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Size-Dependent Eshelby’s Tensor
for Embedded Nano-Inclusions
Incorporating Surface/Interface
Energies
The classical formulation of Eshelby (Proc. Royal Society,A241, p. 376, 1957) for em-
bedded inclusions is revisited and modified by incorporating the previously excl
surface/interface stresses, tension and energies. The latter effects come into promine
inclusion sizes in the nanometer range. Unlike the classical result, our modified fo
lation renders the elastic state of an embedded inclusion size-dependent making po
the extension of Eshelby’s original formalism to nano-inclusions. We present closed
expressions of the modified Eshelby’s tensor for spherical and cylindrical inclus
Eshelby’s original conjecture that only inclusions of the ellipsoid family admit unifo
elastic state under uniform stress-free transformation strains must be modified in
context of coupled surface/interface-bulk elasticity. We reach an interesting conclusi
that only inclusions with a constant curvature admit a uniform elastic state, thus res
ing this remarkable property only to spherical and cylindrical inclusions. As an immed
consequence of the derivation of modified size-dependent Eshelby tensor for
inclusions, we also formulate the overall size-dependent bulk modulus of a comp
containing such inclusions. Further applications are illustrated for size-dependent s
concentrations on voids and opto-electronic properties of embedded qua
dots. @DOI: 10.1115/1.1781177#
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1 Introduction
Eshelby’s linear elastic solution of an embedded inclusion,@1#,

has a distinguished place in the history of mechanics, mate
science, and solid-state physics. Characterized by its insigh
thought experiments, Eshelby’s classic solution of the embed
inclusion has been fruitfully used in diverse areas and problem
physical sciences, e.g., localized thermal heating, residual str
dislocation-induced plastic strains, phase transformations, ov
or effective elastic, plastic and viscoplastic properties of comp
ites, damage in heterogeneous materials, quantum dots, m
structural evolution; to name just a few. In this work, we seek
modify the classical elasticity original solution of an embedd
inclusion to include surface/interface energies, tension
stresses. In the following we will simply use the word ‘‘surfac
to signify both the free surface of a void in a material or t
interface of a solid inclusion with that of the surrounding ho
matrix. As has been done tacitly in most elastic problems,
original elastic solution of the embedded inclusion ignored surf
energies of the inclusion—for fairly good reasons. Surface e
gies only enter physics when surface to volume ratio beco
appreciable. For most technological problems~until recently! in-
clusions were of the order of microns and rarely were one c
cerned with nano-inclusions or related size effects. At the mic
and higher length scales, the surface-to-volume ratios are n
gible and indeed Eshelby’s original assumptions hold true and
does his solution. In short, in the present work we seek to de
Eshelby’s tensor in the context of coupled surface-bulk elasti
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that then can be utilized to capture at least part of the length s
effects likely to be prominent for embedded nano-inclusions.

The literature on Eshelby’s tensor and related problems is
deed rich and extensive. While we can hardly do justice in
review of all pertaining work, attempt is made in Section 2
identify some pertinent literature. To make this article se
contained, a brief description of Eshelby’s main conclusions in
classical elasticity context are also reviewed. In Section 3,
formulate the general problem of an embedded inclusion incor
rating surface energy and related terms. Some simple closed-
expressions can be obtained for inclusions of constant curva
~i.e., spherical and cylindrical shapes!. That is the object of Sec-
tion 4. The inhomogeneity problem is briefly discussed in Sect
5 after which several applications of this work are presented
Section 6 closing finally with summary and conclusions in Sect
7.

2 Background
By way of introduction, consider a localized arbitrarily shap

region ~V! in a material undergoing a stress-free inelastic def
mation. Such strains are referred to as either transforma
strains,@1#, or eigenstrains,@2#. Various physical examples of suc
strains are thermal expansion, dislocation mediated inela
strain, swelling strain, magnetomechanical strains, lattice m
match, and so forth. If the inclusion is removed from the mate
and allowed to relax~thus enacting the eigenstrain!, no stress is
generated. However, due to the presence of the matrix or
rounding material, the final relaxed elastic state of the inclus
admits a state of stress. When the material properties of the in
sion and the matrix are the same, the problem of determining
elastic state is often referred to as Eshelby’s first problem. T
scenario where the inclusion elastic properties are different t
those of the matrix is Eshelby’s second problem~in which case
the inclusion is referred to as an ‘‘inhomogeneity’’!. This nomen-
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clature was introduced by Mura@2#. Eshelby’s interior or exterior
tensor~S or D! relates the eigenstrain («!) to the actual strain~«!
in and out of the inclusion,@1,3,4#:

«~X!5S~X!:«!~X! XPV (1a)

«~X!5D~X!:«!~X! X¹V (1b)

Both boldfaced and index notation will be used as convenie
Eshelby’s tensor, in classical elasticity context, depends solely
shape ~i.e., aspect ratios! of the inclusions and is thus size
independent. Furthermore, for the family of ellipsoidal shaped
clusions ~including spheres, cylinders, spheroids!, this tensor is
uniform within the interior of the inclusion. The latter fact great
facilitates, for example, the calculation of effective properties
composites containing ellipsoidal inhomogeneities. For the s
of completeness, some additional details on classical Eshe
tensor are recorded in Appendix A while an exhaustive acco
can be found in Refs.@1–4#. For nonuniform eigenstrains th
Eshelby tensors are integral operators while for uniform eig
strains numerical values can be established either analyticall
numerically ~depending upon the geometrical and material sy
metry complications!.

