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Prediction of Rate-Independent Constitutive Behavior
of Pb-Free Solders Based on First Principles

P. Sharma, S. Ganti, A. Dasgupta, and J. Loman

Abstract—This paper presents a methodology for the theoret-
ical estimation of rate-independent plastic constitutive properties
of Pb-free solders using three approaches. The first approach
is based on a nonlinear effective medium theory (NEMT) that
is scale independent. The second approach is based on the mi-
cromechanics and physics of plastic slip in heterogeneous alloys
(henceforth called the physical model). This approach explicitly
includes microstructural features such as grain size, particle
size etc. The third approach is a combination of NEMT and the
physical model. Our estimates involve no adjustable calibration
parameters and are based on first principles and constituent
properties. Parametric studies are conducted to show that the
physical model is more effective for small particles sizes (nanoscale
100 nm), small particle spacing ( nm range) and low volume

fractions ( 2 5%); while NEMT performs well for large volume
fractions ( 5%), large particle sizes (micron size) and large
particle spacing (micron scale). The proposed hybrid approach,
however, appears to be valid for a wider range of particle sizes and
volume fractions. Limited comparison with experimental data is
also made and implications of our work in the economical design
of novel Pb-free solders is discussed.

Index Terms—Heterogeneous alloys, hybrid, NEMT, Pb-free sol-
ders, physical model, plastic slip, viscoplastic materials, volume
fractions.

I. INTRODUCTION

M EASURING the constitutive properties of complex non-
linear viscoplastic materials is a time consuming and

expensive process. In the search for prospective Pb-free solder
materials for electronic systems, there is a great need therefore
for theoretical models that can predict such behavior based on
first principles and microstructural features. This would greatly
reduce the amount of testing needed, by allowing us to conduct
many parametric studies through virtual testing. The potential
application of such simulation capabilities would be to design,
optimize, rank and down-select potential Pb-free solder alloys
through model-based predictions of their expected behavior.

Researchers dealing with vibration or mechanical shock
loading of electronic systems are interested in the nonlinear
stress-strain response of solder materials at relatively high
strain rates where dislocation slip mechanisms dominate rather
than creep deformation mechanisms. This type of constitutive
behavior is often termed “plastic” behavior and researchers
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often approximate this class of deformation behavior as
“time-independent” or “rate-independent” or “instantaneous”
behavior, as the characteristic time scales are extremely short.
A power law, such as the Ramberg-Osgood law, is often used
to describe the measured instantaneous stress-strain behavior.
In this study we focus on this class of constitutive behavior.

In this paper, we use a hybrid combination of dislocation
mechanisms (Orowan hardening, generation of geometrically
necessary dislocations due to strain gradients and thermal
residual stresses) and a secant nonlinear effective-medium
homogenization method (Mori-Tanaka average matrix stress
method), to demonstrate the effect of these alloying elements
and alloying morphologies on the effective “instantaneous”
stress-strain curves of different alloys. As an example, using the
observed behavior of Sn3.5Ag Pb-free solder as an input, we
demonstrate the ability to predict the behavior of Sn3.5Ag0.7Cu
solder under the same loading conditions. The observed hard-
ening in this instance is primarily due to dislocation hardening,
but when the volume fraction of alloying elements increases,
the effective medium effect, and interactions of these two
effects can also play significant roles. Parametric studies are
presented to demonstrate the effect of the volume fraction and
particle size of the copper-rich phase.

Section II, we discuss the various physical mechanisms of
rate-independent plasticity operative in metal composites and
also provide a limited literature review. Section III, the three
basic approaches to modeling the plasticity behavior of com-
posites are formulated:

1) a nonlinear effective medium theory based on continuum
mechanics;

2) a physical model based on dislocation mechanics;
3) a hybrid approach that is a combination of Approaches 1)

and 2).

The validity of the model is tested on Sn3.5Ag0.7 Cu in Sec-
tion IV and some parametric studies that illustrate the effect of
particle size and volume fraction are presented. Finally, we con-
clude with a summary and discussion in Section V. In particular,
some limitations of the current work are discussed and sugges-
tions are made for future work.

