
Author's personal copy

Surface energy, elasticity and the homogenization of rough surfaces

P. Mohammadi a, L.P. Liu c,d, P. Sharma a,b,n, R.V. Kukta e

a Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
b Department of Physics, University of Houston, Houston, TX 77204, USA
c Department of Mathematics, Rutgers University, NJ 08854, USA
d Department of Mechanical Aerospace Engineering, Rutgers University, NJ 08854, USA
e Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY, USA

a r t i c l e i n f o

Article history:
Received 26 April 2011
Received in revised form
15 October 2012
Accepted 24 October 2012
Available online 6 November 2012

Keywords:
Surface energy
Roughness
Homogenization
Surface elasticity
Surface stress

a b s t r a c t

The concept of surface energy is widely used to understand numerous aspects of material
behavior: fracture, self-assembly, catalysis, void formation, microstructure evolution,
and size-effect exhibited by nanostructures. Extensive work exists on deriving homo-
genized constitutive responses for macroscopic composites—relating effective properties
to various microstructural details. In the present work, we focus on homogenization of
surfaces. Indeed, elucidation of the effect of surface roughness on the surface energy,
stress, and elastic behavior is relatively under-studied and quite relevant to the behavior
of both nanostructures and bulk material where surfaces are involved in some form or
fashion. We present derivations that relate both periodic and random roughness to the
effective surface elastic behavior. We find that the residual surface stress is hardly
affected by roughness while the superficial elastic properties are dramatically altered
and, importantly, they may also change sign—this has significant ramifications in the
interpretation of sensing based on frequency measurement changes. Interestingly, even if
the bare surface has a zero surface elasticity modulus, roughness is seen to endow it with
one. Using atomistic calculations, we verify the qualitative validity of the obtained
theoretical insights. We show, through an illustrative example, that the square of
resonance frequency of a cantilever beam with rough surface can decrease almost by a
factor of two compared to a flat surface.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Surface atoms have different coordination numbers, mechanical, and chemical properties. These differences are
manifested phenomenologically in that the various bulk properties such as elastic modulus, melting temperature,
electromagnetic properties among others are different for surfaces. For example, experiments show that some surfaces
are elastically softer (Goudeau et al., 2001; Hurley et al., 2001; Villain et al., 2002; Sun and Zhang, 2003; Workum and de
Pablo, 2003), while others stiffer (Renault et al., 2003). These differences play an increasing role as the material characteristic
size is shrunk smaller and smaller, e.g., leading to size-dependency in the elastic modulus of nanostructures.

Surface energy effects are usually accounted via recourse to a theoretical framework proposed by Gurtin and Murdoch
(1975, 1978). The surface is treated as a zero-thickness deformable elastic entity possessing non-trivial elasticity as well as
a residual stress (the so-called ‘‘surface stress’’). It is worthwhile to indicate that while fundamentally similar, a parallel
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line of works exists that are more materials oriented: Cahn (1989), Streitz et al. (1994), Weissmuller and Cahn (1997),
Johnson (2000), Voorhees and Johnson (2004), and Cammarata (1994a,b) among others. The reader is referred to an
extensive recent review by Cammarata (2009) on the literature. Steigmann and Ogden (1997) later generalized the Gurtin–
Murdoch theory and incorporated curvature dependence of surface energy, thus resolving some important issues related
to the use of Gurtin–Murdoch theory in the context of compressive stress states and for wrinkling type behavior.
A few recent works have theoretically and atomistically examined the importance of the Steigmann–Ogden generaliza-
tion (see for example, Fried and Todres, 2005; Schiavone and Ru, 2009; Chhapadia et al., 2011a,b; Mohammadi and
Sharma, 2012).

The ramifications of surface-energy related size-effects have been examined in several contexts, e.g., nanoinclusions
(Duan et al., 2005a,b; He and Li, 2006; Lim et al., 2005; Hui and Chen, 2010; Mi and Kouris, 2007; Sharma et al., 2003;
Sharma and Ganti, 2004; Sharma and Wheeler, 2007; Tian and Rajapakse, 2007, 2008), quantum dots (Sharma et al., 2002,
2003; Peng et al., 2006), nanoscale beams and plates (Miller and Shenoy, 2000; Jing et al., 2006; Bar et al., 2010; Liu and
Rajapakse, 2010), nano-particles, wires and films (Streitz et al., 1994; Diao et al., 2003, 2004a,b; Villain et al., 2004;
Dingreville et al., 2005), sensing and vibration (Wang and Feng, 2007; Park and Klein, 2008; Park, 2009), and composites
(Mogilevskaya et al., 2008). The following papers have focused on calculation of surface properties from atomistics:
Shenoy (2005), Shodja and Tehranchi (2010), Mi et al. (2008), Chhapadia et al. (2011a,b), and Mohammadi and Sharma
(2012).

Some recent works are worth mentioning as they provide clarifications and guidance on the theories underlying surface
energy effects, e.g., Ru (2010), and Schiavone and Ru (2009). The papers by Wang et al. (2010a,b) and Huang and Sun
(2007) have pointed out the importance of residual surface stress on the elastic properties of nanostructures and
composites.

Surfaces of real materials, even the most thoroughly polished ones, will typically exhibit random roughness across
different lateral length scales. How are the surface properties renormalized due to such roughness? Can the surface be
artificially tailored to obtain desired surface characteristics? These questions are at the heart of the present paper. We
provide a homogenization scheme for both periodically and randomly rough surface duly incorporating both surface stress
and surface elasticity. Very little work has appeared that addresses effect of roughness on both surface stress and surface
elasticity. Notable exceptions are the following recent works: Wiessmuller and Duan (2008) who focus on deriving the
effective residual stress for the rough surface of a cantilever beam and their follow-up work by Wang et al. (2010a,b) who
generalized it to the anisotropic case. We will briefly comment on their in the Discussion section. One specific difference is
that we also derive effective superficial elasticity constants and not just the residual surface stress. The outline of this
paper is as follows. In Section 2 we briefly summarize the Gurtin–Murdoch surface elasticity theory and formulate the
problem while in Section 3 we present our general homogenization strategy. In Section 4, specializing to the 2D case, we
present results for both randomly and periodically rough surfaces. Discussion of our results is in Section 5 where present
results of our atomistic calculations designed to check the qualitative correctness of the theoretical predictions and point
out the implications for nano-cantilever-beam based sensing.

Notation: We will employ both direct and index notion: vectors and tensors are represented by bold symbols, e.g., a, T,
etc., and in index notation the corresponding components are denoted by ai, Tij, etc., with the canonical basis fe1,e2,e3g
tacitly understood. Summation over repeated index is followed unless otherwise stated. The basis fe1,e2,e3g are also
written as fex,ey,ezg and the associated spatial coordinates are either denoted by ðx1,x2,x3Þ or ðx,y,zÞ. Partial derivatives
with respect to spatial variable xi is sometimes denoted by ð Þ,i. The inner (dot) product between two matrix of the same
size A and B is defined as A $ B¼ TrðABT Þ ¼ ApiBpi.