Since the original appearance of Eshelby’s paper@1# several
works have extended, modified and applied the concept of Es
by’s tensor to a diverse set of physical problems. There exist
tensive reviews of this subject hence only selected represent
papers are cited to establish appropriate context. We will, h
ever, allude to some review articles; the references of which m
or less contain an updated account of this topic:

~1! Anisotropicity: Several works have modified the class
~originally isotropic! formulation to incorporate anisotropic be
havior. Progress has largely been made only in the plane case
excellent, but somewhat dated, account of these aspects is giv
the now classic monograph by Mura@2#. Some more recen
works, which also contain extensive list of references on this s
ject, are: Ru@5# who discusses arbitrary shaped inclusions in
isotropic half and full plane, Li and Dunn@6# address coupled
field anisotropic inclusion problems, Pan and Yang@7# who
present a semi-analytical method for application to embed
quantum dots and Faux and Pearson@8# who have also applied an
anisotropic formulation to quantum dots.

~2! Inclusion shapes: Chiu@9# has considered parallelepipe
inclusion. Rodin@10# considers the general polyhedral inclusio
So do Nozaki and Taya@11#.

~3! Bonding conditions of inclusion: The original assumptio
in Eshelby’s work is that the inclusion is perfectly bonded to t
matrix, i.e., the normal tractions are continuous and so are
displacements. Under certain conditions these conditions mus
relaxed~e.g., grain boundary sliding, diffusive sliding, etc.!. Vari-
ous researchers have considered the imperfectly bonded inclu
e.g., Furuhashi et al.@12#, Ru and Schiavone@13#, Zhong and
Meguid @14#, Qu @15,16# and Kouris et al.@17# to name a few.

~4! Coated inclusions: Frequently for technological reasons
clusions are embedded in a matrix with a coating~or which may
be developed due chemical interaction with the matrix!. A few
representative works in this area are: Walpole@18#, Luo and Weng
@19#, Cherkaoui et al.@20#, among many others.

~5! Coupled problems: Due to possible applications in sen
and actuator technology, a large body of work has focused
coupled problems, e.g., magnetorestrictive inclusions, piezoe
tric media, etc. See, for example, the works by Taya@21#, Ru @22#,
Deng and Meguid@23#, Mikata @24#, Li and Dunn@6#, and Pan
@25,26#.

~6! Nonuniform eigenstrains: Sendeckyj@27# and Moschovidis
@28# considered general polynomial eigenstrains. Their work
useful for both nonuniform loadings as well as for taking in
account interactions between inhomogeneities. Asaro and Ba
@29# and Mura and Kinoshita@30# addressed polynomial eigen
strains in an anisotropic media. Note also must be made of
664 Õ Vol. 71, SEPTEMBER 2004
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recent work of Rahman@31# who presents simplified calculation
of Eshelby type tensors for polynomial eigenstrains.

~7! Enriched elasticity: the classical theory of elasticity itse
has been modified in several ways. Micromorphic elasticity ta
into account additional microdegrees-of-freedom such as inde
dent rotations, dilations, and shears. An extensive account of t
theories can be found in Eringen@32#. As far as inclusion problem
are concerned, it appears that the only two solutions that exis
due to Cheng and He@33,34# who, respectively, solve the spher
cal and cylindrical inclusion problem. Based on the latter wo
Sharma and Dasgupta@35# have formulated the overall propertie
of micropolar composites.

In addition to the aforementioned group of papers, several o
works exist in the context of nonlinear behavior and of course
application areas~such as effective medium theories, phase tra
formations, stability, among others.!. A review of those works is
beyond the scope of this paper. The following monographs,
view articles, books and references therein are recommende
the interested reader: Mura@2#, Nemat-Nasser and Hori@36#, and
Markov and Preziosi@37#, Weng et al.@38#, Bilby et al. @39#, and
Mura et al.@40#.