II. M ECHANISMS OFRATE INDEPENDENTSTRENGTHENING

IN COMPOSITES

Traditionally, metal matrix composites (and indeed Pb-free
solders can be treated as composites), have been used to achieve
higher strength in comparison to the matrix metal (i.e., Sn in
our case). Even small amounts ( volume fraction) of stiff,
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strong particles have been known to cause appreciable increase
in yield strength and hardening. Experiments clearly indicate
that the overall inelastic behavior of the composites is strongly
dependent on particle size and spacing and not just on the
volume fractions [11], [16], [27]. In this section, we discuss the
various possible physical mechanisms and their corresponding
effects responsible for strengthening in composites.

1) Load Sharing: An obvious mechanism is the load sharing
by the stiff particles. In the context of linear elasticity, in
the last forty years, enormous amount of work has been
done to account for elastic load sharing in the prediction
of overall effective elastic properties of composites [12],
[17]. The nonlinear plasticity problem is obviously more
challenging as, unlike in the classic elasticity case, an
analytical solution to the problem of an inhomogeneity
in a nonlinear plastic matrix is not available (see [7]
for the elastic case). Most classical elastic homogeniza-
tion methods use Eshelby’s fundamental solution as a
starting point and apply various approximations to ac-
count for interactions between finite volume fractions of
phases to predict the overall properties (e.g., self-consis-
tent scheme, differential scheme, Mori-Tanaka mean-field
approximation etc.). In the last decade and a half, some
important results have begun to emerge regarding non-
linear effective properties. An entire monograph can be
written on the existing literature on nonlinear behavior
of composites and in the interest of brevity, we discuss
only the most relevant papers.

Some pioneering work can be traced to Hill [10]
who extended the classical self-consistent scheme to
plasticity in an incremental framework (which makes
use of the elasto-plastic tangent modulus). The concept
of secant modulus was introduced by Berveiller and
Zaoui [4]. A major progress was made when Willis
[26] and later Talbot and Willis [23] extended the
linear Hashin-Shtrikman variational bounds to non-
linear materials. Subsequently Ponte Castaneda [19],
[20] introduced a variational procedure that estimates
effective nonlinear properties with the aid of a linear
comparison material. The latter work provides the most
rigorous bounds on nonlinear composites. In particular,
these bounds coincide with the self-consistent scheme
or the mean field Mori–Tanaka scheme, under certain
circumstances [3], [14]. We finally conclude our brief
literature review by noting that Suquet [21] proposed an
alternative definition of effective phase strain or stress
for the secant based method, namely the second moment
of strain or stress, to account for the effects of volumetric
deformation on rate-independent plasticity as well as im-
proving the accuracy of predictions. Suquet’s estimates,
based on secant procedure involving the redefinition of
effective strain coincide with the rigorous variational
upper bound established by Ponte Castaneda [19]. For a
more comprehensive review of this subject, the reader is
referred to Suquet [22] and Ponte Castaneda [20].

Remark 1: Continuum plasticity does not possess any
intrinsic length scale and not surprisingly the results of

ALL homogenization schemes are size independent. This
will, of course become clearer in Section III where the
formulation is described. Clearly, the scale-independency
of the homogenization schemes is in contradiction with
experiments that indicate that particle size and spacing
play significant roles [11], [16], [27]. Thus, the homoge-
nization schemes are appropriate when load sharing is the
dominant mechanism.

2) Hardening due to Orowan Mechanisms: When a disloca-
tion, while gliding along its slip plane, encounters an ob-
stacle (say a particle), an additional stress is required to
overcome the obstacle. Bowing of Orowan loops between
two spaced particles is an example. At high temperatures
of course, dislocation climb due to diffusion also becomes
operative. The latter mechanism is not included in our
work as we are mainly concerned with rate-independent
plasticity. Using the concept of dislocation self-stress first
discussed by Brown [5], Baconet al. [2] have proposed
a mechanistic model to estimate the additional stress re-
quired to bow out a dislocation loop from spaced parti-
cles. Material scientists have used this approximate model
virtually unchanged since 1974 save for minor adjust-
ments to account for particles distributions etc. A good
overview of this model and related modifications can be
found in [18]. The Orowan hardening process is schemat-
ically shown in Fig. 1.