We also collect some useful relations pertaining to calculus on surfaces. Let B & R3 be a regular simply connected
domain, tn be the unit outward normal on @B (cf. Fig. 1(a)), I be the identity mapping from R3 to R3, and

P¼ I'tn ( tn ð1:1Þ

be the projection from R3 to the tangential subspace T :¼ fa 2 R3 : a $ tn ¼ 0g at a point p 2 @B. Let j : B-R be a scalar
field, u : B-R3 be a vector field, and T : B-LinðR3,R3Þ :¼ fM : R3-R3 is linearg be a tensor field. Suppose that j, u, and T

Fig. 1. (a) An elastic body B & R3 with surface @B and unit outward normal tn and (b) the subsurface SC & @B enclosed by a simple contour C with unit
outward normal m within the surface.
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are differentiable up to the boundary @B. Then the surface gradient of j and u can be defined as

rsj¼Prj, rsu¼ ðruÞP,

where the convention ðruÞpi ¼ @xi
ðuÞp is followed. If, in particular, u : B-R3 is the displacement, then the surface strain is

defined as

Es ¼PEP¼ 1
2½PrsuþðPrsuÞT * on @B, ð1:2Þ

which measures the deformation within the surface @B. Also, we have the following identities (or definitions) from Gurtin
and Murdoch (1975):

divs u¼ TrðPrsuÞ, a $ ðdivs TÞ ¼ divsðTT aÞ 8a 2 R3,

divsðjuÞ ¼jrsuþu $rsj, divsðjTÞ ¼j divs TþTrsj:

(
ð1:3Þ

Let C & @B be a simple contour, m 2 T be the unit outward normal on C, and SC & @B be the surface enclosed by C (cf.
Fig. 1(b)). In analogy with the classic divergence theorem, if the vector field u is tangential on @B and differentiable we have

Z

SC

divs u¼
Z

C
u $ m:

Applying the above identity to TT a for a differentiable tensor field TðxÞ : T-R3, by (1.3) we obtain
Z

SC

divs T¼
Z

C
Tm, ð1:4Þ

which will be critical for deriving the local form of the equilibrium equation on the surface.

2. Surface elasticity

Let B & R3 be a regular domain occupied by an elastic body, C : R3+3-R3+3 be the fourth-order bulk stiffness tensor of
the elastic medium. In linearized elasticity and in the absence of applied body force, the displacement u : B-R3 satisfies
the equilibrium equation

divðCruÞ ¼ 0 in B: ð2:1Þ

Appropriate boundary conditions on @B are necessary for solving the above equations which we describe below in detail.
We employ the linearized surface elasticity theory of Gurtin and Murdoch (1975) and Gurtin (1998). In this theory the

surface is modeled as a deformable elastic membrane adhering to the bulk material without slipping. From (1.2), we see
that surface strains belong to the following subspace:

M¼ fM 2 LinðR3,R3Þ : Mtn ¼ 0, MT ¼Mg: ð2:2Þ

Let t0 2 R be the magnitude of the residual isotropic stress tensor and Is ¼P be the identity mapping from the tangential
space T to T . We adopt the linear isotropic surface constitutive law from Gurtin and Murduch (1975), Eq. (8.6), i.e., for
given displacement u : B-R3 the surface stress is given by

Ss ¼ CsruþS0
s ¼ CsEsþS0

s on @B, ð2:3Þ

where S0
s ¼ t0Is is the residual surface stress tensor, the fourth-order symmetric surface stiffness tensor Cs : R

3+3-R3+3 is
such that

CsðHÞ ¼ 2msPEPþls TrðPEPÞIs, E¼ 1
2ðHþHT Þ, 8H 2 R3+3, ð2:4Þ

and ms and ls are the surface elastic constants in analogy with the bulk Lamé constants.
We remark that the above surface stiffness tensor Cs is assumed to be independent of the normal direction of the

surface. This is not true for crystalline surfaces but facilitates analytical results in the same vein as the frequent use of the
assumption of isotropy for bulk elasticity. Also, the surface constitutive law (2.3) is different from that of Gurtin and
Murdoch (1975) by a term of t0rsu. This term leads to asymmetry of the surface stress tensor and quite a few works have
chosen to ignore its presence completely (as justified in some cases). The reader is referred to Ru (2010), Mogilevskaya
et al. (2008), and Wang et al. (2010b) for further discussions on this subject. We have chosen to neglect this term. A simple
calculation (not presented in this paper) confirmed that the effect of this term is small in the present context.

In the absence of applied traction on @B, the equilibrium of any sub-surface SC & @B implies that (cf. Fig. 1(b))
Z

C
Ssmþ

Z

SC

ðCruÞð'tnÞ ¼ 0, i:e:, ðCruÞtn ¼ divs½CsruþS0
s * on @B, ð2:5Þ

where divs denotes surface divergence. The above equations are a generalization of the classic Young–Laplace equation
and also serve as boundary conditions for (2.1). In summary, Eqs. (2.1) and (2.5) constitute the boundary value problem for
linearized elasticity with surface elastic effects.
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Further, it is worthwhile to note that Eqs. (2.1) and (2.5) are also the Euler–Lagrange equation of the variational
principle

min
u

U½u* :¼
1
2

Z

B
ru $ CruþG½u*

! "
, ð2:6Þ

where G½u* denotes the elastic energy contributed by the surface (Gurtin and Murdoch, 1975, Eq. (9.3) and Theorem 9.1)

G½u* ¼
Z

@B

1
2
ru $ Csruþru $ S0

s þg
# $

: ð2:7Þ

Here the constant g measures the energy cost of creating a free surface and has no effect on (2.1) and (2.5). This is the
surface energy in the absence of surface strain and may be linked to fracture toughness. The existence and uniqueness of
solutions to (2.6) can be similarly discussed as for bulk elasticity based on the algebraic properties of tensors C and Cs

(Altenbach et al., 2011).

3. Homogenization strategy and problem formulation

In this section we outline our homogenization strategy for a rough surface, formulate the problem and sketch out the
solution method.

As illustrated in Fig. 2, we consider a semi-infinite elastic body with B¼ fðx,y,zÞ : yohðx,zÞg, where the function hðx,zÞ
describes the surface roughness. Assume that the amplitude of the roughness h is small compared with the length scale of
the overall bulk body: h, d51, length scale of the bulk body. The number d will be the small parameter used in our
subsequent perturbation calculations. The overall half-space is subject to a uniform in-plane far applied stress CH1 where
H1 2 R3+3 is the corresponding far-field strain. By (2.1) and (2.5) our original problem is to solve for u : B-R3

divðCruÞ ¼ 0 in B,

ðCruÞtn ¼ divsðCsruþS0
s Þ on @B,

ru-H1 as 9y9-1:

8
><

>:
ð3:1Þ

The boundary condition ð3:1Þ2, for a rough surface @B, prevents an exact solution and accordingly we will take recourse in
the formal perturbation method. Assume that the solution to (3.1) can be expanded as

u¼ uð0Þ þduð1Þ þd2uð2Þ þ $ $ $ : ð3:2Þ

Inserting (3.2) into (3.1), by ð3:1Þ1 and ð3:1Þ3 we have

div½CruðiÞ* ¼ 0 ði¼ 0,1,2Þ in B0,

ruð0Þ-H1, ruðiÞ-0 ði¼ 1,2Þ as 9y9-1,

(
ð3:3Þ

where B0 ¼ fðx,y,zÞ : yo0g is the half-space with a flat surface.
The boundary conditions on the rough surface, i.e., ð3:1Þ2, can be converted to an effective boundary condition on the

nominal flat surface @B0. To this end, we assume that the displacement on @B can be obtained by extrapolating from the
displacement and their derivatives on @B0 through Taylor series expansion. Upon tedious calculations presented in Section
4.1, we find the boundary conditions on the nominal flat surface as

ðCruðiÞÞe2 ¼ pðiÞ ði¼ 0,1,2Þ on @B0, ð3:4Þ

where the detailed expressions for surface traction pðiÞ are presented in Section 4.1. We recognize that the boundary value
problems specified by (3.3) and (3.4) for uðiÞ are the classical Cerruti–Boussinesq half-space problems whose solutions can
be found in textbooks, e.g., Johnson (1985).