3 The General Size-Dependent Inclusion Problem in
Coupled Bulk-Surface Elasticity

Consider, for now, an arbitrary shaped inclusion~V! embedded
in an infinite amount of material. By definition of an inclusion, w
suppose a prescribed stress-free transformation strain within
domain of the inclusion~Fig. 1!. Consider the eigenstrain to b
uniform. As a departure from the classical solution, we now
quire that the interface of the inclusion and the matrix be endow
with a deformation-dependent interfacial energy,G. The interfa-
cial or surface energy is positive definite. This quantity is distin
from the bulk deformation-dependent energy due to the differ
coordination number of the surface/interface atoms, different b
lengths, angles, and a different charge distribution,@41#. Within
the assumptions of infinitesimal deformations and a continu
field theory, the concept of surface stress and surface tension
be clarified by the following relation between interface/surfa
stress tensor,ss, and the deformation-dependent surface ener
G(«s) by

ss5toI21
]G

]«s . (2)

Where applicable, superscriptsB andS indicate bulk and surface
respectively. Here,«s is the 232 strain tensor for surfaces o
interfaces,I2 represents the identity tensor for surfaces whileto is

Fig. 1 Schematic of the problem
Transactions of the ASME
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the deformation-independent surface/interfacial tension. It
worth pointing out that the concepts of surface tension, surf
stress, and surface energy are often confused and used
changeably. Only for liquids are all three the same. For sol
they are vastly different and must be carefully distinguished. S
for example, the excellent review article by Ibach@41#. A further
source of confusion often is the sign of the surface stress.
latter can be negative but not the surface energy. Conceptual
takes abound if one equates the surface stress to the surfac
ergy. The determination of the surface tension and the sur
elastic constants is often nontrivial and a discussion on this ca
found elsewhere, e.g., Ibach@41#, Miller and Shenoy@42#, and
Gurtin and Murdoch@43#. Some brief comments on this are als
provided in Appendix C where the properties used in subseq
numerical calculations are listed.

Having introduced the essential concept of surface elasti
the governing linearized isotropic equations can be written follo
ing Gurtin and co-workers,@44,45# who ~along with previous
works! can be credited for setting the theory of surface elastic
on a rational mechanics footing. The equilibrium and isotro
constitutive equations of bulk elasticity are written as usual:

div sB50 (3a)

sB5lI3Tr~«!12m«. (3b)

At the interface, the concept of surface or interface elasticity,@43–
45#, is introduced which is excluded in the classical elastic
formulation:

@sB.n#1divs sS50 (4a)

sS5toI212~ms2to!«S1~ls1to!Tr~«S!I2. (4b)

Here, l and m are the Lame’ constants for the isotropic bu
material. Isotropic interfaces or surfaces can be characterize
surface Lame’ constantsls, ms and surface tension,to . n is the
normal vector on the interface. It is to be noted that only cert
strain components appear within the constitutive law for surfa
due to the 232 nature of the surface stress tensor~i.e., strains
normal to the surface are excluded!. Thus, I2 represents the 2
32 identity tensor whileI3 represents the same for bulk 2nd ra
tensor. Tr indicates the trace operation. The square brackets in
~4a! indicate the jump of the field quantities across the interfa
In absence of surface terms, Eq.~4! reduce to the usual norma
traction continuity equations of classical elasticity. ‘‘divs’’ repre-
sent the surface divergence. To define this further and well as
role of surface identity tensorI2 ~i.e., the 232 nature of surface
tensors!, it would be convenient to first recall certain projectio
tensors (Ps) employed by Gurtin et al.@44#:

Ps5I2n^ n. (5)

Here I is the three-dimensional identity tensor and we ha
dropped the superscript ‘‘3.’’ This surface projection tensor ma
tensor fields from bulk to surface and vice versa. For example,
surface strain tensor projected into such a tangent space wou
written as«s5Ps«Ps. This notion of projection tensor~and related
tensor machinery of superficial and tangential tensors! elegantly
allows one to mix bulk and surface tensors in the same equati
To clarify the notion of surface divergence, consider a vectov.
The surface gradient and surface divergence, then, take the
lowing form, @44#:

“sv5“vPs

(6)
divs~v!5Tr~“sv!.

Noting that the transformation strain is only nonzero within t
inclusion domain (xPV), we can write the bulk-constitutive law
for the inclusion-matrix as follows:

sB5C:$«2«!H~z~x!!%. (7)
Journal of Applied Mechanics
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Here ‘‘H’’ is the Heaviside function andC is the classic fourth-
order stiffness tensor. We definez(x) to be of the form

$z~x!.0uxPV%

$z~x!,0ux¹V%. (8)

Taking the divergence of Eq.~7! we obtain

(9)

It can be readily seen that the eigenstrain and the underl
term appear as a body force. Note that in classical elasticity
last underlined expression in Eq.~9!, i.e., @sB.n# is typically
omitted since the jump in the normal tractions is zero.d~.! is the
Dirac delta function whilez̄(x)50 defines the interface. How
ever, taking cognizance of Eq.~4a!, i.e., coupling interface elas
ticity with bulk elasticity, we must rewrite Equation~9! as