3) Dislocation Hardening due to Thermal Residual Stresses:
Due to mismatch between the particle coefficient of
thermal expansion (CTE) and that of the matrix, residual
plastic strains arise when the composite is cooled from its
annealing temperature to room temperature. The residual
plastic strains increase the dislocation density accounting
partially for the increase in hardening of metal-matrix
composites. The pioneering work in establishing relation
between dislocation density increase and the thermal
residual strains was done by Arsenault and Shi [1]. Their
model, which is typically used by most researchers,
is based on prismatic punching of dislocations at the
parallelepiped particle-matrix interface.

4) Dislocation Hardening due to Geometrically Necessary
Dislocations (GND):Thepresenceofnearly rigidparticles
in a plastically deforming material gives arise to strong
strain gradients. As explained very elegantly by Arsenlis
and Parks (1999), the compatible deformation of the
crystal gives rise to GNDs. In recent times, the increase
in GND’s due to plastic deformation and the consequent
increase in yield strength has been a focus of several
authors (e.g., Xueet al. [27], Duanet al. 2002, Nan and
Clarke [16], Flecket al. [8]). This concept was pioneered
by Ashby (1970) and is now being used as the basis
for the development of the so-called mechanism-based
strain-gradient plasticity theory, that has an built-in size
dependency unlike classical plasticity theory [9].

Remark 2:Mechanisms 2–4 are scale dependent and
their formulations (to be discussed in Section III) account
explicitly for particle size, spacing and a few other mi-
crostructural features.
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Fig. 1. Orowan hardening mechanism [18].

III. FORMULATIONS

In this section we present the fundamental equations needed
to implement the three modeling approaches discussed in
Section I.

A. Approach 1: Homogenization Method Based on Continuum
Micromechanics

A comparison of various nonlinear homogenization schemes
has been provided by Suquet [22]. We adopt here a secant for-
mulation based on a modified definition of the effective strain
[21]. We describe first the classical secant scheme and then in-
troduce Suquet’s modification.

In this scheme, the nonlinear constitutive law for the matrix
is replaced by its secant modulus, i.e.,

(1a-d)

The secant modulus, is obviously a function of the strain.
Upper case boldface Latin font with an overhead tilda indicates
fourth-order tensors (the same tensors, in index notation, are
in nonbold italic). Bold Greek symbols without overhead tildas
are second order tensors. Both boldface and index notation are
used as convenient. Conventional summation rules apply.is
the stress tensor while is the strain tensor. The fourth-order
tensors and are projection tensors. is the isotropic bulk
modulus and is the isotropic secant shear modulus. The bulk
modulus is strain-independent under the assumption that for hy-
drostatic loadings, the response of the matrix is linear. The sub-
script “eq” refers to the definition of equivalent strain

(2a-b)

The expression for the secant shear modulus is given in (3a)–(c)
and our particular choice of constitutive law (multi-axial form
of Ramberg-Osgood law) is indicated in (3d)

(3a-d)

Here is a fitting parameter, is the nominal yield stress of the
matrix, is the Young’s elastic modulus andis the hardening
parameter. Consider now a two-phase composite containing a
volume fraction of elastic reinforcements, subjected to a
far-field uniform strain field, (for an analogous formulation
for traction boundary conditions [22]. The overall stress-strain
behavior is given by

(4)

An overhead bar indicates the overall properties or variables for
the entire composite. The following results can be obtained for
isotropic composites [22]:

(5a-b)

Here, the superscripts “” and “ ” indicate particle and matrix,
respectively. Note that (5a-b) are nonlinear-coupled equations
that are to be solved iteratively at each loading level. The fact
that particles remain purely elastic in our study, simplifies the
problem to some extent. If the particles also undergo plastic de-
formation, the particle moduli should also be replaced with their
secant equivalents.