Once the local stress and strain are found, we can calculate the total elastic energy of the half-space in the presence of
the rough surface as a function of the far applied strain H1

EactðH1Þ ¼
1
2

Z

B
½ru $ Cru'ruð0Þ $ Cruð0Þ*þ

Z

@B

1
2
ru $ Csruþru $ S0

s þg
# $

, ð3:5Þ

Fig. 2. A rough surface profile.
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where the bulk energy for flat surface is subtracted to avoid unbounded integrals. The total elastic energy Eact depends on
the far applied strain H1 since u- uð0Þ þduð1Þ þd2uð2Þ according to (3.2), and uðkÞ ðk¼ 0,1,2Þ being the solution of (3.1) and
(3.4) depends on the far applied strain H1. We remark that the first and second terms on the right hand side of (3.5) are
the elastic energy contributed by the bulk and surface, respectively.

We will approximate rough surface elastic body by a half-space solid with a flat surface where the flat surface has
effective properties different from the original rough surface. To define the effective properties of the surface, we propose
to equate the total elastic energy of the rough surface half-space ðEactÞ to the total elastic energy of a half-space with a
nominal effective flat surface ðEeff Þ

EactðH1Þ ¼ Eeff ðH1Þ, ð3:6Þ

where

Eeff ðH1Þ ¼
Z

@B0

1
2
ruð0Þ $ Ceff

s ruð0Þ þruð0Þ $ ðS0
s Þ

effþgeff

# $
: ð3:7Þ

ðS0
s Þ

eff is the effective surface residual stress, Ceff
s is the effective surface elasticity tensor, and geff is the effective surface

energy density in the absence of surface strain. The bulk energy term has been subtracted from (3.7) in analogy with (3.5).

4. Solutions

4.1. Boundary conditions for perturbed solutions

We now specialize to two dimensions, assuming the body is infinite in 'ey-direction, 7ex-direction, and in either
plane strain state ðezz ¼ ezx ¼ ezy ¼ 0Þ or plane stress state ðszz ¼ szx ¼ szy ¼ 0Þ. For isotropic materials, the stress–strain
relations for plane problems are given by

exx

eyy

exy

2

64

3

75¼ L

sxx

syy

sxy

2

64

3

75, L¼

L11 L12 0

L12 L11

0 0 L33

2

64

3

75, ð4:1Þ

where the 3+3 matrix L, formed by elastic constants, are given by (E, Young’s modulus, m, shear modulus, and n, Poisson’s
ratio)

L¼
1

2m

1'n 'n 0

'n 1'n 0

0 0 1

2

64

3

75ðplane strainÞ or
1
E

1 'n 0

'n 1 0

0 0 ð1þnÞ

2

64

3

75 ðplane stressÞ: ð4:2Þ

Our work can be readily extended to three dimensions. However the calculations are quite tedious with relatively little
prospects for (additional) novel insights. We will employ two coordinate systems. The first one is the canonical Cartesian
frame ðe1,e2Þ parallel and perpendicular to the nominally flat surface while the second one ðt1,t2Þ is the unit normal and
unit tangent along the curve, see Fig. 2. Assume that the surface is parameterized by y¼ dh0ðxÞ ðd51Þ. It is easy to show
that the transformations between the moving curvilinear frame ðt1,t2Þ and fixed Cartesian frame ðe1,e2Þ are given by

tk ¼ ðMÞkiei, ei ¼ ðNÞiktk, ð4:3Þ

where (Gðd,xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2h2

0x

q
, I is now the 2+2 identity matrix)

M¼
1

Gðd,xÞ
1 dh0x

'dh0x 1

" #
¼ IþdW'

1
2
d2h2

0xIþoðd2Þ, W¼
0 h0x

'h0x 0

" #
,

N¼MT ¼M'1 ¼ I'dW'1
2d

2h2
0xIþoðd2Þ,

h0x ¼ @xh0ðxÞ ðlikewise, h0xx ¼ @xxh0ðxÞ, h0xxx ¼ @xxxh0ðxÞ, etc:Þ: ð4:4Þ

To address the effects of rough surface and surface elasticity, we have assumed formal expansion (3.2) of the solution to
(3.1). To solve for uðiÞ ði¼ 0,1,2Þ, we need to convert the original boundary conditions ð3:1Þ2 into boundary conditions on
the nominal flat surface @B0. To this end, we further assume that the displacement around the nominal flat surface @B0 (i.e.,
9y9, d) is given by

uðx,yÞ ¼ uðx,0Þþy@yuðx,0Þþ1
2y2@yyuðx,0Þþoðd3Þ: ð4:5Þ

Therefore, around the nominal flat surface @B0 (i.e., 9y9, d), by (4.5) the displacement gradient is given by

H :¼ ru¼H0þdH1þd2H2þoðd2Þ, ð4:6Þ

where

H0 ¼ ½@xuð0Þ,@yuð0Þ*, H1 ¼ ½@xuð1Þ,@yuð1Þ*þ
y
d
½@xyuð0Þ,@yyuð0Þ*,
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H2 ¼ ½@xuð2Þ,@yuð2Þ*þ
y
d
½@xyuð1Þ,@yyuð1Þ*þ

y2

2d2
½@xyyuð0Þ,@yyyuð0Þ*: ð4:7Þ

In the above equations, the derivatives of uðiÞ are evaluated at y¼0 and taken as column vectors, and hence Hi are 2+2
matrices. Recall that t2 ¼ e2'dh0xe1'1

2d
2h2

0xe2þoðd2Þ from (4.3) to (4.4). Then the left hand side of ð3:1Þ2 can be written as

ðCruÞt2 ¼ ðCH0Þe2þd½ðCH1Þe2'h0xðCH0Þe1*þd2½ðCH2Þe2'h0xðCH1Þe1'1
2h2

0xðCH0Þe2*þoðd2Þ on @B: ð4:8Þ

To calculate the expansion of the right hand side of ð3:1Þ2 with respect to d, we first notice that

CsruþS0
s ¼ ssst1 ( t1þs33ez ( ez on @B, ð4:9Þ

where

sss ¼ t1 $ ½CsðNT HNÞ*t1þt0 ¼: s0
ssþds1

ssþd
2s2

ssþoðd2Þ,

s0
ss ¼ t1 $ ðCsH

0Þt1þt0, s1
ss ¼ t1 $ ½CsðH1þWH0þH0WT Þ*t1,

s2
ss ¼ t1 $ ½CsðH2þWH1þH1WT'h2

0xH0Þ*t1: ð4:10Þ

Next, by the last of (1.3) and that s33 is constant and hence divsðs33ez ( ezÞ ¼ 0, we have

divs½CsruþS0
s * ¼ sss½t1 divs t1þðrst1Þt1*þt1ðt1 $rssssÞ: ð4:11Þ

Recall the following identities from differential geometry:

rst1 ¼ ½dh0xxþoðd2Þ*t2 ( t1, divs t1 ¼ 0:

