Size-Dependent Eshelby’s Tensor
for Embedded Nano-Inclusions
Incorporating Surface/Interface
Energies

The classical formulation of Eshelby (Proc. Royal SociéB41, p. 376, 1957) for em-
bedded inclusions is revisited and modified by incorporating the previously excluded
surface/interface stresses, tension and energies. The latter effects come into prominence at
inclusion sizes in the nanometer range. Unlike the classical result, our modified formu-
S. Ganti lation rend_ers the elastic state _of an emb_edded inclus'ion si_ze-dependent making possible
the extension of Eshelby’s original formalism to nano-inclusions. We present closed-form
expressions of the modified Eshelby's tensor for spherical and cylindrical inclusions.
Eshelby’s original conjecture that only inclusions of the ellipsoid family admit uniform
elastic state under uniform stress-free transformation strains must be modified in the
context of coupled surface/interface-bulk elasticity. We reach an interesting conclusion in
that only inclusions with a constant curvature admit a uniform elastic state, thus restrict-
ing this remarkable property only to spherical and cylindrical inclusions. As an immediate
consequence of the derivation of modified size-dependent Eshelby tensor for nano-
inclusions, we also formulate the overall size-dependent bulk modulus of a composite
containing such inclusions. Further applications are illustrated for size-dependent stress
concentrations on voids and opto-electronic properties of embedded quantum
dots.[DOI: 10.1115/1.1781177
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1 Introduction that then can be utilized to capture at least part of the length scale

. . . . effects likely to be prominent for embedded nano-inclusions.
Eshelby’s linear elastic solution of an embedded inclusiti, The literature on Eshelby’s tensor and related problems is in-

has a distinguished place in the history of mechanics, materiﬁz

) . . : e l ed rich and extensive. While we can hardly do justice in our
science, and solid-state physics. Characterized by its insightful .o of all pertaining work, attempt is made in Section 2 to

thought experiments, Eshelby’s classic solution of the embedd ntify some pertinent literature. To make this article self-
inclusion has been fruitfully used in diverse areas and problemsQfntained, a brief description of Eshelby’s main conclusions in the
physical sciences, e.g., localized thermal heating, residual straifgssical elasticity context are also reviewed. In Section 3, we
dislocation-induced plastic strains, phase transformations, ovekgiimulate the general problem of an embedded inclusion incorpo-
or effective elastic, plastic and viscoplastic properties of compogting surface energy and related terms. Some simple closed-form
ites, damage in heterogeneous materials, quantum dots, miGgpressions can be obtained for inclusions of constant curvature
structural evolution; to name just a few. In this work, we seek t@.e., spherical and cylindrical shape¥hat is the object of Sec-
modify the classical elasticity original solution of an embeddetion 4. The inhomogeneity problem is briefly discussed in Section
inclusion to include surface/interface energies, tension aBdafter which several applications of this work are presented in
stresses. In the following we will simply use the word “surface’Section 6 closing finally with summary and conclusions in Section
to signify both the free surface of a void in a material or thé&.

interface of a solid inclusion with that of the surrounding host

matrix. As has been done tacitly in most elastic problems, the

original elastic solution of the embedded inclusion ignored surface

energies of the inclusion—for fairly good reasons. Surface engr- Background

gies only enter physics when surface to volume ratio becomesB f introducti id localized arbitrarily shaped
appreciable. For most technological probletuastil recently in- y way ol introduction, consider a focalized arbitrarily shape

clusions were of the order of microns and rarely were one coFF—gion (@) in a material undergoing a stress-free inelastic defor-

cerned with nano-inclusions or related size effects. At the micrgjaion: Such strains are referred to as either transformation

and higher length scales, the surface-to-volume ratios are neéﬁr-ams‘[l]‘ or eigenstraing2]. Various physical examples of such

gible and indeed Eshelby’s original assumptions hold true and g rains are thermal expansion, dislocation mediated inelastic

d hi luti In short. in th ¢ K K to d Rain, swelling strain, magnetomechanical strains, lattice mis-
oes Nnis solution. In short, In the present work we seek 1o e”.Yr‘?atch, and so forth. If the inclusion is removed from the material

Eshelby’s tensor in the context of coupled surface-bulk elastimgﬁd allowed to relaxthus enacting the eigenstraimo stress is
Comributed by the Abpiied Mechanics Division ofiE A . generated. However, due to the presence of the matrix or sur-
ontrioute Yy the Applie echanics Division ol MERICAN CIETY OF H H . H H H
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ber 25, 2003; final revision, February 13, 2004. Editor: R. M. McMeeking. Discussion and the matrix are the same, the problem of determining the
sion on the paper should be addressed to the Editor, Prof. Robert M. McMeekirgdastic state is often referred to as Eshelby’s first problem. The
Journal of Applied Mechanics, Department of Mechanical and Environmental Engi- ; ; ; : : ;
heering Universty of Calfornia—Santa Barbara. Santa Barbara, CA 93106.5070, genario where the inclusion elastic properties are different than
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clature was introduced by Muf&]. Eshelby’s interior or exterior
tensor(S or D) relates the eigenstrairz{) to the actual straiie)
in and out of the inclusion],1,3,4:

e(X)=9(X):e*(X) XeQ (1a)