Our goal is to find the homogenized secant modulus of the
composite. Virtually, any homogenization scheme for linear
elastic materials can be used to obtain this at each loading level.
We adopt the Mori–Tanaka mean-field concept [3], [14] and
in such a case, the expression for effective moduli in terms of
constituent moduli and Eshelby’s tensor can be expressed
as

(6a-b)

The details of the Eshelby’s tensor can be obtained from Mura
[15]. Here, , is the identity tensor. The overall iterative scheme
for solving the nonlinear equations in (5) is presented as a flow-
chart in Fig. 2. Suquet [21] proposed a simple modification to
the secant formulation which results in improved accuracy at
higher volume fractions (in case of particulate composites), and
is able to capture the hydrostatic stress effects for porous mate-
rials. In the secant formulation, the strain field in each phase is
replaced by its average value. Suquet proposed that the second
moment of the strain be used instead, i.e.,

(7a-b)
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Fig. 2. Incremental-iterative procedure for nonlinear effective homogenization.

An expression for the second moment of phase strain for
isotropic materials can be simply written as [22]

(8)

Equation (7b) is used instead of (2), in (3d) of this study, to
provide higher accuracy.

B. Approach 2: Physical Model

Surprisingly, within the context of dislocation-based phys-
ical modeling, most researchers use only first order (that are
also closed-form) models to describe the effect of particles
on increase in dislocation density. In general, researchers use
Taylor’s formula that relates the square root of the dislocation
density to the additional stress required to cause dislocation
movements

(9)

Here is the dislocation density. The basis of the physical model
is the estimation of dislocation density increase due to various
mechanisms (except for Orowan mechanism).

1) Orowan Hardening:As mentioned earlier in Sec-
tion III-A, the formula developed by Baconet al. [2] is
typically used for this mechanism. Although computer simu-
lations, for example Mohles and Nembach [13], have resulted
in some modifications, the original formulation provides a fair
estimation for simple particle shapes and arrangement (as in
our case). We can write the Orowan hardening stress as

(10)

Here is the particle diameter, is the burgers vector andis
the average inter-particle spacing. This expression is only ac-
curate to a first order and additional parameters (not thought to

be important in our study) that can influence the hardening are:
anisotropy of the matrix, mixed character of dislocations, par-
ticle distribution and so forth. The reader is referred to Nembach
[18] for a recent review.

2) Hardening Due to Thermal Residual Strains:The pio-
neering model developed by Arsenault and Shi [1], is improved
in this study. They consider the prismatic punching of dislo-
cations from parallelepiped inclusions. They directly assume
that the strain causing the dislocation punching is the product
of the difference in the CTEs and the temperature excursion.
Clearly the constraint of the matrix is not taken into account.
Also, our particles (typically pure Cu phase or more realis-
tically its intermetallics with Sn) are spherical shaped. Thus,
we modify Arsenault and Shi’s model in two ways:

1) matrix constraint is included;
2) the shape of the particles is assumed to be spherical

rather than cuboidal.
We employ Eshelby’s solution and treat the thermal mismatch as
aneigenstrain.Further,makingminormodifications toArsenault
and Shi’s solution [1] to account for the spherical shape, we
obtain

(11a-b)

The derivation of our model is described in Appendix I. The
symbol represents the CTE while is the Poisson’s ratio.
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The difference between our model and Arsenault-Shi’s model
is clear. The leading multiplier in each expression (11a–b) de-
pends on the shape of the particle (cuboid versus sphere). The
main difference is that the middle term, which is the elastic ac-
commodation to the thermal mismatch, is absent in the Arse-
nault–Shi model. The incremental stress increase due to thermal
mismatch hardening can be written as

(12)

3) Hardening Due to GNDs:As discussed in Sec-
tion III-B-II, geometrically necessary dislocations (GNDs)
arise in the presence of strain gradients to maintain compati-
bility of deformation. In a single slip direction, the dislocation
density due to matrix strain gradients can be written as

