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Abstract: The effect of mechanical strain on the quantum confinement properties of
quantum dots is appreciable and both qualitative and quantitative description of the
electronic band structure of quantum dots requires proper incorporation of its effect.
Although atomistic calculations such as tight binding or pseudopotential approaches are
viable options, the typical and ‘standard’ practice is to employ the coarse-grained multiband
envelope function method to compute the band structure of both strained and unstrained
quantum dots. The typical recipe involves calculation of strain based on classical continuum
elasticity and a subsequent link to the aforementioned eight-band envelope function model.
The mechanical strain predicted by classical elasticity is not only size-independent but also
departs qualitatively from the actual (atomistic) field owing to neglect of non-local effects
that are prevalent at the nanoscale. In the present work, the authors employ the strain as
calculated from a size-dependent non-local theory of elasticity (presented in work previously
published by the current authors) and assess the qualitative and quantitative effects on the
electronic band structure of an InAs-GaAs quantum dot system. Quantitatively, deviations of
band gaps in the range of 100meV are found when compared to classical elasticity-based
estimates, while no significant qualitative differences were found. The non-local elastic
effects, however, are appreciable only for very small quantum dots and certain materials
(such as the InAs–GaAs system discussed in the present work).
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1 INTRODUCTION AND BACKGROUND

Quantum dots are tiny three-dimensionally confined
(typically) semiconductor material structures where
quantum effects become obvious, e.g. energy spectra
become discrete. They are characterized by sharp
density of states reminiscent of ‘atoms’ and carriers
are confined in all three dimensions. Quantum dots
are of immense technological importance and (while
several technological barriers remain) are often
considered as the basis for several revolutionary
nanoelectronic devices and applications, e.g. next
generation lighting [1, 2], lasers [3, 4], quantum
computing, information storage and quantum

cryptography [5–7], biological labels [8], sensors [9],
and many others.

As is routinely done in quantum structure
research, size can be used to tailor or engineer the
electronic spectra and hence a host of other optoe-
lectronic properties in quantum dots or wires/wells.
For example (while somewhat crude), a single-band
effective mass particle-in-a-box approximation
immediately suggests that band gaps vary as
Eg(R) ¼ Eg(1) þ k/R2 where Eg is the band gap,
while ‘R’ is some characteristic dimension of the
quantum dot, e.g. radius for a spherical one.
Numerically, the proportionality constant, k, (which
involves effective masses, Planck’s constants, etc.)
is such that hardly any size effect or quantum
confinement is seen until the quantum dot dimen-
sions approach a few nanometres (or more formally
the exciton Bohr radius). Apart from many
other interesting aspects of electronic behaviour of
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three-dimensionally confined quantum dots (cf.
reference [10]), the ability to tailor the band struc-
ture with minute changes in size (at the nanoscale)
is perhaps the one that is most often emphasized.

Insofar as the strain is concerned, quantum dots
are frequently embedded in another material with
different elastic constants and lattice parameters.
In such a case, owing to the lattice mismatch, the
ensuing elastic strain within the quantum dots is
well known to impact their optoelectronic properties
(e.g. references [10–13]). For example, the mismatch
strain between InAs and GaAs is 7 per cent. Thus, in
addition to quantum dot size, mechanical strain also
has an influence on the band structure. Strain can
shift the valence and conduction bands, change
band gap, cause trapping of carriers and excitons,
and in some piezoelectric materials even cause (e.g.
group III–V materials) electrical fields that further
impact the optoelectronic properties of quantum
dots. Although the major effect is attributable to
dilatational strain, axial components can break the
cubic symmetry (of most semiconductors) and lead
to splitting of the light and heavy hole bands. Again,
this aspect of strain-mediated control of electronic
properties is well known and indeed employed to
alter the band structure of both bulk systems and
nanostructures.

A wide range of band structure calculation
approaches is available, ranging from all-electron
methods to approximate ab initio approaches [self-
consistent density functional theory (DFT), the
empirical pseudopotential method (EPM), tight
binding (TB), or the envelope function method
(EFM). Within each category, sub-methods of vary-
ing sophistication can be readily identified. The
reader is referred to references [11–14], which pro-
vide decent overviews. For example, EFM, which in
its so-called standard 8 · 8 Hamiltonian (Kane
model [15]) is the most often used, involves taking
into account the influence of the three energy bands
on the valence side and one on the conduction
side leading to a set of 8 · 8 Schrödinger-type
equations that must be solved numerically for the
energy eigenvalues. In this model, spin–orbital
coupling, light–heavy hole band mixing, as well as
non-parabolicity of electron dispersion is included.
Indeed this model has been frequently applied to
quantum dots [e.g. references 16–21]. Significant
progress has been made in the development of this
method even for quantum dot heterostructures (see
the progress by various researchers made in referen-
ces [22–33]). In principle, this approach is exact if all
energy bands (not just four) are retained. The simple
particle in a box effective mass approach corres-
ponds to a single band approximation. Mechanical
strain can be accounted for in the Kane model as a
perturbation (e.g. references [11–14, 21, 34]) and

such modifications typically result in a further com-
plication of the 8 · 8 standard Hamiltonian albeit
that is readily tractable numerically. In this formal-
ism, non-homogeneous strains may also be dealt
with rigorously via the work of Zhang [35].