(10)

Using the underlined term as representing a body force in c
junction with the elastic Green’s function, we can write the d
placement field due to both the eigenstrain and the surface e
as

(11)

A more rigorous treatment of the interface conditions in Eq.~9!–
~11! is provided in Appendix A. HereG is the Green’s tensor for
isotropic classical elasticity~Appendix B!. The underlined term
indicates the extra surface terms that we have incorporated in
present work. The first integral in Eq.~11! is simply the classical
part. As customary,@1,36#, we make use of Gauss theorem to ca
Eq. ~11! in a more attractive form:

(12)

Here we have also used the rule that,¹xG(y2x)52¹yG(y2x).
Invoking the linearized strain-displacement law:«5sym$¹ ^ u%,
we can then write

(13)

Here we have invoked the definition of the classical siz
independent Eshelby tensor,@1,2#, based on which the first~non-
underlined! integral in Eq.~12! reduces to the classical expressio
in Eq. ~1!. The notation, sym$.%, represents the symmetric part of
second-order tensor,A, e.g.,

sym$A%5
1
2 $A1AT%.

Further simplification does not appear feasible without ad
tional assumptions regarding inclusion shape. Note now that
~13! implicitly gives the modified Eshelby’s tensor for inclusion
incorporating surface energies. This relation is implicit since
SEPTEMBER 2004, Vol. 71 Õ 665
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surface stress depends on the surface strain, which in turn is
projection of the conventional strain~«! on the tangent plane o
the inclusion-matrix interface. In the next section, using Eq.~13!
we will derive explicit expressions for cylindrical and spheric
inclusions. For now, however, it is worth noting some gene
features of the new Eshelby tensor.

In terms of the surface projection tensor the surface diverge
of the surface stress tensor can be written as

divs ss5divs$C
sPs«Ps1toPs%. (14)

The surface divergence of surface stress tensor can only be
form if the classical ‘‘bulk’’ strain aswell as the projection tenso
is uniform over the inclusion surface. Consider that,@44#:

divs Ps52kn. (15)

Herek is the mean curvature of the inclusion. For a general el
soid the curvature is nonuniform and varies depending upon
location at the surface. Only for the special cases of spherical
cylindrical shape is the mean curvature uniform hence leading
to conclude the following:
PROPOSITION: Eshelby’s original conjecture that only inclusions
the ellipsoid family admit uniform elastic state under unifor
eigenstrains must be modified in the context of coupled surf
interface-bulk elasticity. Only inclusions that are of a consta
curvature admit a uniform elastic state, thus restricting this
markable property to spherical and cylindrical inclusions.

4 Inclusions With Constant Curvature „Spheres and
Cylinders…

Spherical and cylindrical inclusions are endowed with a c
stant curvature and thus according to the previous section m
admit a uniform elastic state in coupled bulk-surface elastic
The new Eshelby’s tensor will, of course, be size-dependent
cause of the presence of curvature terms.

Due to the constant curvature, Eq.~13! can be simplified con-
siderably. The surface divergence of the surface stress can be
ply taken out of the differential and integral operators. The surf
integral is converted into a volume integral and we can then wr

(16)

where scalar ‘‘s’’ is defined from the relation:

ss5sPs

⇒s5to1~ls1ms!Tr~Ps«Ps! (17)

In the underlined integral term we have multiplied and divided
the elastic stiffness tensor to conveniently cast the term enclo
in the curly brackets in terms of the classical Eshelby ten
Additionally we have used the surface constitutive law~Eq. 4~b!!.
We can rewrite Eq.~16! in the following simpler form:

«5S:«!2~2ks!C21:~S:I !. (18)

Equation~18! can be made more explicit by noting that an isotr
pic fourth tensor,A, displaying the symmetries characteristic
the elastic stiffness tensor can be written in terms of two sca
a1 and a2 as: Ai jkl 5a1d i j dkl1a2(d ikd j l 1d i l d jk). It is then
straightforward to show that,A:I5(3a112a2)I which, after sub-
stituting C21:I5(1/3K)I in Eq. ~18! directly leads to the follow-
ing for spherical inclusions:

«5S:«!2
Ks

3KRo
~S:I !Tr~Ps«Ps!2

2to

3KRo
~S:I !. (19)
666 Õ Vol. 71, SEPTEMBER 2004
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Here we have used the fact thatk51/Ro for spheres whereRo is
the radius.Ks is defined by us to be the surface elastic modu
and is given as 2(ls1ms) while K is the usual hydrostatic modu
lus, l12m/3.

For an infinite circular cylindrical inclusion, in addition to th
plane-strain conditions we havek as 1/2Ro hence

«5S:«!2
K8s

3K8Ro
~S:I !Tr~Ps«Ps!2

to

3K8Ro
~S:I !. (20)

HereK8s is the plane-strain surface modulus,ls12ms while K8
is 2(l1m)/3. Note that for the interior solution, Eshelby’s inte
rior tensor~S! must be used while for exterior solution the corr
sponding exterior version~D! is required.