(13)

In the general sense, this equation is difficult to evaluate ana-
lytically as the matrix plastic strain (and hence the dislocation
density) are nonuniform. Much work is in progress to derive re-
liable (and yet simple) estimates of the density of GNDs. For a
review, see Arsenlis and Parks (1999). Combining with Taylor’s
formula, a first order version of (13) can be written as [6]

(14)

Remark 3: An important issue is the choice of how the var-
ious dislocation-based contributions should be combined. This
is an important yet controversial question. The simplest solution
would be to linearly add the additional stress from each phys-
ical mechanism to the virgin matrix yield stress. In this study, we
follow the more intuitive approach of linearly adding the dislo-
cation densities. Thus the incremental contributions to the yield
stress are combined in a root-mean square fashion, except for the
Orowan hardening (which does not vary with dislocation den-
sity within a first-order approximation). Mathematically

(15)

Remark 4: Clearly, the physical model is scale-dependent,
i.e., the particle size (and the related parameter, particle spacing)
plays an important role. This feature was absent in Approach 1.
On the other hand, load sharing is not taken into account in these
models.

Remark 5: The limits of both Approaches 1 and 2 are clearly
established by their inherent assumptions. Approach 1 is likely
to be suitable when load sharing is dominant, i.e., for high
volume fraction of particles and large particle size. Approach
2 is likely to be suitable when the volume fraction is small (in
which case Approach 1 will hardly predict any improvement)
or the particle size is small (Approach 1 is insensitive to particle
size). Clearly, both approaches work only under certain limiting
conditions.

C. Approach 3: Hybrid Approach

An obvious extension of Approaches 1 and 2 would be a
suitable combination i.e., a hybrid model valid at all particle
sizes and volume fractions. Such a hybrid approach has been
reported to be more successful than purely homogenization-
based approaches or dislocation-based approaches in predicting

experimentally observed results (Ramakrishnan, 1996; [16])1 .
Our approach differs in some respects from the approaches cited
above. Ramakrishnan’s (1996) approach can be considered to
be more restrictive in the sense that

1) it only considers thermal residual strains as the hardening
mechanism;

2) a fairly simplistic microstructure is used in the homoge-
nization (spherical unit cell model);

3) the matrix is assumed to be elastic-perfectly plastic and
thus work hardening is ignored.

Despite these simplifications, an iterative scheme is still
required. On the other hand, our approach puts no restriction
on the microstructure morphology (i.e., particles can be fibers,
cylinders, ellipsoids and so forth). Shapes other than spherical
can be trivially accounted for by substituting the appropriate
Eshelby’s tensor in (6). The details of Eshelby’s tensor for
various particle shapes (e.g., cylinders, ellipsoids , cuboids etc.)
can be found in Mura [15]. Further, our matrix constitutive law
allows power-law hardening and an attempt is made to consider
all possible physical mechanisms and not just thermal residual
strains.

The work of Nan and Clarke [16] is more similar to ours.
However, their homogenization approach is based on the dilute
assumption while we have followed the Mori–Tanaka mean
field approach. Thus, interactions between particles cannot be
adequately taken into account in their work (i.e., the formulation
used by them becomes inaccurate at high volume fractions).
Our hybrid approach is based on use of the mean-field based
secant approach while using the modification of Suquet in
conjunction with the physical models outlined in Approach
2. As noted before, this modified secant approach provides
results that coincide with the rigorous variational upper bound
of Ponte Castaneda [19]. Also our scheme for combining the
various physical effects in (15) differs from that used by Nan
and Clarke [16] who linearly add the stress increases due to
the physical contributions.