X3
r 3

D Interface
/' (To!ls -p‘s)

e(X)=D(X):e*(X) Xe&Q (1b)

Both boldfaced and index notation will be used as convenient.

Eshelby’s tensor, in classical elasticity context, depends solely on

shape (i.e., aspect ratigsof the inclusions and is thus size-

independent. Furthermore, for the family of ellipsoidal shaped in-

clusions (including spheres, cylinders, sphergidthis tensor is

uniform within the interior of the inclusion. The latter fact greatly

facilitates, for example, the calculation of effective properties of

composites containing ellipsoidal inhomogeneities. For the sake

of completeness, some additional details on classical Eshelby’s

tensor are recorded in Appendix A while an exhaustive account

can be found in Refs[1-4]. For nonuniform eigenstrains the Fig. 1 Schematic of the problem

Eshelby tensors are integral operators while for uniform eigen-

strains numerical values can be established either analytically or

numerically (depending upon the geometrical and material sym-

metry complications recent work of RahmafB81] who presents simplified calculations
Since the original appearance of Eshelby's pajidrseveral of Eshelby type tensors for polynomial eigenstrains.

works have extended, modified and applied the concept of Eshel{7) Enriched elasticity: the classical theory of elasticity itself

by’s tensor to a diverse set of physical problems. There exist gx@s been modified in several ways. Micromorphic elasticity takes

tensive reviews of this subject hence only selected representativ® account additional microdegrees-of-freedom such as indepen-

papers are cited to establish appropriate context. We will, ho@ent rotations, dilations, and shears. An extensive account of these

ever, allude to some review articles; the references of which mdfeories can be found in Ering¢82]. As far as inclusion problem

or less contain an updated account of this topic: are concerned, it appears that the only two solutions that exist are

.due to Cheng and H83,34] who, respectively, solve the spheri-

(1) Anisotropicity: Several works have modified the Class'%al and cylindrical inclusion problem. Based on the latter work,

Elorlglnally isotropig formulation to incorporate anisotropic be- harma and Dasgupfa5] have formulated the overall properties
avior. Progress has largely been made only in the plane case. ZAn . .
. 2>t micropolar composites.

excellent, but somewhat dated, account of these aspects is given'in
the now classic monograph by Muf2]. Some more recent In addition to the aforementioned group of papers, several other
works, which also contain extensive list of references on this sutyorks exist in the context of nonlinear behavior and of course in
ject, are: RU5] who discusses arbitrary shaped inclusions in application areagsuch as effective medium theories, phase trans-
isotropic half and full plane, Li and Dunfs] address coupled formations, stability, among otheysA review of those works is
field anisotropic inclusion problems, Pan and Yaji who beyond the scope of this paper. The following monographs, re-
present a semi-analytical method for application to embeddegw articles, books and references therein are recommended for
quantum dots and Faux and Pearf8hwho have also applied an the interested reader: Muf@], Nemat-Nasser and Ho86], and
anisotropic formulation to quantum dots. Markov and Preziodi37], Weng et al[38], Bilby et al.[39], and

(2) Inclusion shapes: Chili9] has considered parallelepipedMura et al.[40].
inclusion. Rodin[10] considers the general polyhedral inclusion.
So do Nozaki and Taygl1]. . . .

(3) Bonding conditions of inclusion: The original assumptios 1he General Size-Dependent Inclusion Problem in
in Eshelby’s work is that the inclusion is perfectly bonded to th€oupled Bulk-Surface Elasticity
matrix, i.e., the normal traqtions are continuous anq so are theConsider, for now, an arbitrary shaped inclusiél) embedded
displacements. Under certain conditions these conditions mustjR&, infinite amount of material. By definition of an inclusion, we
relaxed(e.g., grain boundary sliding, diffusive sliding, etdvari- g nhose a prescribed stress-free transformation strain within the
ous researchers have considered the imperfectly bonded inclusi@finain of the inclusior(Fig. 1). Consider the eigenstrain to be
e.g., Furuhashi et a[12], Ru and Schiavon¢13], Zhong and jniform. As a departure from the classical solution, we now re-
Meguid [14], Qu[15,16 and Kouris et al[17] to name a few.  qyire that the interface of the inclusion and the matrix be endowed

