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We present new scaling laws that govern coupled mechanical deformation and opto-electronic prop-
erties (band gap) of quantum dots. Our theoretical work on quantum dots, confirmed via electronic
structure calculation based on density functional theory indicates that novel size effects in band gap
(above and beyond the well studied quantum confinement, electrostatic interaction and mechani-
cal strain coupling) become operative in the 1–5 nm size range. These new coupled size-effects
illustrated for Silicon clusters arise out of the size-dependency of the mechanical strain which has
traditionally been ignored and devoid in classical continuum field theories (and what is typically
employed by most current studies of strain-quantum dot coupling). The surface energies which
induce the aforementioned size-effect are themselves found to be size-dependent for extremely
small cluster size and peak within a very narrow cluster size range (0.6–2 nm).
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While a fairly sophisticated and involved mathematical
rendition of quantum dot band gap calculation is possi-
ble, a fairly simple picture of the appropriate scaling laws
emerges upon analysis of a spherical quantum dot within
a single-band effective mass approximation:1�2

Eg�R�= Eg���+ �
2�2

2m∗R2
− 1	786e2

�rR
+0	284ERy (1)

Here, Eg�R� is the quantum dot band gap as a func-
tion of radius, Eg��� is the bulk band gap, ERy is the
constant Rydberg energy for the bulk semiconductor, �r

is the effective dielectric constant while other parameters
have their usual significance. Equation (1) exemplifies the
well-known quantum confinement induced scaling of 1/R2

and also the presence of a (−1/R) scaling due to elec-
trostatic effects. Indeed experimental evidence3–6 typically
indicates a 1/Rn scaling with 1<n< 2. Electrostatic inter-
actions (−1/R scaling) and other physical causes are often
considered responsible for the deviation from the “ideal-
ized” quantum confinement of n = 2. The breakdown of

∗Author to whom correspondence should be addressed.

the effective mass theory for extremely small dots (on
which Eq. (1) is predicated) is also partly responsible for
observed deviation from n= 2. Size is routinely employed
to tailor the band gap and the consequent optoelectronic
characteristics of quantum dots.7 Mechanical strain is yet
another factor that is frequently utilized for tailoring the
band gap.7�8 In a simplistic picture (ignoring complica-
tions like anisotropy etc.,) one may simply add a term a�kk

to the right side of Eq. (1) to account for strain induced
changes. Here “a” is the effective deformation potential
constant and �kk is the trace of the strain tensor. A key
point to note is that in existing works (e.g., Refs. [9–
14]) strain is always computed using traditional contin-
uum mechanics, which is intrinsically size-independent
i.e., regardless of whether the quantum dot dimensions
are in kilometers or nanometers, as long as scaling is
self-similar, the same strain state is predicted. In other
words, scaling exponent (n) of band gap due to strain-
induced effect predicated on classical continuum elasticity
is zero.15–17

In this letter we show that while the latter statement is
true for “large” quantum dots, a new scaling law emerges
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in the size-range of 1–10 nm due to (in violation of
classical continuum mechanics) the size-dependence of
strain in the aforementioned size range. The physical cause
of this size-dependency of strain is due to the involve-
ment of surface or interface energies at the nanoscale
due to a large surface-to-volume ratio explicitly modify-
ing classical elasticity to include absolute size.18 While
we argue using simple analytical expressions that size-
dependent strain induces a (+1/R) scaling, the focus of
this letter is on numerical density function theory (DFT)
simulations of Si clusters that seek to illustrate the impact
of surface energy induced strains. Our parameter free DFT
calculations avoid several deficiencies of the more empir-
ical and coarse-grained effective mass approach. We point
out at the outset that direct ab initio simulations of quan-
tum dots, for the purpose of ascertaining scaling laws
associated with their optoelectronic properties, have also
been carried out by other researchers (see for example,
Refs. [19, 20]). Why have these works not noticed the
afore-mentioned additional scaling effects considering that
in principle these effects should be automatically incorpo-
rated in their atomic simulations? The key point to note
is that all conventional simulations that are reported in the
literature constrain the surface atoms to remain configura-
tionally fixed thus effectively precluding the manifestation
of influence of surface energies on strain. In the simplest
possible picture, for the case of un-embedded quantum
dots where there is no apparent source of strain (i.e., no
lattice mismatch), the effect of surface tension is excluded.
In the case of embedded quantum dots, the correction to
the lattice mismatch induced strain due to interfacial ten-
sion and elasticity is excluded. This form of simulations
where surface atoms are not allowed to relax is primar-
ily employed for savings in computational time with the
unfortunate consequence of effectively voiding the strain
induced scaling. For example, the DFT computation time
for a surface relaxed cluster Si59H60 is 1694 minutes while
the time for the same cluster without atomic relaxation is
125 minutes.21