In the context of Ramberg–Osgood constitutive law, the hy-
brid approach simply requires that the yield stress appearing in
(3d) be replaced by the sum of the virgin matrix yield stress
and the contributions from the physical mechanisms. Thus, as a
result of dislocation hardening, the matrix material itself is con-
sidered to be altered and the homogenization proceeds on the
dislocation-hardened matrix, i.e., the constitutive law in (3d) is
replaced by

(16a-b)

IV. M ODEL VALIDATION AND PARAMETRIC STUDIES

The model is validated by comparing the predicted properties
of Sn-3.5Ag-0.7Cu Pb-free solder with measured values. The
Sn-3.5Ag Pb-free solder is used as the matrix and the effect of

1We have not considered additional papers by the same authors on account
of the similarity of approach.



664 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES , VOL. 26, NO. 3, SEPTEMBER 2003

Fig. 3. Predictions for Sn3.5Ag0.7 Cu: Experimental results from [25].

Fig. 4. Effect of particle size on effective stress-strain curve.

minute additions of copper (0.7%) are studied and compared
with experiments. The results are shown in Fig. 3. Experimental
data for the matrix and the final composite are obtained from
Wieseet al. [25]. The particle size for Sn-Cu intermetallics is
reported to range between 5 and 50 nm, with an average in the
neighborhood of 30 nm[24]. We obtain an exact match with the
experimental data for 35 nm particle size in our simulations.

The effects of particle size and volume fraction are demon-
strated parametrically in Figs. 4 and 5, respectively. Fig. 4 shows
the impact of particle size both on hardening and the yield stress,
for a range of particle sizes 5–70 nm. The increase in hardening
is also accompanied by a reduction in ductility. This is important
since both contribute to fatigue endurance even in rate-indepen-
dent failure mechanisms. Our model can provide an economical
means for such an optimization. In Fig. 5, the effect of volume
fraction is studied and the most striking observation is the sig-
nificant impact on hardening even at relatively low volume frac-
tions. Again, our model can be used to determine an optimum

Fig. 5. Effect of particle volume fraction on effective stress-strain curve.

composition. This mechanistic optimization of course must be
balanced against metallurgical considerations such as the eu-
tectic composition for this ternary system.

V. CONCLSION

We have presented a hybrid approach that combines scale-
independent homogenization for loading sharing with scale
dependent dislocation mechanics to predict from first principles
and constituent properties, the effective stress-strain curves
for rate-independent plasticity in alloys such as solders. In
particular, we have used the Mori–Tanaka method in a modified
secant formulation compared to previous hybrid methods that
either use the dilute scheme (which ignores interactions between
particles at finite volume fraction) or the self-consistent scheme
(which requires another iteration at each loading step). We have
also extended the Arsenault–Shi model [1] for hardening due to
residual plastic strains caused by thermal expansion mismatch.
The new model takes into account the elastic accommodation of
the matrix. Comparison with limited experimental data seems
to validate the model.

At this point, it is also instructive to point out some of the lim-
itations of the model and the possible ways to improve it. During
this discussion, we may also allude to some of the features of the
model that are deemed by the authors to be adequate.

1) The load sharing part of the model is thoroughly taken
care of. The modified secant approach, together with the
Mori–Tanaka scheme can provide results very close to fi-
nite element simulations and thus in the authors’ opinion,
further changes may be only of incremental value. If
the volume fractions become extremely high, then other
more implicit and advanced schemes may be employed,
e.g., generalized self-consistent model (Nemat–Nasser
and Hori, [17]). For typical volume fraction encountered
in nanocomposites , this likely not an issue.

2) As was pointed out, the Orowan formula used in this
paper is correct only to first order. Some of the mod-
ifications suggested in Mohles and Nembach [13] and
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Nembach [18] may be incorporated to take into account
particle distributions, matrix anisotropy, random arrange-
ment of particles and so forth. Such models have been ver-
ified with detailed computer simulations by Mohles and
Nembach [13].

3) We have modified Arsenault–Shi’s original model to in-
clude matrix constraint. For small CTE mismatch, our
formula is likely to be very close to the exact solution.
In all other cases, it provides a rigorous lower bound to
the hardening due to thermal residual plastic strains. No
such claim can be made for the Arsenault–Shi model.
Further improvement is possible by directly solving for
nonuniform matrix plastic strains and subsequent aver-
aging. Such an approach would be valuable if either the
temperature excursion or the difference in CTE is very
high.