Substituting the well-known components of the classical E
helby tensors for both spherical and cylindrical shapes,@2#, we
obtain the following simple expressions for spherical and cyl
drical inclusions subjected to a dilatational eigenstrain,«11* 5«22*
5«33* 5«* .
Spherical inclusion~in spherical polar coordinates!:

« rr ~r !5«uu~r !5«ff~r !5
3KM«* 22to /Ro

4mM13KM12Ks/Ro
Ur ,Ro

(21a)

« rr ~r !5F 3KM«* 22to /Ro

4mM13KM12Ks/Ro
G Ro

3

r 3 Ur .Ro (21b)

«uu~r !5«ff~r !52F 3KM«* 22to /Ro

4mM13KM12Ks/Ro
G 2Ro

3

r 3 Ur .Ro .

(21c)

Cylindrical inclusion~in cylindrical polar coordinates!:

« rr ~r !5«uu~r !5
3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
Ur ,Ro (22a)

« rr ~r !5F 3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
G Ro

2

r 2 Ur .Ro (22b)

«uu~r !52F 3K8M«* 2to /Ro

2mM13K8M1K8s/Ro
G Ro

2

r 2 Ur .Ro (22c)

«zz~r !50. (22d)

Wherever applicable, superscriptsH andM will be used to repre-
sent inhomogeneity and matrix properties, respectively. The
pressions~21!–~22! are exceptionally simple but clearly illustrat
that elastic state is now size-dependent. The surface/interface
sion is a residual strain-type term which, for example, should
impact the effective properties of composite. The effect of surf
elasticity appears throughKs which ~as shall be seen in Sectio
6~b!!, leads to a size-dependent change in overall hydrost
properties of a composite. By making the radius of the inclus
large we can trivially retrieve the known classical solution. Int
estingly, although their treatment of a spherical precipitate w
much more specialized, we can make contact with the result
Cahn and Larche@46#. Using an assumed displacement ty
method they~only taking into account surface tension! presented
exactly the expression in Eq.~21a! with the surface elasticity
effect (Ks) set to zero.

5 A Note on the Eshelby’s 2nd Problem„Inhomogene-
ity …

Since the classical result for the strain within the inclusion
uniform for ellipsoids, Eshelby@1# was able to devise an elegan
method to mimic an inhomogeneity by an inclusion containing
fictitious eigenstrain. The so-called equivalent inclusion meth
Transactions of the ASME
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Fig. 2 Stress concentration as a function of surface properties and void radius. „a… Solution
with surface modulus Ä2K s, Al †1 0 0‡. „b… Solution with surface modulus Änominal K s for Al †1
0 0‡. „c… Classical solution without surface effects, i.e., K sÄ0. „d… Solution with surface
modulus Ä2K s Al †1 1 1‡. „e… Solution with surface modulus Änominal K s, Al †1 1 1‡.
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simply entails equating the elastic state of an inhomogeneity
that of an inclusion albeit with the aforementioned fictitio
eigenstrain, i.e.,

CM:$«`1«2«!%5CH:$«`1«% (23a)

«5S:«!. (23b)

«` is the externally applied strain. Since for spherical and cy
drical shapes the modified Eshelby’s tensor with surface effec
also uniform, the equivalent inclusion method embodied in E
23~a,b! can be easily applied to study the size-dependent ela
state of inhomogeneities. Unlike the classical case, this fortuity
was seen in Section 3, does not extend to ellipsoids. As an
ample, for a cylindricalinhomogeneityfree of any external load-
ing but containing a dilatational eigenstrain, the interior rad
stress can be reduced to

s rr 52~mH1lH!
22mM«* 2K8s«* /Ro2to /Ro

2~mM1mH1lH!1K8s/Ro
. (24)

6 Applications
The incorporation of surface size effects in the inclusion pr

lem automatically reopens all the existing application areas
Eshelby tensor now extendable to the nanoscale. In the pre
paper we discuss three application areas: the first two are
demic although classic in mechanics while the third is, curren
of immense technological importance.

