a simple way to include surface/interface effects.

A generic and mathematical exposition on surface e
ticity has been presented by Gurtin and Murdoch.5,6 They
have also presented simple applications of surface elast
to the analysis of an isolated~unembedded! sphere, infinite
cylinder, and square crystal under a residual surface ten
loading.7 Recently, Miller and Shenoy8 have explored the
effect of surfaces in isolated structural elements like nan
cale beams and plates. Their article, however, is not direc
at inclusions or inhomogeneities. Cammarata, in particu
presents some example of surface effects in thin films.9 A
method to solve the generalized inhomogeneity problem
proposed followed by an application to the problem of str
concentration near a nanovoid. Other applications of
work, i.e.,~i! the determination of overall properties of com
posites with surface effects and~ii ! the size-dependent inter
facial corrections to strain state of quantum dots, will
discussed elsewhere.

The surface stress tensor,ssurface, is related to the defor-
mation dependent surface energyG(«ab) by:

sab
surface5t0dab1

]G

]«ab
, ~1!

where,«ab is the 232 strain tensor for surfaces,dab repre-
sents the Kronecker delta for surfaces whilet0 is the residual
surface tension. The presence of surface stress gives rise
nonclassical boundary condition, which in combination w
the surface stress–strain relations and the equations of
sical elasticity form a coupled system of field equations. U
der the assumption that the surface adheres to the bulk w
out slipping, and in the absence of body forces,
equilibrium and constitutive equations for isotropic case c
be summarized as:5–7
il:
© 2003 American Institute of Physics
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In the bulk:

s i j , j
bulk50 ~2a!

s i j
bulk5Ci jkl «kl5@ld i j dkl1m~d ikd j l 1d i l d jk!#«kl .

On the surface/interface:

sba
bulknb1sba,b

surface50; s j i
bulknjni5sab

surfacekab

~2b!
sba

surface5t0dba12~ms2t0!dbg«ga1~ls1t0!«ggdba ,

where,l andm are the Lame´ constants for the isotropic bul
material. Isotropic interfaces or surfaces can be character
by surface Lame´ constantsls, ms ~which render the surface
energy deformation dependent!10 and residual surface ten
sion, t0 ~under unstrained conditions!. Here,kab represents
the curvature tensor of the surface or interface,na is the
normal vector on the interface or surface, and finally« i j is
the infinitesimal strain tensor ands i j is the corresponding
stress tensor. It is noted that only certain strain compon
appear within the constitutive law for surfaces due to the
32 nature of the surface stress tensor~i.e., strains normal to
the surface are excluded!. Thus, the Greek indices take o
values 1 and 2 while Latin subscripts adopt values 1 thro
3. Conventional summation rules apply unless otherw
noted.

We now consider a spherical inhomogeneity, of rad
R0 , located in an infinite matrix, and undergoing a dilatati
eigenstrain~generally, but not necessarily, nonzero!, i.e.,
«11* 5«22* 5«22* 5«* , and subjected to far-field triaxial stres
s`. The bulk and surface elastic energy densities of
inhomogeneity-matrix system can be given as:

CL
bulk5

1

2
lL~« i i !

21mL« i j « i j 23KL«* « i i ; ~3a!

Csurface5E
surface

dSE
0

«ab
s

sab
s d«ab

s , ~3b!

where,L represents either the inhomogeneity ‘‘I’’ or the ma-
trix M, KL is the bulk modulus (5lL12mL/3), «* the
eigenstrain which is finite in the inhomogeneity and ze
outside of it. The superscript ‘‘s’’ is used to emphasize the
surface terms. The free energy of the spherically symme
system, in the presence of surface effects, can then be wr
as:

P54pE
0

R0
r 2C I

bulkdr14pR0
2E

0

« i j
s

s i j
s d« i j

s

14pE
R0

R`
r 2CM

bulkdr. ~4!

The Euler–Lagrange equations and the appropriate boun
conditions are obtained by setting the variation of the f
energy to be zero, i.e.,dP50.

The spherically symmetric problem leads to a displa
ment field that is radially symmetric, i.e.,u5u(r ). The cor-
responding infinitesimal strain components in spherical po
basis are:

« rr 5
]u

]r
; «uu5«ff5

u

r
; «uu

s 5«ff
s 5

u

R0
. ~5!
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Substituting, Eq.~5! in Eq. ~4!, using the constitutive Eqs
~2! and taking the variation of the total energy with respect
the displacement fields, we obtain11: Eq. ~6a!: Euler’s equa-
tion for the integrand in both the inhomogeneity and mat
domains; Eq.~6b!: the equilibrium of the bulk and surfac
forces at the interface; and Eq.~6c!: the natural boundary
condition:

r 2
]2u

]r 2 22r
]u

]r
22u50, ~6a!

s rr
12s rr

25
2suu

s

R0
U

r 5R0

, ~6b!

s rr ur→`5s`. ~6c!

The general solutions to the differential equation of Eq.~6a!
are simply,r and 1/r 2. Using a linear combination of the
general solutions to Eq.~6a!, we can now writeu(r ) as:

u~r !5Ar1Br22ur ,R0

Cr1Dr 22ur .R0 , ~7!