4) By far the simplest model used in this paper is that for
hardening caused by GNDs. A possible way to improve
this model is suggested here. Solve exactly (analytically)
for the plastic strains and strain gradients in the matrix, for
a simple geometry (say spherical inhomogeneity). For-
mulate the nonuniform GND density and average over
the matrix volume. Then, (optionally) some fitting param-
eters may be used to calibrate analytical results appro-
priately with finite element simulations. In this manner,
other shapes can also be explored although analytical so-
lutions are unlikely for general shapes. In such a situation,
the spherical particle solution can be used as the analytical
basis while shape factors are calculated numerically via
finite element. Note that the procedure suggested above
essentially averages over strain gradients in contrast to
strain averaging in the first order model and anad hoc
selection of a length scale (i.e., particle size). The sug-
gested procedure may yield a more accurate length scale
parameter for GND density evolution.

In closure, we repeat that the current work is valid at high
strain rates or low temperatures only (shock, vibration etc.). An
analogous work is in progress for Pb-free solder applications
where creep behavior is the dominant consideration. The impli-
cations for virtual testing and design of novel Pb-free solders
are obvious.

APPENDIX

DERIVATION OF (11B)

Arsenault and Shi [1] show that for a cuboidal particle2 the
density of dislocations can be related to the residual plastic
strain due to thermal mismatch as

(17)

Here is the number of particles per unit matrix volume
while is the surface area of the particle (cuboid in their
Arsenault–Shi case). They define the plastic strain,, to be
simply . This is clearly incorrect. This strain can
only be achieved if the matrix provides no constraint. We

2Their analysis for a parallelepiped although without loss of generality we
can consider their formula for a cube

reformulate this problem to consider the matrix constraint. We
treat the thermal mismatch as an eigenstrain. Then according
to Eshelby’s formalism [7], the stress disturbance due to an
elastic inhomogeneity embedded in an infinite elastic matrix
(subjected to uniform far field strain —zero for the thermal
residual problem) can be found by using the “equivalent inclu-
sion” concept. Accordingly, an inhomogeneity can be replaced
by an inclusion with a suitable fictitious eigenstrain prescribed
within its domain. Let the inhomogeneity have a pre-existing
inelastic strain (eigenstrain) (in our case this will be the
thermal eigenstrain). Then, this inhomogeneity can be replaced
by an equivalent inclusion with a fictitious eigenstrain.

This fictitious eigenstrain is determined by solving the fol-
lowing equations within the region of the inhomogeneity

(18)

Here, is the so-called Eshelby’s tensor for interior points (i.e.,
all position vectors lying completely within the inhomogeneity).
For an inhomogeneity of arbitrary shape,is an integral oper-
ator on (Eshelby, [7]; Mura, [15]). In such a case,
(18) are a set of six simultaneous integral equations that must
be solved within the region of the inhomogeneity to determine
the fictitious, (generally) nonuniform eigenstrain. In a classical
elastic medium, Eshelby’s tensor is uniform for certain shapes
(e.g., ellipsoids which include spheres and cylinders). In such
a case, (18) reduce to six algebraic equations, and the problem
of an ellipsoidal inhomogeneity can be readily solved (Eshelby,
[7]).

Since our thermal eigenstrain is purely of dilatational nature
and there is no applied loading (the dislocation density increase
due to thermal residual strain occurs during manufacturing,
prior to any mechanical testing or application), we can separate
out the deviatoric and bulk parts of (18) and directly evaluate
the fictitious eigenstrain (after appropriately substituting
Eshelby’s tensor for spherical geometry)

(19)

The trace of the eigenstrain in (19) is simply .
The actual strain can then be give by

(20a-b)

We, however, are interested in the matrix average strain. They
satisfy the relation (in absence of far-field loading)

(21)

Equation (21) leads directly to (11b).
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