In earlier works we have derived simple expressions that
modify the strain in an embedded (spherical) quantum dot
incorporating surface/interface energetic effects:15–17

�rr =
3KQD�m −2�o/R

4�M +3KQD −2KI/R︸ ︷︷ ︸
Embedded

�

�rr =− 1
3KQD −2Ks/R

(
2�o
R

)
︸ ︷︷ ︸

Un-embedded

(2)

Here �m is the lattice mismatch strain, while �o is the sur-
face or interfacial tension. K is the hydrostatic modulus
and � is the shear modulus where the subscripts “QD”
and “M” indicate “quantum dot” and “matrix” respec-
tively. Ks and KI are the surface and interface elastic mod-
ulus respectively (and are typically only significant for

high strains). Note that the mismatch strain must be sub-
tracted from Eq. (2) before employing in band structure
calculations. Both the expressions in Eq. (2) are for an
isotropic elastic quantum dot and for the embedded case,
the quantum dot is assumed to be surrounded by an infinite
isotropic solid admitting a certain lattice mismatch strain.
More realistic scenarios where anisotropic effects, piezo-
electric coupling and other complications are included can
be dealt with numerically. We simply emphasize that the
exceedingly simple expressions in Eq. (2) provide a splen-
did illustration of the surface-energy induced size-effect
in strain without delving into the aforementioned only-
numerically-tractable complications. Finally, we note that
even for the unembedded case, there is a strain present due
to free surface tension and surface elasticity.

Evidently for large radius of quantum dots (R→�) or
zero surface energy, the result in Eq. (2) reverts to well
known classical results for spherical quantum dots used by
several authors (e.g., see Yang and Sturms9). The asymp-
totic (1/R) scaling of the size-dependent strain and hence
the quantum dot band gap is readily apparent from for both
embedded as well as free-standing cases.

It is also instructive to reconcile, at least qualitatively,
our analytical results with available experimental data in
the literature. A host of explanations have been advanced
to explain the departure of the scaling exponent 1 < n< 2
from n = 2. We have already indicated that electrostatic
interactions are one possible explanation that can poten-
tially account for such as departure. The other is the errors
due to the breakdown of effective mass approach. We
have collected some of the experimental data (from var-
ious sources) in Figure 1 for two unembedded quantum
dot systems (InP and Si) and performed a curve fit with
respect to size. Instead of attempting to determine “n”
we have isolated the “1/R2” and “1/R” terms. We obtain
(for both InP and Si) a positive coefficient for the 1/R
term. Electrostatic interactions invariably predict a nega-
tive coefficient thus possibly suggesting an additional pos-
itive +1/R term. Recall that size-dependent strain induced
scaling (which is compressive) results in a positive coeffi-
cient for 1/R dependence. Thus these experimental results
are encouraging and suggestive although, unfortunately not
conclusive since the fitting process is prone to errors and
uncertainties. The latter fact provides further motivation
for the numerical DFT simulations the results of which are
the main object of this letter.

We now proceed to present a test of the assertions and
implications of Eq. (2) through DFT calculations of unem-
bedded Si clusters of various sizes. We note here the work
of Delley20 who performed such a study without incor-
porating the surface effects outlined in Eq. (2). The sur-
face atoms were configurationally fixed in his analysis thus
excluding the scaling effect we predict.

In our pseudo-potential DFT calculations, the starting
clusters were truncated spherically from bulk silicon with
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Fig. 1. Suggestive literature evidence.3�4�20�22–25 This collection of
results obtained from the literature is meant to emphasize the deviation
of band gap scaling from n= 2.

lattice constant a= 5	461 angstroms. The latter is the DFT
optimized value of the bulk silicon. The spherical clus-
ters were centered at a silicon atom. To retain the tetra-
hedral configuration of silicon (refer to Fig. 2), all the
dangling bonds of the surface silicon atoms were termi-
nated by hydrogen at initial bond length of 1.47 angstroms.
The clusters were varied from Si5H12 to Si239H196 (i.e.,
from 5.8 Å to 21.0 Å). We have used plane wave energy
cutoff of 300 eV and an energy convergence criterion of
1	0× 10−5 was used for the self-consistent scheme. The
calculations were performed using VASP28 and the con-
jugate gradient method was used for energy minimiza-
tion. The energy gap of the cluster was computed from
the difference between the eigenvalues of highest occupied

Si5H12
Dimension: 6 Å

Dimension: 16 Å

Si99H100

Si239H196

Dimension: 21 Å

Fig. 2. Snapshots of various sized Si clusters used in the DFT
simulations.