Where A, B, C, and D are constants to be determine
from the boundary conditions and Eqs.~6b! and ~6c!. Two
boundary conditions are immediately obvious:~i! at the cen-
ter of the inhomogeneityu(r ) must approach zero and~ii ! at
points infinitely far away from the inhomogeneity, the stre
field must approach the applied stress, i.e.,r→`, s→s`.
These restrictions renderB50 andC5s`/KM5«`. Here,
KM5lM12mM/3 is the matrix bulk modulus. Furthermore
displacements must be continuous, thusu1(r→R0)u5u2(r
→R0) which givesA5«`1D/R0

3. Finally, the condition in
Eq. ~6b! is applied. The final solution is obtained as:

FIG. 1. Stress concentration as a function of surface properties and
radius. ~a! Solution with surface modulus52Ks , Al @1 0 0#; ~b! solution
with surface modulus5nominal Ks for Al @1 0 0#; ~c! classical solution
without surface effects, i.e.,Ks50; ~d! solution with surface modulus
52Ks Al @1 1 1# ~e! solution with surface modulus5nominalKs , Al @1 1 1#.
 license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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S
«`r 1F ~3KM14mM !« 13KI«* 22t /R0

4mM13KI12Ks/R0
2«`G R0
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whereKs52(ms1ls) is introduced in this letter as the ‘‘sur
face modulus.’’ Strain can be obtained as derivatives@Eq.
~5!# of u(r ) and the stresses, by using Eq.~2!, can be ex-
pressed as:

r<R0:

s rr ~r !5suu~r !5sff~r !

53KI

~3KM14mM !«`13KI«* 22t0 /R0

4mM13KI12Ks /R0
, ~9a!

r .R0 :

suu~r !5sff~r !

52mMS ~3KM14mM !«`13KI«* 22t0 /R0

4mM13KI12Ks /R0

2«`D R0
3

r 3 13KM«`. ~9b!

The stress components rr can be derived similarly. Note tha
the surface effects enter the equations viaKs and t0

weighted appropriately by the curvature (1/R0) of the inho-
mogeneity. MakingR0 arbitrarily large can trivially retrieve
the classical solution. Interestingly, the stresses and strain
the inhomogeneity are uniform much like the classical ca1

We will now present application of our work to the cla
sical problem of stress concentration at a void. The exp
sions, though, are quite general and can be applied to
material property combinations.

For a void,KI5m I50, «* 50, in Eq. ~9!. To determine
the stress concentration, we letr→R0 . The stress concentra
tion is then given by:

S.C.5
suu

s`
U

r 5R0

511
1

2 S 122~t0 /«`1Ks!/3KMR0

11Ks/2mMR0
D .

~10!

In subsequent numerical results we sett050, to study the
effect of surface elastic constant,Ks . Effects of residual sur-
face tension~which is closely related to the phenomenon
classical sintering! can be investigated through Eqs.~8!–
~10!. Furthermore, results can then be presented indepen
of loading conditions. Note that Eq.~10! trivially gives 1.5 as
the stress concentration for the classical elasticity case w
either surface modulus is small or void radius is relativ
large ~typically .25 nm!. The numerical results are pre
sented for aluminum using free-surface properties compu
by previous researchers using the embedded atom me
~EAM! molecular dynamics.8 The authors in Ref. 8 indicate
different surface properties depending upon crystallograp
orientation. Accordingly, we present numerical results
two different orientations one for which the surface mod
Ks is negative~surface@1 0 0#! while positive for the other@1
1 1#. The parameters as obtained from manipulation of d
Downloaded 22 Jan 2003 to 192.35.44.3. Redistribution subject to AIP
in
.

s-
ny

f

ent

en

d
od

ic
r
i

ta

from Ref. 9, are: @1 0 0#, ls53.489 12 N/m, ms5
26.2178 N/m⇒Ks525.457 N/m, while for@1 1 1#, they
are:ls56.842 N/m,ms520.3755 N/m⇒Ks512.932 N/m.

The stress concentration of the spherical cavity un
hydrostatic tension is plotted as a function of the cavity
dius R0 in Fig. 1 for two different sets of surface propertie
~corresponding to@1 0 0# Al and @1 1 1# Al !. To investigate a
broader range of surface properties, curves of surface mo
lus twice that of Al@1 0 0# and Al @1 1 1# are also shown. As
shown in Fig. 1, surface effects cause the stress conce
tion to reduce~increase! with decreasing pore size whenKs

.0 (Ks,0). The classical case~without surface effects!
corresponds toKs50 and is, as expected, independent
pore size. Below a critical void radius the void will sinte
This effect, as mentioned earlier, is closely related to
residual surface tension and applied load and is not inve
gated here.

To summarize, we have reformulated the inhomogene
problem to include the size dependent surface and inter
effects on its elastic state. Our derived equations have sev
applications that are omitted here for the sake of brevity a
will be discussed elsewhere. Quantum dots, which are o
a few nanometers in size, have their optoelectronic proper
severely affected by lattice mismatch related eigenstrain
can be inferred from our work that in the traditional sizes
quantum dots~2–30 nm!, surface effects are likely to influ
ence the strain distributions and hence their optoelectro
properties. Our derived equations can be directly used
provide interfacial elasticity corrections to the siz
dependent strain state of quantum dots@Eq. ~8!#. Another
application of this work is that surface effects can now
easily included in the determination of effective elastic pro
erties of a composite. As shown by several authors~see, e.g.,
Nemat-Nasser and Hori12!, effective bulk modulus of a com
posite is easily calculated once the single inhomogeneity
lution is known@provided by our work in Eq.~9! for sym-
metric loading#. The effective properties will then, unlike th
classical solutions, become size dependent.
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