Therefore, by (4.3), (4.4), and (4.9) we find

divs½CsruþS0
s * ¼ dsssh0xxt2þt1ðt1 $rssssÞ

¼ ðs0
ssÞ,1e1þdf½ðs1

ssÞ,1þh0xðs0
ssÞ,2*e1þ½h0xðs0

ssÞ,1þs0
ssh0xx*e2g

þd2f½ðs2
ssÞ,1'h2

0xðs0
ssÞ,1þh0xðs1

ssÞ,2'h0xxh0xs0
ss*e1þ½h0xðs1

ssÞ,1þh2
0xðs0

ssÞ,2þs1
ssh0xx*e2g on @B: ð4:12Þ

We remark that not all terms associated with di ði¼ 0,1,2Þ contribute equally in regard of the fact that for typical solids

JCJbJCsJk, ð4:13Þ

where 1/k is the typical wavelength of roughness profile h0ðxÞ (i.e., the average distance between neighboring peaks or
valleys). For example, copper has JCJ, 1011 Pa while JCsJ, 1 N/m, and hence the above inequality is satisfied for typical
solids up to atomistic scale. Enforcing (4.13) and neglecting lower order terms on the right hand side of (4.12), by (4.10) we
have

divs½CsruþS0
s * ¼ dfh0xðs0

ssÞ,2e1þ½h0xðs0
ssÞ,1þs0

ssh0xx*e2gþd2½'h2
0xðs0

ssÞ,1'h0xxh0xs0
ss*e1 on @B: ð4:14Þ

Comparing (4.8) with (4.14), by ð3:1Þ2 we find the boundary conditions for uð0Þ are given by

ðCruð0ÞÞe2 ¼ 0 on @B0: ð4:15Þ

An obvious solution to the boundary value problem for uð0Þ, i.e., (3.3) and (4.15), is a uniform ruð0Þ such that

H0 ¼ruð0Þ ¼H1: ð4:16Þ

By (4.7), we have

rH0 ¼ 0, H1 ¼ruð1Þ, H2 ¼ruð2Þ þh0@yruð1Þ on @B: ð4:17Þ

Moreover, comparing (2.3) with (2.4) we obtain the boundary conditions for uð2Þ

ðCruð1ÞÞe2 ¼ h0xðCru0Þe1þh0xxs0
sse2 ¼: pð1Þ on @B0 ð4:18Þ

and

ðCruð2ÞÞe2 ¼'h0@yðCruð1ÞÞe2þh0xðCruð1ÞÞe1þ1
2h2

0xðCruð0ÞÞe2'h0xxh0xs0
sse1 ¼: pð2Þ on @B0: ð4:19Þ

In addition, we notice that the solutions to boundary value problems for uðiÞ ði¼ 1,2Þ, i.e., (3.3) and (3.4) with pðiÞ given by
(4.18)–(4.19), are explicitly given by (A.1). Upon specifying the surface roughness profile h0ðxÞ, we can solve (3.3) and (3.4)
for the elastic fields, compute the total elastic energy (3.5) and (3.7) and find the effective properties of the nominal flat
surface according to (3.6). Below we present the detailed calculations for a sinusoidal surface and a random surface.

4.2. Sinusoidal roughness

To fix the idea we first consider a sinusoidal rough surface. Let the surface be described by hðxÞ ¼ d cosðkxÞðdk51Þ. This
rough surface may be regarded as a perturbation of the flat surface @B0

hðxÞ ¼ 0þd cosðkxÞ ¼ dh0ðxÞ, h0 ¼ cosðkxÞ, dk51: ð4:20Þ

P. Mohammadi et al. / J. Mech. Phys. Solids 61 (2013) 325–340330
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Assume that the far applied stress is given by CH1 ¼ e1xx=L11e1 ( e1, i.e., by (4.1)

H1 ¼ e1xx

1 0

0 L12
L11

" #
: ð4:21Þ

The zeroth-order strain is given by (4.16) and (4.21). By (4.18), we have

pð1Þx ¼ a1 sinðkxÞ, pð1Þy ¼ b1 cosðkxÞ on @B0, ð4:22Þ

where a1 ¼'ke1xx=L11 and b1 ¼'k2s0
ss -'k2t0 are constants. The first-order stress field in B0, determined by the boundary

value problem (3.3) and (3.4), is given by (A.1)

sð1Þxx ¼ ½a1ð2þkyÞþb1ð1þkyÞ*eky cosðkxÞ,

sð1Þyy ¼'½a1kyþb1ðky'1Þ*eky cosðkxÞ,

sð1Þxy ¼ ½a1ð1þkyÞþb1ky*eky sinðkxÞ: ð4:23Þ

Therefore,

eð1Þxx ¼ ½a1½2L11þðL11'L12Þky*þb1½L11þL12þðL11'L12Þky**eky cosðkxÞ,

eð1Þyy ¼ ½a1½2L12þðL12'L11Þky*þb1½L12þL11þðL12'L11Þky**eky cosðkxÞ,

eð1Þxy ¼ L33½a1ð1þkyÞþb1ky*eky sinðkxÞ: ð4:24Þ

Further, by (4.19) the boundary traction on the nominal surface @B0 is given by

pð2Þ ¼ 'h0@yðCruð1ÞÞe2þh0xðCruð1ÞÞe1þ1
2h2

0xðCruð0ÞÞe2'h0xxh0xs0
sse1, ð4:25Þ

where all derivatives are evaluated at y¼0. Below we evaluate the right hand side of the above equation term by term.
First, by (4.23) we have that on @B0 (i.e., y¼0)

½sð1Þxx,y, sð1Þyy,y, sð1Þxy,y* ¼ ½ð3a1þ2b1Þk cosðkxÞ, 'a1k cosðkxÞ, ð2a1þ2b1Þk sinðkxÞ*: ð4:26Þ

Therefore,

'h0@yðCruð1ÞÞe2 ¼'ð2a1þ2b1Þk sinðkxÞ cosðkxÞe1þa1k cos2ðkxÞe2,

h0xðCruð1ÞÞe1 ¼'ð2a1þb1Þk cosðkxÞ sinðkxÞe1'a1k sin2ðkxÞe2,
1
2h2

0xðCruð0ÞÞe2 ¼ 0,

'h0xxh0xs0
sse1 ¼ b1k cosðkxÞ sinðkxÞe1

and hence

pð2Þx ¼ a2 sinð2kxÞ, pð2Þy ¼ b2 cosð2kxÞ, ð4:27Þ

where a2 ¼'ð2a1þb1Þk¼ 2k2e1xx=L11þk3t0 and b2 ¼ ka1 ¼'k2e1xx=L11. Comparing (4.27) with (4.22), we obtain the
second-order stress field, determined by the boundary value problem (3.3) and (3.4), by simply replacing ða1,b1Þ by
ða2,b2Þ and k by 2k

sð2Þxx ¼ ½a2ð2þ2kyÞþb2ð1þ2kyÞ*e2ky cosð2kxÞ,

sð2Þyy ¼'½a22kyþb2ð2ky'1Þ*e2ky cosð2kxÞ,

sð2Þxy ¼ ½a2ð1þ2kyÞþb22ky*e2ky sinð2kxÞ: ð4:28Þ

The associated second-order strain field follows from the constitutive relation (4.1). In particular

eð2Þxx ¼ ½a2½2L11þ2kyðL11'L12Þ*þb2½L11þL12þ2kyðL11'L12Þ**e2ky cosð2kxÞ: ð4:29Þ

To calculate surface elastic energy, we evaluate the surface strain on @B and express it in the frame ft1,t2,t3 ¼ ezg. By (4.6),
(4.7), and (4.3), direct calculations show