„a… Size-Dependent Stress Concentration at a Spherica
Void. Consider a spherical void under an applied hydrosta
tension. Based upon the preceding expressions~using Eshelby’s
exterior tensor and equivalent inclusion method!, the stress con-
centration can then be derived to be
ied Mechanics
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r 5Ro

511
1

2 S 122Ks/3KMRo

11Ks/2mMRo
D . (25)

In this section we have setto50, to study the effect of surface
elastic constant,Ks. Results can then also be presented indep
dent of loading conditions since the surface tension is a resid
stress type of effect. Note that Eq.~25! trivially gives 1.5 as the
stress concentration for the classical elasticity case when e
surface modulus is small or void radius is relatively lar
(typically.25 nm). The numerical results are presented for A
minum using free-surface properties computed by previous
searchers~@42#—using molecular dynamics simulations!. The sur-
face properties are highly dependent upon crystallograp
direction while ours is an isotropic formulation. The object of th
section, however, is to simply use some realistic values to ill
trate the physical effect. The stress concentration of the sphe
cavity under hydrostatic tension is plotted as a function of
cavity radiusRo in Fig. 2 for two different set of surface prope
ties ~corresponding to@1 0 0# Al and @1 1 1# Al !. To investigate
a broader range of surface properties, curves of surface mod
twice that of Al @1 0 0# and Al @1 1 1# are also shown.
The parameters as obtained from manipulation of data fr
Miller and Shenoy @42# are: @1 0 0#, ls53.48912 N/m,
ms526.2178 N/m⇒Ks525.457 N/m, while for@1 1 1#, they
are: ls56.842 N/m, ms520.3755 N/m⇒Ks512.932 N/m. As
depicted in Fig. 2, surface effects cause the stress concentrati
reduce ~increase! with decreasing pore size whenKs.0 (Ks

,0). The classical case~without surface effects! corresponds to
Ks50 and is, as expected, independent of pore size. Belo
critical void radius the void will sinter. This effect is closely re
lated to the residual surface tension and is not investigated h
SEPTEMBER 2004, Vol. 71 Õ 667
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Fig. 3 Size-dependent effective hydrostatic modulus with surface effects versus void radius
normalized with the matrix bulk modulus: „a… solution with surface modulus Ä2K s, Al †1 0 0‡;
„b… solution with surface modulus Änominal K s for Al †1 0 0‡; „c… classical solution without
surface effects, i.e., K sÄ0; „d… solution with surface modulus Ä2K s Al †1 1 1‡; „e… solution with
surface modulus Änominal K s, Al †1 1 1‡
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„b… Size-Dependent Overall Properties of Composites
One of the applications of this work is that surface effects c
now be easily included in the determination of effective elas
properties of a composite. Here, as an example, a nanocomp
of Aluminum populated with a finite volume fraction of spheric
voids is considered. Let the volume fraction of the inhomoge
ities be denoted by ‘‘c.’’ To take into account interactions betwee
various inhomogeneities, we embed the single inhomogen
~void! in a concentric spherical volume of matrix material wi
finite radius ‘‘RM.Ro . ’’ Then, ‘‘ c’’ is simply Ro

3/RM
3 . This is

nothing but the classical spherical assemblage system,@36#. Using
the interior and exterior Eshelby’s tensor we can compute
displacement fields to be

u5H Pr, 0<r<Ro

Q1
T

r 2 , Ro<r<RM

Q5
s`~4mM13KH!

3KM~4mM13KH!24cmM@3DK12Ks/Ro#
(26)

DK5KM2KH, T5
3DKRo

3

4mM13KH Q, P5Q1T/Ro
3.

Here we have used the kinematical relations (« rr 5]u/]r ;«uu
5«ff5u/r ). The overall applied stress is related to the to
average strain via the effective bulk modulus as

s`5Keff^«&. (27)

As is well known, @36#, the average strain can be complete
determined through the surface integral of the displacement on
boundary of sphereRM , i.e.,
SEPTEMBER 2004
an
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n
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the
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^«&5
1

V E
SM

un^ ndS. (28)

Here, n is the normal vector on the outer surface. The avera
strain field is obtained as

^«&53S Q1
3KM

4mM Q2
1

4mM Ds` (29)

from which the effective hydrostatic modulus is deduced to be

Keff5
1

3S Q1
3KM

4mM Q2
1

4mM D . (30)

The overall hydrostatic modulus of the composite is size a
surface-property-dependent~via ‘‘ Q’’ which in turn depends on ‘‘
Ks’’ weighted by the inhomogeneity curvature!. The size effect is
illustrated in Fig. 3, where the normalized effective hydrosta
modulus is plotted against the void radius for a constant volu
fraction ofc50.5. The effective hydrostatic modulus with surfa
effects, shown in Fig. 3, is normalized by the hydrostatic modu
of the matrix material without voids. As can be observed, at sm
length scales, the size of inhomogeneities~at constant volume
fraction! can cause a change in the macroscopic behavior o
composite. Asymptotically, as the inhomogeneity~void! size is
increased, the surfaces effects begin to diminish and the nor
ized modulus approaches the classical solution.