(4) Coated inclusions: Frequently for technological reasons ifyith g deformation-dependent interfacial enerfy,The interfa-
clusions are embedded in a matrix with a coatingwhich may  ¢ja| or surface energy is positive definite. This quantity is distinct
be developed due chemical interaction with the matixfew  from the bulk deformation-dependent energy due to the different
representative works in this area are: Walddi@], Luo and Weng  ¢oordination number of the surface/interface atoms, different bond
[19], Cherkaoui et al[20], among many others. lengths, angles, and a different charge distributiei]. Within

(5) Coupled problems: Due to possible applications in sensgfe"assumptions of infinitesimal deformations and a continuum
and actuator technology, a large body of work has focused @B|q theory, the concept of surface stress and surface tension can
coupled problems, e.g., magnetorestrictive inclusions, piezoelggs clarified by the following relation between interface/surface

tric media, etc. See, for example, the works by TE3H, Ru[22], t t d the def tion-d dent f
Deng and Meguid 23], Mikata [24], Li and Dunn[6], and Pan ;(riss)sbsnsoraj, and the deformafion-cependent surtace energy,

X4

[25,26].
(6) Nonuniform eigenstrains: SendecKgj7] and Moschovidis , dr
[28] considered general polynomial eigenstrains. Their work is o°=T,l°+ P (2

useful for both nonuniform loadings as well as for taking into

account interactions between inhomogeneities. Asaro and Barnéfere applicable, superscripsand Sindicate bulk and surface,
[29] and Mura and Kinoshit430] addressed polynomial eigen-respectively. Hereg® is the 2x2 strain tensor for surfaces or
strains in an anisotropic media. Note also must be made of timterfaces)? represents the identity tensor for surfaces whiés
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the deformation-independent surface/interfacial tension. It isHere “H” is the Heaviside function an€ is the classic fourth-
worth pointing out that the concepts of surface tension, surfaoeder stiffness tensor. We defizéx) to be of the form

stress, and surface energy are often confused and used inter-
changeably. Only for liquids are all three the same. For solids, {2(x)>0[x= 0}
they are vastly different and must be carefully distinguished. See, {z(x)<O0|x & Q}. (8)

for example, the excellent review article by Ibdeti]. A further

source of confusion often is the sign of the surface stress. Th
latter can be negative but not the surface energy. Conceptual mis-
takes abound if one equates the surface stress to the surface en
ergy. The determination of the surface tension and the surface
elastic constants is often nontrivial and a discussion on this can be 9

found elsewhere, e.g., Ibad#1], Miller and Shenoy{42], and It can be readily seen that the eigenstrain and the underlined
Gurtin and Murdoct{43]. Some brief comments on this are alsqerm appear as a body force. Note that in classical elasticity the
provided in Appendix C where the properties used in subsequegdt underlined expression in E), i.e., [¢®.n] is typically
numerical calculations are listed. __omitted since the jump in the normal tractions is ze%0) is the
Having introduced the essential concept of surface elastiCifjjrac delta function whilez(x)=0 defines the interface. How-
the governing linearized isotropic equations can be written follovgyer, taking cognizance of E¢a), i.e., coupling interface elas-
ing Gurtin and co-workers[44,43 who (along with previous +icity with bulk elasticity, we must rewrite Equatici9) as
works) can be credited for setting the theory of surface elasticity
on a rational mechanics footing. The equilibrium and isotropic _ R " - . o
constitutive equations of bulk elasticity are written as usual: V.0"=V.(C:) = V.{C:&"H(z(x))} + &(z(x)) div, OJ 0.

eTaking the divergence of Eq7) we obtain

V.6?=V.(C:e)-V.{C:e*H(z(x))}— [ 6®.n] 8(z(x)) =0.

dive®=0 (39) (10)

oB=\I3Tr(e)+ 2ue. (3b) psing the .underlined term as representing a body f(?rce in con-
junction with the elastic Green'’s function, we can write the dis-
At the interface, the concept of surface or interface elastie!8s placement field due to both the eigenstrain and the surface effect
45], is introduced which is excluded in the classical elasticitgs

formulation:
[0®.n] + divs 05=0 (%) e j G(y—x).(V.AC: e H(D}aV,
05= 71+ 2( S~ 75) €5+ (N4 70) Tr(£9)12. (4b) '
Here, A and u are the Lame’ constants for the isotropic bulk + LGT(y—x).divS o'(y)ds,.