ru9y ¼ hðxÞ ¼ esst1 ( t1þ $ $ $ ð4:30Þ

and

ess ¼ t1 $Ht1 ¼ ðN
T HNÞ11

¼ ½H0þdðH1þWH0þH0WT Þþd2ðH2þWH1þH1WT'h2
0xH0Þ*11þoðd2Þ

¼: eð0Þss þdeð1Þss þd
2eð2Þss þoðd2Þ, ð4:31Þ

where Hk shall be evaluated at y¼0 and, by (4.17), (4.24), and (4.29), we have

eð0Þss ¼H0
11 ¼ e1xx , eð1Þss ¼H1

11 ¼ ½a12L11þb1ðL11þL12Þ* cosðkxÞ,

eð2Þss ¼H2
11þh0xðH1

12þH1
21Þ'h2

0xH0
11
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¼ ½a22L11þb2ðL11þL12Þ* cosð2kxÞþ½ð3L11'L12Þa1þ2L11b1*k cos2ðkxÞ'ð2L33ka1þk2e1xxÞ sin2ðkxÞ: ð4:32Þ

As discussed in Section 3 (cf. (3.5)–(3.7)), our homogenization scheme requires calculation of the total energy under the
application of a far-field uniform strain. Since the domain is infinite, in the state of plane strain or plane stress, and
invariant under a translation of wavelength l¼ 2p=k in ex-direction, we shall restrict our integration domain to the semi-
infinite tube-like domain T ¼ ð0,lÞ + ð'1,hðxÞÞ for the half-space with rough surface, and T0 ¼ ð0,lÞ + ð'1,0Þ for the
nominal flat half-space. By our solutions up to the second-order, i.e., (4.16), (4.23), (4.28), and (4.31) we now evaluate the
actual total energy (cf. (3.5))

Eact ¼
1

2l

Z

T
½ru $ Cru'ruð0Þ $ Cruð0Þ*þ

1
l

Z

ST

1
2
ru $ Csruþru $ S0

s þg
# $

¼: Iþ J, ð4:33Þ

where ST ¼ fðx,yÞ : y¼ hðxÞ,x 2 ð0,lÞg is the rough surface on the semi-infinite tube T.
Due to the degeneracy of surface stiffness tensor (cf. (2.4)) and the assumption of plane strain or plane stress, we find

that for any strain tensor H with surface strain E¼ t1 $Ht1 within xy-plane

H $ CsH¼ ksE2, ð4:34Þ

where

ks ¼ 2msþls ðplane strainÞ or 2msð1þn2Þþlsð1'nÞ2 ðplane stressÞ: ð4:35Þ

Further, it will be convenient to introduce vector fields sðiÞ ¼ ½sðiÞxx,sðiÞyy,
ffiffiffi
2
p

sðiÞxy* formed by components of the ith-order stress
fields (i¼1,2). Direct calculation verifies

ruðiÞ $ CruðiÞ ¼ sðiÞ $ LsðiÞ ¼ L $ ðsðiÞ ( sðiÞÞ: ð4:36Þ

Then, the right hand side of (4.33) can be rewritten as

I¼ dI1þd
2I2þoðd2Þ, J¼ J0þdJ1þd

2J2þoðd2Þ,

I1 ¼
1
l

Z

T
ruð1Þ $ Cruð0Þ,

I2 ¼
1
l

Z

T
ruð2Þ $ Cruð0Þ þ

1
2
ruð1Þ $ Cruð1Þ

# $
,

J0 ¼
1
l

Z

ST

1
2

ksðeð0Þss Þ
2þt0eð0Þss þg

# $
, J1 ¼

1
l

Z

ST

eð1Þss ðk
seð0Þss þt0Þ,

J2 ¼
1
l

Z

ST

eð2Þss ðk
seð0Þss þt0Þþ

1
2

ksðeð1Þss Þ
2

# $
: ð4:37Þ

The above integrals can be evaluated term by term as follows. First, since the length of an infinitesimal segment on ST is

given by ds¼Gðd,xÞ dx and Gðd,xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þd2k2 sin2 kx

p
- 1þ1

2d
2k2 sin2 kx, we have

J0 ¼
1
l

Z l

0

1
2

ksðeð0Þss Þ
2þt0eð0Þss þg

# $
Gðd,xÞ -

1
2

ksðe1xxÞ
2þt0e1xxþg

# $
1þ

d2k2

4

 !
: ð4:38Þ

To evaluate I1 and J1, it is sufficient to compute terms up to the order of d. By (B.1) we obtain

I1 ¼
1
l

Z l

0

Z hðxÞ

'1

e1xx

L11
eð1Þxx dy dx¼

de1xx

2L11
½2L11a1þb1ðL11þL12Þ*þoðdÞ

¼ d '
kðe1xxÞ

2

L11
'

k2ðL11þL12Þt0e1xx

2L11

" #

þoðdÞ,

J1 ¼
1
l

Z l

0
eð1Þss ðk

seð0Þss þt0ÞGðd,xÞ ¼ oðdÞ: ð4:39Þ

Finally, for I2 and J2 it is sufficient to calculate terms up to the order of 1. Since

1
l

Z

T
ruð2Þ $ Cruð0Þ ¼

1
l

Z l

0

Z 0

'1
ruð2Þ $ Cruð0Þ þoð1Þ ¼ oð1Þ, ð4:40Þ

by (B.2) we find

I2 ¼
1
l

Z

T

1
2
ruð1Þ $ Cruð1Þ þoð1Þ ¼

1
l

Z

T

1
2

L $ ðsðiÞ ( sðiÞÞþoð1Þ ¼
1
2

L $MnðkÞþoð1Þ,

J2 ¼
1
2

k2 e1xx
2L33þL12

L11
'4

& '
'2L11t0k

# $
ðkse1xxþt0Þþ

k2ks

4
½2e1xxþkt0ðL11þL12Þ*2þoð1Þ, ð4:41Þ
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where

MnðkÞ :¼
1
l

Z l

0

Z hðxÞ

'1
sð1Þ ( sð1Þ dy dx

¼
k
4

5ðe1xxÞ
2

2L2
11

þ
2kt0ðe1xxÞ

L11
þ

k2ðt0Þ2

2
ðe1xxÞ

2

2L2
11

þ
2kt0ðe1xxÞ

L11
þ

k2ðt0Þ2

2

ðe1xxÞ
2

2L2
11

þ
2kt0ðe1xxÞ

L11
þ

k2ðt0Þ2

2
ðe1xxÞ

2

2L2
11

þ
2kt0ðe1xxÞ

L11
þ

5k2ðt0Þ2

2

ðe1xxÞ
2

L2
11

þk2ðt0Þ2

2

66666666664

3

77777777775

ð4:42Þ

and other components of Mn are not computed since they do not contribute in the product L $Mn.
By (3.6) and (3.7), we define the effective properties of the nominal flat surface as

Eact ¼ Eeff ¼:
1
l

Z l

0

1
2
ðksÞeff ðeð0Þxx Þ

2þeð0Þxx ðt0Þeffþgeff

# $
: ð4:43Þ

By (4.33), (4.38), and (4.43), we find the effective properties of the nominal flat surface to be

geff ¼ gþd2 k2 g
4
þk3 ðt0Þ2

8
ð'5L11þL12þL33Þþk4 ksðt0Þ2

4
ðL11þL12Þ2

" #
,

ðt0Þeff ¼ t0þd2t0 k2 '
7
4
þ

L33

L11
þ

L12

2L11

& '
þk3ksL12

# $
,

ðksÞeff ¼ ksþd2 k '
5

4L11
þ

L12þL33

4L2
11

 !
þk2ks '