„c… Size-Dependent Strain and Emission Wavelength in
Quantum Dots. Quantum dots~QDs! have recently been the
focus of several experimental and theoretical researchers du
the promise of improved and new opto-electronic properties,@47#.
QDs are typically embedded in another semiconductor mate
Transactions of the ASME
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with differing elastic constants and lattice parameter. The ensu
elastic relaxation within the QD is well known to impact the
opto-electronic properties. Several works, of varying sophist
tion ~both analytical and numerical!, have focused on the calcula
tion of the strain state in buried quantum dots and the subseq
impact on opto-electronic properties~see, for example, the follow
ing works appearing in the mechanics literature:@48,49#!. It would
be of interest to see how much error~in strain and electronic
o

o

b
s

-
s

a

Journal of Applied Mechanics
ing
ir
ca-
-
uent

properties! is incurred when surface effects are neglected con
ering that quantum dots are often ‘‘fabricated’’ in the sub 10-n
regime. An electronic property of interest in quantum dots is
bandgap, which in turn affects its emission wavelength. Usin
simple effective mass theory, the deformation potential theo
@50#, and the size effects from the present work, the shift in qu
tum dot emission wavelength due to surface effects can be wr
as
Dl5
hc~ac1av!@«cl2«s~Ro!#

S Eg
`1

h2~me
!mlh

! !

8p2Ro
2~me

!1mlh
! !

1~ac1av!«s~Ro! D S Eg
`1

h2~me
!mlh

! !

8p2Ro
2~me

!1mlh
! !

1~ac1av!«clD . (31)
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Here,h is Planck’s constant whilem! is the effective mass of the
carriers~‘‘ e’’ is electron and ‘‘lh’’ is light hole!. Eg

` is the bulk
band gap of the material while (ac1av) represents the dilatationa
deformation potential.«cl is the classical strain and«s(Ro) is the
size-dependent strain from the present work that includes sur
effects. Note that for the purposes of band structure calculati
the eigenstrain must be subtracted from the compatible strain.
second term on the denominator of Eq.~31! is the usual quantum
confinement effect,@51#. As an example, we have used a
In32GaN quantum dot system embedded in a GaN matrix. T
error in wavelength calculation is shown in Fig. 4. Numeric
constants are listed in Appendix C. We have used a simple fi
order approximation~Eq. ~31!! to capture the wavelength shift an
while a more sophisticated treatment is possible~following, say,
Ref. @49#! the present expression in Eq.~31! suffices to provide a
measure of the severity of surface effects on the opto-electr
properties.

As patent from Fig. 4 the error in wavelength calculation
neglecting the surface size effect is appreciable in certain
ranges. For large QD size, as expected, the classical and the
results are indistinguishable. For very small QD sizes, while s
face effects are appreciable so are the quantum confinemen
fects ~which scale as 1/R2) and hence dominate. In the ‘‘mid
regime’’ ~still at the nanoscale!, surface effects have the mo
impact. To be specific, in this particular material system, a ma
mum wavelength shift of;40 nm ~for a diameter of;3 nm! is
observed which is large enough to cause a shift of colors
indeed exceeds the strict optoelectronic design tolerances.

Fig. 4 Size-dependent wavelength shift due to surface elastic-
ity effects
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7 Summary and Conclusions
To summarize, we have modified Eshelby’s classical appro

towards inclusions and inhomogeneities to incorporate the ef
of surface energies via the continuum field formulation of surfa
elasticity. As a consequence, the elastic state of inclusions is
dered size-dependent making possible the establishment of sc
laws that are valid at the nanoscale. Eshelby’s original conjec
that only inclusions of the ellipsoid family admit uniform elast
state under uniform eigenstrains must be modified in the con
of coupled surface/interface-bulk elasticity. Only inclusions th
are of a constant curvature admit a uniform elastic state, t
restricting this remarkable property only to spherical and cylind
cal inclusions. The modified size-dependent Eshelby tensor for
spherical and circular cylindrical shape is explicitly calculated
the present work.

Apart from the formal contribution, by way of illustration, th
size-dependent stress concentration on a spherical void was
onstrated. Taking advantage of the fact that the modified Esh
tensor is uniform for the spherical shape, we are also able
derive the exact size-dependent hydrostatic modulus of a he
geneous solid. Perhaps the most technologically important ap
cation of the present work lies in arena of quantum dots and wi
While physicists routinely take into account the impact of stra
on band structure and opto-electronic properties, the strain ca
lations are typically based upon classical elasticity and are s
independent. In the present work, a first-order calculation cle
shows that large errors in both the band structure and the em
wavelength can be incurred if the surface size effects
neglected.

There are several limitations of the present work and a few
worth mentioning. They point naturally to future extensions:

~1! Isotropic behavior was assumed throughout. This is a ra
dubious assumption when one is concerned with surfaces an
terfaces. Unfortunately, matters are unlikely to be analytica
tractable once the assumption of isotropy is abandoned. Num
cal formulation of the coupled-surface bulk elasticity may be n
essary to remove this restriction.