material. Isotropic interfaces or surfaces can be characterized by
surface Lame’ constants®, u° and surface tensior,,. n is the
normal vector on the interface. It is to be noted that only certain (11)
strain components appear within the constitutive law for surfacasmore rigorous treatment of the interface conditions in &

due to the X2 nature of the surface stress tensioe., strains (11) is provided in Appendix A. Her& is the Green’s tensor for
normal to the surface are excludedhus, I? represents the 2 isotropic classical elasticityAppendix B. The underlined term

X 2 identity tensor whild® represents the same for bulk 2nd rankindicates the extra surface terms that we have incorporated in the
tensor. Tr indicates the trace operation. The square brackets in figsent work. The first integral in E¢L1) is simply the classical

(4a) indicate the jump of the field quantities across the interfacpart. As customany,1,36], we make use of Gauss theorem to cast
In absence of surface terms, Eg) reduce to the usual normal Eg. (11) in a more attractive form:

traction continuity equations of classical elasticity. “gdivepre-

sent the surface divergence. To define this further and well as tl . . . o

role of surface identity tensdf (i.e., the 2x2 nature of surface “=f (C:£7):(,®G (y—x))dV,+ f G (y—x).div, 0°(y)dS,.
tensorg, it would be convenient to first recall certain projection v il
tensors P°) employed by Gurtin et al44]:

(12)

Ps=1—n®n. (5)  Here we have also used the rule tHgiG(y—x) = —V,G(y—X).

. . . . . Invoking the linearized strain-displacement lage= sym{V @ u},
Here | is the three-dimensional identity tensor and we hav e can then write

dropped the superscript “3.” This surface projection tensor maps
tensor fields from bulk to surface and vice versa. For example, the

surface strain tensor projected into such a tangent space would be  ¢—g: ¢* + sym| V.® f GT(y—x).div, &*(y)ds, | .
written ase®= P5¢P®. This notion of projection tensdand related s ’ Y

tensor machinery of superficial and tangential tensehsgantly g

allows one to mix bulk and surface tensors in the same equations. (13)
To clarify the notion of surface divergence, consider a vegtor

The surface gradient and surface divergence, then, take the fdgré We have invoked the definition of the classical size-
lowing form, [44]: independent Eshelby tens¢t,2], based on which the firghon-

underlined integral in Eq.(12) reduces to the classical expression
in Eqg. (1). The notation, syfy}, represents the symmetric part of a
(6) second-order tensof, e.g.,

. : . . symA}= 7 {A+AT}.
Noting that the transformation strain is only nonzero within the o . . .
inclusion domain e 1), we can write the bulk-constitutive law Further simplification does not appear feasible without addi-

V.v=VvP®
divg(V)=Tr(Vgv).

for the inclusion-matrix as follows: tional assumptions regarding inclusion shape. Note now that Eq.
(13) implicitly gives the modified Eshelby’s tensor for inclusions
oB=C:{e—e"H(z(x))}. (7) incorporating surface energies. This relation is implicit since the
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surface stress depends on the surface strain, which in turn is Hhere we have used the fact that 1/R, for spheres wher®, is
projection of the conventional straifz) on the tangent plane of the radiusK® is defined by us to be the surface elastic modulus

the inclusion-matrix interface. In the next section, using @9)  and is given as 2(°*+ 1) while K is the usual hydrostatic modu-
we will derive explicit expressions for cylindrical and sphericalus, \ +2 /3.

inclusions. For now, however, it is worth noting some general For an infinite circular cylindrical inclusion, in addition to the

features of the new Eshelby tensor. plane-strain conditions we haweas 1/R, hence
In terms of the surface projection tensor the surface divergence s
of the surface stress tensor can be written as e ' ! s To y
e=Se —3K,RO(S.I)Tr(PSsP) 3K’R0(S'I)' (20)

divs o°= dive{ CSPSePS+ 7,PS}. (14)

The surface divergence of surface stress tensor can only be
form if the classical “bulk” strain asvell as the projection tensor
is uniform over the inclusion surface. Consider th44]:

d—rllg_reK/S is the plane-strain surface modulus+2u® while K’

Is 2(\+ u)/3. Note that for the interior solution, Eshelby’s inte-

rior tensor(S) must be used while for exterior solution the corre-

sponding exterior versiofD) is required.

divg P5=2kn. (15) Substituting the well-known components of the classical Es-
helby tensors for both spherical and cylindrical shapag, we

Here « is the mean curvature of the inclusion. For a general ell btain the following simple expressions for spherical and cylin-
soid the curvature is nonuniform and varies depending upon the

. - ; : . ; ok
location at the surface. Only for the special cases of spherical a écfl |nilu3|ons subjected to a dilatational eigenstraf)=e3,
cylindrical shape is the mean curvature uniform hence leading 33~ ¢ - o ) )

to conclude the following: Spherical inclusior(in spherical polar coordinates
PropPosITION Eshelby’s original conjecture that only inclusions of 3KMe* — 2+ R

the ellipsoid family admit uniform elastic state under uniform o0 ©
eigenstrains must be modified in the context of coupled surface/