7
4
þ

2L33þL12

L11

& '" #
: ð4:44Þ

By the assumption (4.13), the last terms in the above equations can be neglected compared to the remaining ones inside
the bracket. Inserting (4.2) into the above equations, we obtain the effective properties in terms of the familiar isotropic
elastic constants

. Plane strain (m¼ E=2ð1þnÞ is the shear modulus):

geff ¼ gþd2 k2 g
4
'k3ðt0Þ2

ð1'nÞ
4m

# $
,

ðt0Þeff ¼ t0 1'd2k2 3'5n
4ð1'nÞ

# $
,

ðksÞeff ¼ ks'd2k
2m

1'n : ð4:45Þ

. Plane stress:

geff ¼ gþd2 k2 g
4
'k3ðt0Þ2

1
2E

# $
,

ðt0Þeff ¼ t0 1'd2k2 3'2n
4

# $
,

ðksÞeff ¼ ks'd2kE: ð4:46Þ

We remark that the above solutions for a particular loading condition, i.e., a uniaxial remote stress s1e1 ( e1 at infinity,
are insufficient to determine the full effective surface elasticity tensor Ceff

s or effective residual surface stress tensor ðS0
s Þ

eff

defined by (3.7). By (4.21), we identify the zeroth-order surface strain tensor as given by eð0Þxx Ĥ, and in the basis ft1,ezg the
tensor Ĥ is given by

Ĥ ¼
1 0

0 0

# $
ðplane strainÞ or

1 0

0 'n

# $
ðplane stressÞ:

By (3.7), (4.21), and (4.43) we identify the following relations:

ðksÞeff ¼ Ĥ $ Ceff
s Ĥ, ðt0Þeff ¼ ðS0

s Þ
eff $ Ĥ:

Finally, it is worthwhile noticing that the effective properties are in fact independent of the second-order solution which is
by no means obvious a priori.
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4.3. General roughness

We now consider a general roughness profile. Assume hðxÞ ¼ dh0ðxÞ with h0ðxÞ , 1, d51. By choosing a large enough
L40, we may without loss of generality assume h0ðxÞ is even and a periodic function with period L. In other words, the
roughness is statistically invariant over a lengthscale of L. By Fourier analysis we have ðKþ ¼ ð2p=LÞf1,2, . . .gÞ

h0ðxÞ ¼
X

m2Kþ

ĥ0ðmÞ cosðmxÞ, ĥ0ðmÞ ¼
2
L

Z L

0
h0ðxÞ cosðmxÞ dx: ð4:47Þ

It will be useful to introduce constants which are properties of the roughness profile h0ðxÞ

OðiÞ ¼
X

m2Kþ

mi9ĥ0ðmÞ9
2
: ð4:48Þ

Applying the same procedure in the previous section for each mode m 2 Kþ , we obtain the perturbed stress fields as in
(4.23) and (4.28) with k being replaced by m, and

a1 ¼'ĥ0ðmÞm
E1xx

L11
, b1 ¼'ĥ0ðmÞm2t0,

a2 ¼'ð2a1þb1Þm, b2 ¼ma1:

To evaluate the actual elastic energy, from (4.33) to (4.41) and Parseval’s theorem we observe that different modes do not
interact in the sense that the integrals defined in (4.37) are simply a summation of all modes

I1 ¼ d
X

m2Kþ

'9ĥ0ðmÞ9
2 mðe1xxÞ

2

L11
'9ĥ0ðmÞ9

2 m2ðL11þL12Þt0

2L11
e1xx

" #

þoðdÞ,

I2 ¼
X

m2Kþ

1
2
9ĥ0ðmÞ9

2
L $MnðmÞþoð1Þ,

J0 ¼
X

m2Kþ

1
2

ksðe1xxÞ
2þt0e1xxþg

# $
1þ

d2m2

4
9ĥ0ðmÞ9

2

 !

, J1 ¼ oðdÞ,

J2 ¼
X

m2Kþ

1
2
9ĥ0ðmÞ9

2
m2 e1xx

2L33þL12

L11
'4

& '
'2L11t0m

# $
ðkse1xxþt0Þþ9ĥ0ðmÞ9

2 m2ks

4
½2e1xxþmt0ðL11þL12Þ*2

! "
þoð1Þ:

Therefore, the effective properties of the nominal flat surface for a general rough surface are given by

geff ¼ gþd2 Oð2Þ g
4
þOð3Þ ðt

0Þ2

8
ð'5L11þL12þL33Þ

" #
,

ðt0Þeff ¼ t0þd2t0 Oð2Þ '
7
4
þ

L33

L11
þ

L12

2L11

& '# $
,

ðksÞeff ¼ ksþd2Oð1Þ '
5

4L11
þ

L12þL33

4L2
11

 !

: ð4:49Þ

4.4. Random roughness

We now consider an ensemble of random surfaces. Assume that

/h0ðxÞS¼ 0, /h0ðx1Þh0ðx2ÞS¼ kð9x1'x29Þ 8x,x1,x2 2 R, ð4:50Þ

where / S denotes the ensemble average, and k : R-R is referred to as the autocorrelation function. Typically, the
autocorrelation function kðtÞ is even, smooth and negligible if t4 lc , where lc is the correlation length. The autocorrelation
function and correlation length are statistical properties of roughness which are experimentally measurable. Without loss
of generality, we further assume every realization of random roughness h0ðxÞ is even and periodic with period Lb lc. To
find the ensemble average of the effective properties, by (4.49) we need to evaluate /OðiÞS for i¼ 1,2,3. To this end, we
introduce the spectral density of fluctuation S(k) defined by

SðkÞDk¼
X

komokþDk

/9ĥ0ðmÞ9
2S: ð4:51Þ

By Wiener–Khinchin theorem (Van Kampen, 2007, p. 59), in the limit L-þ1 we have (cf. Appendix C)

SðmÞ ¼
2
p

Z

R
kðtÞ expð'imtÞ dt¼

2
p k̂ðmÞ, ð4:52Þ
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where k̂ðmÞ ¼
R
RkðtÞ expð'imtÞ dt is the Fourier transformation of kðtÞ. Therefore, by (4.51) the moments OðiÞ defined by

(4.48) are given by

OðjÞ ¼
Z 1

0
mjSðmÞ dm¼

2
p

Z 1

0
mjk̂ðmÞ dm: ð4:53Þ

By the inversion theorem, kðjÞð0Þ ¼ ð1=2pÞ
R
RðimÞ

jk̂ðmÞ dm, and hence for even integer 2j,

2
p

Z 1

0
m2jk̂ðmÞ dm¼

1
p

Z

R
m2jk̂ðmÞ dm¼ ð'1Þj2kð2jÞð0Þ:

For an odd integer 2jþ1, a simple formula for Oð2jþ1Þ as above is not available; one has to specify the autocorrelation
function kðtÞ and compute it by (4.53).