Table I. Silicon clusters in present study. NSi is the number of sili-
con atoms in a specific cluster. NH is the number of hydrogen atoms
needed to passivate the surface silicon atoms. X-coordination (x = 1, 2,
3, 4) columns present the number of silicon atoms which connect other
x silicon atoms and have 4-x dangling bond which then terminated by
hydrogen. The diameter of the cluster is related to the number of sili-
con atoms through “a�0	75N/��1/3” where “a” is the lattice constant of
5.461 angstroms.

NSi NH 4-coord. 3-coord. 2-coord. 1-coord. Diameter (A)

1 4 0 0 0 0 3	4
5 12 1 0 0 4 5	8
17 36 5 0 0 12 8	7
29 36 5 12 12 0 10	4
35 36 5 24 6 0 11	1
47 60 17 12 6 12 12	2
59 60 17 24 18 0 13	2
71 84 29 12 18 12 14	0
87 76 35 28 24 0 15	0
99 100 47 16 24 12 15	7
123 100 59 28 36 0 16	8
147 100 71 52 24 0 17	9
159 124 83 40 24 12 18	4
191 148 99 52 24 16 19	5
239 196 135 40 36 28 21	0

molecular orbital (HOMO) and lowest unoccupied molec-
ular orbital (LUMO).

The characteristics of the various sized cluster are sum-
marized in Table I. The surface atoms were allowed to
relax to their equilibrium state thus triggering the strain in
Eq. (2). Our main results are depicted in Figure 3 where
we plot the band gap as a function of cluster size and com-
pare with Delley-like20 unrelaxed cluster study. As already
anticipated from Eq. (2) we note a significant shift in band
gap at small sizes where surface energy induced strains
make their presence felt. A somewhat surprising result that
emerges from Figure 3, not indicated by Eq. (2) is that this
scaling effect disappears for extremely small sizes!

A maximum band gap shift of nearly 0.51 eV is
observed at a cluster size of 17 atoms. Plausible explana-
tions for the disappearance of this new scaling effect at
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Fig. 3. Comparison of the present work incorporating the size-
dependent strain due to surfaces and Delley’s results. Figure 3 shows our
implementation of Delley’s20 study.
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sizes below 17 atoms appear to suggest that surface energy
parameterized by surface tension and surface elastic mod-
ulus must itself be size-dependent i.e.,

��o�Ks�∝
��o�Ks�

at “large” size

1+k/R
(3)

Where “k” is a constant and presumably has the signifi-
cance of the so-called Tolman’s length invoked for fluid
drops. Obviously, as R→ 0, the surface energy smoothly
vanishes explaining the disappearance of concerned scal-
ing effect at extremely small sizes. Physically and in hind-
sight, this is easy to justify. The continuum field concept of
surface energy, tension and surface elastic modulus signify
the difference between the surface atom properties with
the corresponding ones in the bulk (due to different coor-
dination number, charge distribution, bond length etc.)26

However, at extremely small size where only few atoms
remain, this difference and the distinction between surface
and bulk atoms becomes very tenuous or in other words,
the continuum notions of surface energy (if we insist on
using them) must become zero.

A more mechanistic explanation for Eq. (3) appears
from unexpected quarters. Mindlin27 showed that elastic-
ity theory when extended to incorporate 2nd gradients of
strain (the classical simply depends on the strain itself)
automatically incorporates surface tensions and surface
elasticity phenomenon. His solution of an isolated liquid
drop in equilibrium roughly reproduces Eq. (3). Straight-
forward considerations of his work (details of which are
beyond the scope of the present letter), indicate that a
similar result is expected for solids thus providing a field
theoretic basis for Eq. (3). There is thus the tantalizing
implication that at very small sizes, one may be permitted
to use the 2nd strain gradient elasticity theory (appropri-
ately coupled to say effective mass band gap theory) to
phenomenologically capture the size-effects we observed
in our DFT simulations. For the simple case of a spher-
ical quantum dot discussed in Eq. (2), we anticipate an
expression of the form:

Eg�R� = Eg���+ �
2�2

2m∗R2
− 1	786e2

�rR
+0	284ERy

+ a

3KQD −2Ks/�R+k�

(
2�o
R

)(
1

1+k/R

)
︸ ︷︷ ︸

new scaling due to surface effects

(4)
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