~2! Analytical formulas were restricted to the spherical and c
lindrical shape. This limits our ability to study the effect of sha
on the size-dependent elastic state of nano-inclusions. Deriva
of the modified Eshelby tensor for the general ellipsoid~which
surely must proceed numerically! would be a useful extension o
the present work.

~3! It would be also of interest to see the behavior of non
mooth inclusion shapes, e.g., parallelepipeds. Polyhedral in
sions with vertices essentially possess zero curvature everyw
except at the corners where singularities exist.

~4! Slip, twist, and wrinkling of surfaces/interfaces were i
nored. One can expect some interesting physics to emerge
inclusion of such effects. Slip and twist of elastic interfaces w
SEPTEMBER 2004, Vol. 71 Õ 669
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recently included by Gurtin et al.@44# to supplement the origina
formulation,@45#. These notions are closely linked to the conce
of coherency-incoherency and their discussion in relation to
helby’s problems is relegated to a future work.
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Appendix A

Interfacial Conditions in Equations „9…–„11…. The form of
the underlined term in Eq.~9!, i.e., the jump in traction across th
inclusion-matrix interface, can be justified by considering t
stress balance law in the following form:

div s5E
S
f ~y!d~x2y!dSy50 (32)

Equation~32! defines a stress field perturbed by a force spr
over the interface. An arbitrary trial functionw~x! is introduced.
Upon multiplication of this trial function with Eq.~32!, integra-
tion over the volume and subsequent use of Gauss theorem y

E
S
$@s~x!#.n%.w~x!dSx2E

V
$div s~x!%.w~x!dSx

1E
S
f~y!.w~y!dSy50. (33)

Since,w~x! is completely arbitrary, Eq.~33! implies ~a! the usual
balance law within the bulk of the continuum, divs50 and~b!
the identification of the interface force with the jump in the no
mal tractions, i.e.,f52@s#.n.

Table 1 Numerical values used in Fig. 4

Property Value

Eg
` (eV) 1.94 @52#

me* 0.18 @53#*

mlh* 0.8 @54#*
ac1av (eV) 8.3 Chin et al.@55#*

mM ~Gpa! 67
KM ~Gpa! 102
KH ~Gpa! 168
mH ~Gpa! 95
Ks ~J/m2! 161.73'

to ~J/m2! 1.33;

*Linearly interpolated between InN and GaN using proportion of In concentrati
'Estimated approximately using Gurtin and Murdoch’s@43,45# analogy to mem-
brane theory of Tiersten@56#. A transition from bulk constants to interface/surfac
properties can be made by the following transformation:$ms,ls%→$mh,2lmh/(l
1m)%. Here,h is the thickness over which surface/interface elasticity behavior
fers from the bulk. Our molecular dynamics simulations indicate that such beha
is typically confined to about 1–2 lattice spacing. For the interface, we have assu
this value to be 5 Angstroms.
;Interfacial tension for this material combination is not known. Conventional EA
potentials are not useful for Nitride structures~especially for surface property evalu
ation!. Generally, however, it is well known that depending upon the degree
coherency the interfacial tension varies from 0.7 J/m2 to 2 J/m2. Our estimation
proceeded as follows. For an indium concentration of zero, the interfacial tensi
also zero while it should be the maximum for 100% In~which is completely inco-
herent with respect to GaN!. Assuming tentatively a maximum interfacial tension
2 J/m2 for 100% In, we obtain 1.33 J/m2 by simple proportion for the current com
position of 32%.
670 Õ Vol. 71, SEPTEMBER 2004
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Appendix B

Green’s Function for Elasticity and Eshelby’s Classical Ten-
sor. The Green’s function for elasticityG(y2x) is the funda-
mental solution to the Kelvin’s solution of a point load in a
infinite solid. It is given by~for isotropic materials!

G~y2x!5
1

16pm~12v !uy2xu H ~324v !d1
~y2x! ^ ~y2x!

uy2xu2 J .

(34)

Substituting this expression in the first integral of Eq.~12! yields,
@2#:

« i j ~x!5
1

8p~12v !
@Ckl,kli j 22vFkk,i j 22~12v !~F ik,k j

1F jk,ki!# (35)

where c and F are biharmonic and harmonic potentials of th
inclusion shape~V!. They are given as

C i j ~x!5E
V

ux2yu« i j
! ~y!d3y (36)

F i j ~x!5E
V

1

ux2yu
« i j

! ~y!d3y (37)

Equation~35! can then be cast into the more familiar express
of Eq. ~1a,b!

«~x!5S~x!:«! xPV
(38)

«~x!5D~x!:«! x¹V.

Mura’s book @2# contains detailed listing ofS and D tensor for
various inclusion shapes~spheres, cylinders, ellipsoids, an
cuboids!.

Appendix C

Numerical Constants for Wavelength Shift Calculation
The numerical values used in the calculation of Fig. 4 are listed
Table 1.
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