As an example, assume the autocorrelation function is a Gaussian function

kðtÞ ¼ exp '
t2

2l2c

 !
,

where lc can be identified as the correlation length. By definition the above equation implies that the standard deviation of

roughness
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/h2ðxÞS

q
¼ d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/h2

0ðxÞS
q

¼ d
ffiffiffiffiffiffiffiffiffiffi
kð0Þ

p
¼ d. Then the Fourier transformation of kðtÞ is given by

k̂ðmÞ ¼ lc
ffiffiffiffiffiffi
2p
p

exp '
l2c m2

2

 !

and hence

Oð1Þ ¼ 2
lc

ffiffiffiffi
2
p

r
, Oð2Þ ¼ 2

l2c
, Oð3Þ ¼ 4

l3c

ffiffiffiffi
2
p

r
:

Inserting the above equation into (4.49) and in terms of the familiar elastic constants, the effective surface properties are
given by ðZ¼ d=lcÞ

. Plane strain:

geff ¼ gþZ2 g
2
'ðt0Þ2

ð1'nÞ
mlc

ffiffiffiffi
2
p

r" #

,

ðt0Þeff ¼ t0 1'Z2 3'5n
2ð1'nÞ

# $
,

ðksÞeff ¼ ks'Z2 4mlc
1'n

ffiffiffiffi
2
p

r
: ð4:54Þ

. Plane stress:

geff ¼ gþZ2 g
2
'ðt0Þ2

2
Elc

ffiffiffiffi
2
p

r" #
,

ðt0Þeff ¼ t0 1'Z2 3'2n
2

# $
,

ðksÞeff ¼ ks'Z22Elc

ffiffiffiffi
2
p

r
: ð4:55Þ

5. Discussion, atomistic validation, and applications

We can use the simple expressions we have derived to make some assessments on the effect of roughness on the
surface properties. We take copper as an example, with Young’s modulus E of 115 GPa, Poisson’s ratio n of 0.34, surface
stress t0 - 1:04 N=m and surface elastic constant ks -'3:16 N=m of the (001) crystal face (Shenoy, 2005). If we consider
sinusoidal roughness with dk¼ 0:2 and wave length l around 10 nm, then the wave number k¼ 2p=l, 2p=10'8 ¼
6:28+ 108 m'1, and by (4.45) and (4.46) we have (for plane stress case)

ðgÞeff ¼ 1:01g, ðt0Þeff ¼ 0:98t0, ðksÞeff ¼'10:485 N=m: ð5:1Þ

So ðt0Þeff for this rough surface is barely 2% less than the pristine value, t0. However we observe a dramatic change in ðksÞeff

from the flat surface value of '3:16 N=m! Therefore, we can conclude that while residual surface stress is hardly affected
by the roughness, the surface elastic parameters can change appreciably. It should be noted here that surface roughness
can even cause a change of sign in surface elastic constants depending on the extent of the roughness. Finally, as evident
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from the expressions for the both the periodic and random roughness case, even if the bare surface possesses zero surface
elasticity, i.e., ks - 0 roughness will ‘‘create’’ surface elasticity, i.e., effective value of ks will be non-zero.

Our theoretical predictions are, qualitatively, consistent with atomistic simulations we conducted on Silver. The sample
geometry is shown in Fig. 3. Further details of the atomistic simulations may be found in Mohammadi and Sharma (2012).

For the Silver cantilever nano-beam, we chose roughness with 0.215 nm amplitude and 1.636 nm wavelength. The bare
values of surface stress and surface elastic constants are, respectively, 0.023 and '0:168 eV=A2. We find ðt0Þeff to be
0:01895 eV=A2 from atomistics while our theoretical calculations predict 0.0225. On the other hand, ks undergoes a larger
change—atomistics predict '0:506 eV=A2 qualitatively consistent with our theoretical prediction: '0:367 eV=A2. Con-
sidering that our model is based on an approximate perturbative approach and the other assumptions we have made (e.g.,
isotropy), only a qualitative match can be expected in comparison with atomistics.

Weissmuller and Duan (2008) have shown that the response of the curvature of cantilevers to changes in their surface
stress in the presence of the surface roughness is different from nominally planar surfaces. Considering surface residual
stress for cantilevers, they concluded that deliberate structuring of the surface allows the magnitude and even its sign to
be tuned. They have concluded that bending of the substrate is controlled by changes in in-plane component of the
surface-induced stress, T only. Their calculation shows that T for the isotropic solid with a nearly planar surface y251
(assuming isotropy) is equal to

T ¼
/fSs

h1
1'

v1

1'v1
/y2S

& '
, ð5:2Þ

where f is the surface residual stress and v1 is Poisson’s ratio. In their calculations, they assumed that f depends on the
surface orientation but this assumption does not have any contribution in creating the ð1'ðv1=1'v1ÞÞ term that shows the
apparent action of f will be reduced by a geometric effect that scales with the root-mean-square of y. We note here that for
sinusoidal roughness /y2S is d=2. Their model is different than ours and accordingly we do not make any further
comparisons beyond noting that both our works are predicated on the ‘‘small roughness’’ assumption and that it is not
advisable to use large values of /y2S to draw physical conclusions.

Nanofabricated cantilever structures have been demonstrated to be extremely versatile sensors and have potential
applications in physical, chemical, and biological sciences. Adsorption on surface of such a sensor may induce mass,
damping, and stress changes of the cantilever response. One cantilever sensor technique is to monitor changes in the
cantilever resonance frequency. The effect of surface stress on the resonance frequency of a cantilever has been modeled
analytically by Lu et al. (2005) by incorporating strain-dependent surface stress terms into the equations of motion.

Consider a cantilever used as a sensor. The experimental quantity measured is the surface stress difference,
Dss ¼ ss

u'ss
l , where ss

u and ss
l are the surface stresses on the upper and the lower surfaces, respectively. In the isotropic

case, the surface stresses may be written as

ss
u ¼ t0

uþks
uðessÞu and ss

l ¼ t0
l þks

l ðessÞl, ð5:3Þ

where t0 is the strain-independent surface stress, ks is the surface elastic modulus, ess is the surface strain measured from
the pre-stressed configuration, and the subscripts u and l always refer to the upper and lower surfaces, respectively. The
surface stress difference can be written as

Dss ¼Ds0'Dsl, ð5:4Þ

with Ds0 ¼ t0
u't0

l and Dsl ¼ ks
uðessÞu'ks

l ðessÞl. While the strain-independent part of the surface stress, Ds0 can have an
impact on the resonance frequency (in a nonlinear setting), it is expected to be small. The strain-dependent part

Fig. 3. Atomistic calculations to extract the effect of roughness on surface elasticity (Mohammadi and Sharma, 2012).
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(i.e., surface elasticity) definitely will change the resonance frequency and can be expressed as

Q /
ðosÞ2'ðo0Þ2

ðo0Þ2
¼ 3

ks
uþks

l

Eh
, ð5:5Þ

where o0 is the fundamental resonance frequency without considering surface elasticity, os is the resonance frequency
with surface stresses acting, h is the thickness and E is Young’s modulus. Liu and Rajapakse (2010) have also derived a
similar expression.