A T TR TS AR
0

interface-bulk elasticity. Only inclusions that are of a constant (21a)
curvature admit a uniform elastic state, thus restricting this re- M % 3
markable property to spherical and cylindrical inclusions 3K —270/R, | R,

property p Y e (r)= 2" 3K 2KR, | T° r>R, (21b)

0
3KMe* — 27, /R, 2R§\

4 Inclusions With Constant Curvature (Spheres and S =€4s(1) =~ Zuwr g Hsp-| 73| = Ro-
Cylinders) (2l

Spherical and cylindrical inclusions are endowed with a comylindrical inclusion(in cylindrical polar coordinates
stant curvature and thus according to the previous section must

admit a uniform elastic state in coupled bulk-surface elasticity. _ )= 3K'Me* — 75 /R, | <R -
The new Eshelby’s tensor will, of course, be size-dependent be- e (1) =egp(r _ZMM+3K/M+K/S/RO|r o (229)
cause of the presence of curvature terms.
Due to the constant curvature, E4.3) can be simplified con- 3K'Me* — 70 IR, R§
siderably. The surface divergence of the surface stress can be sim- en(r)= 2" 3KV K SR, | 12| R (22)
. N . (0]
ply taken out of the differential and integral operators. The surface
integral is converted into a volume integral and we can then write: 3K'Me* — 7, IR, Rg
=— —{r>
ego(T) 207+ 3K VA K'SIR, | 2 r>R, (22)
— Q. 1. . _ . 8
e=S:g"—-C sym{ V,.oC: vaX@)G(y X)dVy} 2T £,/r)=0. (22)
Wherever applicable, superscrigisandM will be used to repre-
16 sent inhomogeneity and matrix properties, respectively. The ex-
(16) pressiong21)—(22) are exceptionally simple but clearly illustrate
where scalar & is defined from the relation: that elastic state is now size-dependent. The surface/interface ten-
< sion is a residual strain-type term which, for example, should not
o°=sP impact the effective properties of composite. The effect of surface
- s . .
=5=1,+ (A\S+ %) Tr(PePS) (17) elasticity appears througk® which (as shall be seen in Section

6(b)), leads to a size-dependent change in overall hydrostatic
In the underlined integral term we have multiplied and divided byroperties of a composite. By making the radius of the inclusion
the elastic stiffness tensor to conveniently cast the term enclodarhe we can trivially retrieve the known classical solution. Inter-
in the curly brackets in terms of the classical Eshelby tensastingly, although their treatment of a spherical precipitate was
Additionally we have used the surface constitutive [@g. 4b)). much more specialized, we can make contact with the results of
We can rewrite Eq(16) in the following simpler form: Cahn and Larchd46]. Using an assumed displacement type
o 1. method they(only taking into account surface tensjgoresented
£=Se"—(2ks)C 1 (S). (18) exactly the expression in Ed21a) with the surface elasticity
Equation(18) can be made more explicit by noting that an isotroeffect (K®) set to zero.
pic fourth tensorA, displaying the symmetries characteristic of
the elastic stiffness tensor can be written in terms of two scalars
a, and a, as: A =2a416;; 6t as(8id, + 6, 0;). It is then ,
straightforward to ]s,how théA:I=(3a1+]2a2)I V\J/hiCh, after sub- 5 A Note on the Eshelby’s 2nd Problem(Inhomogene-
stituting C™*:1=(1/3K)! in Eq. (18) directly leads to the follow- ity)

ing for spherical inclusions: Since the classical result for the strain within the inclusion is
s 2y uniform for ellipsoids, Eshelbyl] was able to devise an elegant

e=S et — (S:1)Tr(PSePs) — 0 (sh). (19) method to mimic an inhomogeneity by an inclusion containing a

3KR, 3KR, fictitious eigenstrain. The so-called equivalent inclusion method
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Fig. 2 Stress concentration as a function of surface properties and void radius. (a) Solution
with surface modulus =2K*, Al [1 0 0]. (b) Solution with surface modulus =nominal K* for Al [1
0 0]. (c) Classical solution without surface effects, i.e., K=0. (d) Solution with surface

modulus =2K* Al [1 1 1]. (e) Solution with surface modulus =nominal K*, Al [11 1].

simply entails equating the elastic state of an inhomogeneity to T oo 1/1-2KS3KMR,
that of an inclusion albeit with the aforementioned fictitious S.C.=— = +§ W) (25)
eigenstrain, i.e., O r=R, M Ro
CM:{e”+e—g'}=CH:{e"+ &) (23a)
e=Se". (230)  |n this section we have set, =0, to study the effect of surface