To compare the change in resonance frequency of cantilevers with rough surfaces, we consider a beam that has a
sinusoidal rough surface on top and flat surfaces on the bottom. We have

ks
u ¼ ðk

sÞeff ¼ ks'd2kE ð5:6Þ

for top surface and ks
l ¼ ks for the lower surface. Then the change in resonance frequency can be obtained as

Qrough ¼ 3
Ehð2ks'd2kEÞ: ð5:7Þ

Compared to a cantilever with upper and lower flat surfaces with resonance frequency

Q ¼ 3
Ehð2ksÞ: ð5:8Þ

We stress here that this calculation is approximate and intended to simply demonstrate the use of our results. A rigorous
calculation may yield additional terms if roughness is directly modeled in calculation of the frequency shift as opposed to
using homogenized effective properties. Keeping this caveat in mind, we can infer that the frequency shift will decrease
significantly or even, in some cases, change sign. For instance, in case of copper (001) crystal face (Shenoy, 2005), if we
consider a sinusoidal roughness with ak¼0.2 and wave length of 10 nm on the top surface of the cantilever, the change of
resonance frequency can be calculated to be: Qrough ¼ 3=Ehð'13:64Þ from its value of Q ¼ 3=Ehð'6:32Þ. So quantitatively,
the square of resonance frequency is shifted by nearly a factor of 2.

As an another example, we consider aluminum with Young’s modulus E of 70 GPa, Poisson’s ratio v of 0.35,
t0 - 0:91 N=m and ks - 4:53 N=m for the (111) crystal face (Shenoy, 2005). Then the result for the rough case is
3=Ehð5:87Þ as opposed to the flat case of 3=Ehð9:06Þ.

A few words about the length scale over which our results are applicable are appropriate here. A rigorous convergence
study is beyond the scope of the present work. In fact the length scale where surface elasticity becomes important depends
on the geometry and loading condition of the body however a simple energy argument provides some insights: For a
deformed body, the bulk energy Eb , 1

2JVCJE2 and surface energy Es , Að12JCsJE2
s þ9t0Es9Þ, where V (A) is the volume (area) of

this body and E ðEsÞ is the magnitude of the bulk (surface) strain (typically, E, Es). If EbbEs, we expect that surface
elasticity is not important and it is unnecessary to employ the results presented in this paper to address the effect of
microscopic roughness on the surface of the body. On the other hand, if the bulk energy Eb is comparable with surface
contribution Es, i.e.,

L :¼
V
A
,

JCsJE2
s þ9t0Es9
JCJE2

¼
JCsJ
JCJ
þ

9t09
JCJEs

, ð5:9Þ

we anticipate the surface elasticity would play an important role in determining the overall elastic behavior of the body.
Therefore, the length scale L defined by (5.9) may be regarded as the critical length scale for which the surface elasticity
and the presented correction to surface properties due to microscopic roughness will become indispensable for a faithful
continuum model of the body. To some degree, given the reasonable agreement with our theoretical results, the atomistic
calculations presented in the paper also provide at least one benchmark length scale where our results appear to be
applicable.

In summary, we have presented simple expressions for the homogenized surface stress and surface elasticity for both
randomly and periodically rough surfaces. Residual surface stress does not appear to be significantly affected by the
presence of roughness although we do notice a dramatic change in the surface elastic modulus. The latter for example, as
we demonstrated through simple illustrative quantitative examples, should have significant impact on the way sensing
data based on surface effects is interpreted. We finally note an interesting observation that even if the bare surface has a
zero surface elasticity modulus, roughness will endow it with one.
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Appendix A. Elasticity solution to two-dimensional isotropic half-space

Here we recall the classic solution to the elasticity problem of a two-dimensional isotropic flat half-space B0 ¼ fðx,yÞ :
yo0g subject to an applied traction p¼ ðpx,pyÞ on @B0 ¼ fðx,yÞ : y¼ 0g. Let

ðp̂xðmÞ,p̂yðmÞÞ ¼
Z

R
ðpxðxÞ,pyðxÞÞe

'imx dx

be their Fourier transformations. Then the solutions to the stress and stain fields are given by (Asaro and Lubarda, 2006,
pp. 229–232)

sxxðx,yÞ ¼
1

2p

Z

R
p̂xðmÞ '2

9m9
im
þ imy

& '
þ p̂yðmÞð1þ9m9yÞ

# $
eimxþ 9m9y dm,

syyðx,yÞ ¼
1

2p

Z

R
½'imp̂xðmÞyþ p̂yðmÞð1'9m9yÞ*eimxþ 9m9y dm,

sxyðx,yÞ ¼
1

2p

Z

R
½p̂xðmÞð1þ9m9yÞ'imp̂yðmÞy*e

imxþ 9m9y dm: ðA:1Þ

Appendix B. Evaluation of the selected integrals used in Section 4.2

First, we recall a few identities for Z51 (which may be verified by Mathematica)

1
2p

Z 2p

0
sin2 y dy¼ 1

2
,
Z h

'1
yey dy¼ ehð'1þhÞ,

Z h

'1
y2ey dy¼ ehð2'hþh2Þ,

1
2p

Z 2p

0
eZ cos y cos y dy¼ Z

2
þoðZÞ,

Z 2p

0
esin y cos y dy¼ 0,

Z 2p

0
eZ cos yð'1þZ cos yÞ cos y dy¼ oðZÞ:

Therefore,

1
l

Z l

0

Z hðxÞ

'1
kyeky cosðkxÞ dy dx¼

1
2p

Z l

0
edk cosðkxÞð'1þdk cosðkxÞÞ cosðkxÞ dx¼ oðdÞ,

1
l

Z l

0

Z hðxÞ

'1
eky cosðkxÞ dy dx¼

1
2p

Z l

0
edk cosðkxÞ cosðkxÞ dx¼

d
2
þoðdÞ,

1
l

Z l

0

Z hðxÞ

'1
eð1Þxx dy dx¼

d
2
½2L11a1þb1ðL11þL12Þ*þoðdÞ: ðB:1Þ

Further, we notice that for any constants A, B, and C

1
l

Z l

0

Z hðxÞ

'1
ðAþBð2kyÞþCð2kyÞ2Þe2ky cos2ðkxÞ dy dx¼

1
4k
ðA'Bþ2CÞþoð1Þ:

Therefore

1
l

Z l

0

Z hðxÞ

'1
sð1Þ ( sð1Þ dy dx¼Mn -

1
4k

a1ð2a1þb1Þþ
ða1þb1Þ

2

2
a1b1þ

ða1þb1Þ
2

2

a1b1þ
ða1þb1Þ

2

2
b1ða1þ2b1Þþ

ða1þb1Þ
2

2
'2b1a1þða1þb1Þ

2

2

6666664

3

7777775
, ðB:2Þ

where other components of Mn are not computed since they do not contribute to the product L $Mn.

Appendix C. Wiener–Khinchin theorem

We outline the argument for (4.52) as follows. First, we notice that

/9ĥ0ðmÞ9
2S¼

4

L2

Z L

0

Z L

0
h0ðx1Þh0ðx2Þ expðimðx1'x2ÞÞ dx1 dx2

* +
¼

4

L2

Z L

0

Z L

0
/h0ðx1Þh0ðx2ÞS expðimðx1'x2ÞÞ dx1 dx2

¼
4

L2

Z L

0

Z L

0
kðx1'x2Þ expðimðx1'x2ÞÞ dx1 dx2 ¼

4

L2

Z L

0
dx1

Z L'x1

'x1

kðtÞ expð'imtÞ dt:
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Since kðtÞ is negligible if t4 lc , in the limit L-þ1 we have

X

komokþDk

/9ĥ0ðmÞ9
2S¼

X

komokþDk

2
pL

Z

0
dx1

2p
L

Z L'x1

'x1

kðtÞ expð'imtÞ dt-
2
p

Z

R
kðtÞ expð'imtÞ dt¼

2
p k̂ðmÞ,

which completes the proof of (4.52).
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