£” is the externally applied strain. Since for spherical and cylirlastic constant<®. Results can then also be presented indepen-
drical shapes the modified Eshelby’s tensor with surface effectsdgnt of loading conditions since the surface tension is a residual
also uniform, the equivalent inclusion method embodied in Eqgtress type of effect. Note that E@S) trivially gives 1.5 as the
23(a,b) can be easily applied to study the size-dependent elasti¢ess concentration for the classical elasticity case when either
state of inhomogeneities. Unlike the classical case, this fortuity, 8drface modulus is small or void radius is relatively large
was seen in Section 3, does not extend to ellipsoids. As an dfypically>25nm). The numerical results are presented for Alu-
ample, for a cylindricainhomogeneityree of any external load- Minum using free-surface properties computed by previous re-

ing but containing a dilatational eigenstrain, the interior radigiearcherg[42l—using molecular dynamics simulationhe sur-
stress can be reduced to face properties are highly dependent upon crystallographic
direction while ours is an isotropic formulation. The object of this
—2uMe* —K"%e*IR,— 7, /R, section, however, is to simply use some realistic values to illus-
2(uM+ uH+AH) + KSR, @4) trate the physical effect. The stress concentration of the spherical
cavity under hydrostatic tension is plotted as a function of the
6 Applications cavity radiusR, in Fig. 2 for two different set of surface proper-
. . . . . . ties (corresponding t¢1 0 0] Al and [1 1 1] Al). To investigate
The incorporation of surface size ef‘feqts n the_ |nc_Iu5|on Pro% proader range of surface properties, curves of surface modulus
lem automatically reopens all the existing application areas ice that of AI[1 0 0] and Al [1 1 1] are also shown.

Eshelby teg_sor nowhextendalt_)le to the nanors]ca]!_e. In the presgpl * arameters as obtained from manipulation of data from
paper we discuss three application areas: the first two are agan _ s
demic although classic in mechanics while the third is, currentlg@fr_ 6ar21$788’3/enr;c:3}/<£12]_ SaLeS'7 [,\}/mo V\?E;ile)\for[sl.dfigi]z ;\t:/g/’

of immense technological importance. are: \5=6.842 N/m, u®=—0.3755 N/m=>K®=12.932 N/m. As
depicted in Fig. 2, surface effects cause the stress concentration to
(a) Size-Dependent Stress Concentration at a Spherical reduce (increasg¢ with decreasing pore size whel®>0 (K®
Void. Consider a spherical void under an applied hydrostati€0). The classical cas@vithout surface effeciscorresponds to
tension. Based upon the preceding expressiostg Eshelby’s K*=0 and is, as expected, independent of pore size. Below a
exterior tensor and equivalent inclusion methdtie stress con- critical void radius the void will sinter. This effect is closely re-
centration can then be derived to be lated to the residual surface tension and is not investigated here.

UrrZZ(MH+)\H)
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Fig. 3 Size-dependent effective hydrostatic modulus with surface effects versus void radius
normalized with the matrix bulk modulus: (a) solution with surface modulus =2K?*, Al [1 0 0];
(b) solution with surface modulus =nominal K* for Al [1 0 0]; (c) classical solution without
surface effects, i.e., K°=0; (d) solution with surface modulus =2K?® Al [1 1 1]; (e) solution with
surface modulus =nominal K*, Al [11 1]

(b) Size-Dependent Overall Properties of Composites 1
One of the applications of this work is that surface effects can (g)= VJ un®ndS. (28)
now be easily included in the determination of effective elastic Sw
properties of a composite. Here, as an example, a nanocompogjége n is the normal vector on the outer surface. The average
of Aluminum populated with a finite volume fraction of sphericaktrain field is obtained as
voids is considered. Let the volume fraction of the inhomogene-
ities be denoted by¢.” To take into account interactions between
various inhomogeneities, we embed the single inhomogeneity
(void) in a concentric spherical volume of matrix material wit
finite radius ‘Ry>R,.” Then, “c” is simply R¥R3,. This is

3KM 1
(£)=3| Q+ 4M—MQ* m)o* (29)

hfrom which the effective hydrostatic modulus is deduced to be

nothing but the classical spherical assemblage sy$@&sh,Using " 1
the interior and exterior Eshelby’s tensor we can compute the K= 3K 7 (30)
displacement fields to be 3|Q+ —wQ— —M)
v 4u
Pr, O<r<R, The overall hydrostatic modulus of the composite is size and
u= T surface-property-dependefvia “ Q" which in turn depends on “
Q+ 2, Re=r=Ru K" weighted by the inhomogeneity curvatrdhe size effect is
illustrated in Fig. 3, where the normalized effective hydrostatic
o (4pM+3KH) modulus is plotted against the void radius for a constant volume

(26) fraction ofc=0.5. The effective hydrostatic modulus with surface
effects, shown in Fig. 3, is normalized by the hydrostatic modulus
3AKR? of the matrix material without voids. As can be observed, at small
AK=KM—KH, T= ——220Q, P=Q+T/R. length scales, the size of inhomogeneiti@$ constant volume
4p+3K © fraction) can cause a change in the macroscopic behavior of a
. . . . composite. Asymptotically, as the inhomogeneitpid) size is
Here we have used the kinematical relations, ou/drieqy | creased, the surfaces effects begin to diminish and the normal-

=g44,=U/r). The overall applied stress is related to the totq'ged modulus approaches the classical solution
average strain via the effective bulk modulus as '

Q= 3R {2,V 1 3K™) — 4c L[ 3AK T 2KIR,]

o =KeM(e). (27) (c) Size-Dependent Strain and Emission Wavelength in
Quantum Dots. Quantum dot(QDs) have recently been the
As is well known,[36], the average strain can be completeljocus of several experimental and theoretical researchers due to
determined through the surface integral of the displacement on the promise of improved and new opto-electronic properfi€s,
boundary of spher&y,, i.e., QDs are typically embedded in another semiconductor material
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with differing elastic constants and lattice parameter. The ensuipgopertie$ is incurred when surface effects are neglected consid-
elastic relaxation within the QD is well known to impact theirering that quantum dots are often “fabricated” in the sub 10-nm

opto-electronic properties. Several works, of varying sophisticeegime. An electronic property of interest in quantum dots is its

tion (both analytical and numerigalhave focused on the calcula-bandgap, which in turn affects its emission wavelength. Using a
tion of the strain state in buried quantum dots and the subsequsimiple effective mass theory, the deformation potential theory,
impact on opto-electronic propertiesee, for example, the follow- [50], and the size effects from the present work, the shift in quan-
ing works appearing in the mechanics literatyg,49). It would tum dot emission wavelength due to surface effects can be written
be of interest to see how much err@n strain and electronic as

cl_ s
o hc(ac+a,)[e®—e%(R,)] _ (31)

E°°+—h2(m‘;m'*h) +(a.+a,)e%(Ry) E°°+—h2(m;mrh) +(a,+a,)e
9" BaREAm ) o T | e o RE ey e

Here,h is Planck’s constant whilen* is the effective mass of the 7 Summary and Conclusions

carriers(* " is electron and ‘1h” is light hole). E, is the bulk 1o summarize, we have modified Eshelby’s classical approach
band gap of the material whila(+a,) represents the dilatational to\wards inclusions and inhomogeneities to incorporate the effect
deformation potentials®' is the classical strain anef(R,) is the of surface energies via the continuum field formulation of surface
size-dependent strain from the present work that includes surfasigsticity. As a consequence, the elastic state of inclusions is ren-
effects. Note that for the purposes of band structure calculatioigred size-dependent making possible the establishment of scaling
the eigenstrain must be subtracted from the compatible strain. Tla@ss that are valid at the nanoscale. Eshelby’s original conjecture
second term on the denominator of E81) is the usual quantum that only inclusions of the ellipsoid family admit uniform elastic
confinement effect[51]. As an example, we have used arstate under uniform eigenstrains must be modified in the context
Ing;GaN quantum dot system embedded in a GaN matrix. Thé coupled surface/interface-bulk elasticity. Only inclusions that
error in wavelength calculation is shown in Fig. 4. Numericadre of a constant curvature admit a uniform elastic state, thus
constants are listed in Appendix C. We have used a simple firsgstricting this remarkable property only to spherical and cylindri-
order approximatiofiEg. (31)) to capture the wavelength shift andcal inclusions. The modified size-dependent Eshelby tensor for the
while a more sophisticated treatment is possilitdlowing, say, spherical and circular cylindrical shape is explicitly calculated in
Ref.[49]) the present expression in E®1) suffices to provide a the present work.
measure of the severity of surface effects on the opto-electronicApart from the formal contribution, by way of illustration, the
properties. size-dependent stress concentration on a spherical void was dem-
As patent from Fig. 4 the error in wavelength calculation bpnstrated. Taking advantage of the fact that the modified Eshelby
neglecting the surface size effect is appreciable in certain sitnsor is uniform for the spherical shape, we are also able to
ranges. For large QD size, as expected, the classical and the @@nive the exact size-dependent hydrostatic modulus of a hetero-
results are indistinguishable. For very small QD sizes, while sugeneous solid. Perhaps the most technologically important appli-
face effects are appreciable so are the quantum confinementagttion of the present work lies in arena of quantum dots and wires.
fects (which scale as ®?) and hence dominate. In the “mid- While physicists routinely take into account the impact of strain
regime” (still at the nanoscale surface effects have the moston band structure and opto-electronic properties, the strain calcu-
impact. To be specific, in this particular material system, a may@tions are typically based upon classical elasticity and are size-
mum wavelength shift of-40 nm (for a diameter of~3 nm) is independent. In the present work, a first-order calculation clearly
observed which is large enough to cause a shift of colors afpows that large errors in both the band structure and the emitted

indeed exceeds the strict optoelectronic design tolerances. Wavleletn%th can be incurred if the surface size effects are
neglected.

There are several limitations of the present work and a few are
worth mentioning. They point naturally to future extensions:

(1) Isotropic behavior was assumed throughout. This is a rather
dubious assumption when one is concerned with surfaces and in-
terfaces. Unfortunately, matters are unlikely to be analytically
tractable once the assumption of isotropy is abandoned. Numeri-
cal formulation of the coupled-surface bulk elasticity may be nec-
essary to remove this restriction.

(2) Analytical formulas were restricted to the spherical and cy-
lindrical shape. This limits our ability to study the effect of shape
on the size-dependent elastic state of nano-inclusions. Derivation
of the modified Eshelby tensor for the general ellipstichich
surely must proceed numericallwould be a useful extension of
the present work.

(3) It would be also of interest to see the behavior of nons-

. mooth inclusion shapes, e.g., parallelepipeds. Polyhedral inclu-

0 M 0 60 % wo  Sions with vertices essentially possess zero curvature everywhere
Diameter of Guantum Dot (nm) except at the corners where singularities exist.
(4) Slip, twist, and wrinkling of surfacesl/interfaces were ig-
Fig. 4 Size-dependent wavelength shift due to surface elastic- nored. One can expect some interesting physics to emerge from
ity effects inclusion of such effects. Slip and twist of elastic interfaces were

> ¥ ¥ 8 8 &8 &

Error in Wawelength (nm)

-
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recently included by Gurtin et a]44] to supplement the original Appendix B
formulation,[45]. These notions are closely linked to the concept , ) o ’ )
of coherency-incoherency and their discussion in relation to Es-Green’s Function for Elasticity and Eshelby’s Classical Ten-

helby’s problems is relegated to a future work. sor. The Green’s function for elasticits(y—x) is the funda-
mental solution to the Kelvin’s solution of a point load in an
infinite solid. It is given by(for isotropic materials

Acknowledgments 1 (Yy=X)®(y—Xx)

g , Gly—x)= (3—ap)o+ Lo IX

The present work greatly benefited from the comments by an 16mu(1—v)|ly—x| ly—x|
anonymous reviewer. In particular, the rigorous treatment of Egs. (34)
(9) and(16) and the note in Appendix A is a direct consequence &upstituting this expression in the first integral of ErR) yields,
reviewer’s suggestion. [2]:
1
gij(X)= m[‘l’kl,knj —20Dyij — 2(1—v) (Pig i

Appendix A

Interfacial Conditions in Equations (9)—(11). The form of T Pici)] (35)
the underlined term in Eq9), i.e., the jump in traction across thewhere ¢ and @ are biharmonic and harmonic potentials of the
inclusion-matrix interface, can be justified by considering thiclusion shap&Q). They are given as
stress balance law in the following form:

‘I’i;(X)=f Ix—ylef; (y)d® (36)
diw=ff(y)5(x—y)ds,=o (32) ¢
S

1
D.(x)= | ——&* 3 7
Equation(32) defines a stress field perturbed by a force spread ij(X) f9|x—y| & (y)dy (37)

over the interface. An arbitrary trial function(x) is introduced. . . - .
Upon multiplication of this trial function with Eq(32), integra- Equation(35) can then be cast into the more familiar expression

tion over the volume and subsequent use of Gauss theorem yidli&d- (12,0
e(X)=8(x):e* xe)

. 38
L{[(r(x)].n}.w(x)dsx— fv{dlv o(X)}.w(x)dS, £(X)=D(x):e" x&Q. (38)
Mura’s book[2] contains detailed listing 0§ and D tensor for
+ f f(y).w(y)dS,=0. (33) Vvarious inclusion shapegspheres, cylinders, ellipsoids, and
S cuboids.
Since,w(x) is completely arbitrary, Eq.33) implies (a) the usual Appendix C

balance law within the bulk of the continuum, di=0 and(b)
the identification of the interface force with the jump in the nor- Numerical Constants for Wavelength Shift Calculation

mal tractions, i.e.f=—[o].n. The numerical values used in the calculation of Fig. 4 are listed in
Table 1.
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