Typically strain itself is usually calculated via
recourse to continuum elasticity (numerically or
analytically depending on geometrical and anisotro-
pic assumptions) and sometimes through empirical
force field molecular dynamics (e.g. references
[36–67]). The envelope function approach is attrac-
tive, simple, and physically intuitive and thus not
surprisingly a ‘standard’ approach utilized in most
works on both bulk semiconductors as well as
nanostructures. However, this ‘standard approach’
suffers from several shortcomings and its applicabil-
ity to nanostructures appears questionable. Indeed,
several authors have discussed this (e.g. see review
by DiCarlo [68]) and alternative ‘more microscopic’
approaches such as TB, EPM, or DFT are often pre-
ferable when dealing with small quantum dots in
the size range of a few nanometres. In various works
Zunger and co-workers [69–71] have highlighted and
clarified the various shortcomings of the envelope
function approach when compared with EPM calcu-
lations. Wang and Zunger [70,71] have made an
important advance by modifying the ‘standard’
envelope function approach to be accurate for small
quantum dots. While the EPM is fairly accurate pro-
vided the pseudopotential that replaces the effect of
core electrons/nucleus has been well tweaked
empirically, it is computationally expensive for large
systems (underscoring somewhat the importance
of the work by Wang and Zunger [70, 71] on the
modification of the k.p model for quantum dots).
Self-consistent DFT computations, which while
parameter-free often tend to underestimate the
energies as DFT, are best suited for only ground state
energy calculation. Even within DFT, accuracy may
suffer if the typically used local density approxima-
tion is utilized as opposed to incorporation of non-
local effects. Nevertheless, relative effects are often
faithfully captured by DFT and its advantage of
being parameter-free is notable for new materials
and effects. Applications are, however, generally
limited to quantum dots below 2.5 nm and indeed
embedded systems often prove to be beyond com-
putational reach.

In the present work, the authors acknowledge that
classical elasticity predictions of mechanical strain
in embedded quantum dots are in error both quali-
tatively and for some materials quantitatively as
well (for the size range of 2–10 nm). Physically, owing
to the non-local effects prevalent at the nanoscale,
strain is size-dependent in contrast to classical
elasticity predictions. The calculation of the size-
dependent strain in embedded quantum dots has been
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explored in greater depth in one of the present
authors’ recent works through the use of the phe-
nomenological strain gradient theory of elasticity
[72]. Crude calculations indeed showed that the con-
sequence on band structure of some materials sys-
tems (such as InAs–GaAs) may be non-negligible.
In the present work, a detailed study is provided of
the issue of strain-band structure coupling in
InAs–GaAs quantum dots whereby the strain is cal-
culated through the non-local theory of elasticity.
Given the intent of this paper, it is somewhat imma-
terial whether an isotropic assumption is made for
the strain calculations. In any event, a few works do
claim that the inclusion of anisotropy only has negli-
gible effect [37–38]. In the present authors’ opinion,
this certainly may not be the case for all materials.
Anisotropic non-local elasticity calculations have
already been carried out in a previous work [72]
and thus, to keep matters simple, isotropic elasticity
is assumed. Note that interfacial energy effects may
also cause an additional size dependency [11, 73]
that is not discussed in the present work.

The current paper is organized as follows. In sec-
tion 2, the strain field calculation based on size-
dependent strain gradient elasticity (as presented in
reference [72]) is briefly recapitulated. In section 3,
the eight-band model for electronic band structure
calculations of strained quantum dots is discussed
and the authors’ computational scheme is briefly
explained. Numerical results are presented and dis-
cussed in section 4, while conclusions are given in
section 5.

2 SIZE-DEPENDENT STRAIN OWING TO
NON-LOCAL EFFECTS

This section is based on the authors’ previous work
[72] and the reader is referred to that work for
more details on the relevant derivations. The authors
note here as motivation that at small length scales
(approaching a few nanometres comparable to the
discrete structure of matter) the implicit long-
wavelength assumption of classical elasticity breaks
down. This breakdown is caused partially by fluctua-
tions in the inter-atomic interactions at the length
scale of a few lattice spacings that are smoothed
out at coarser scales (where classical elasticity is rea-
sonably applicable). As one would expect, several
phenomena at the level of a few lattice spacings are
inadequately captured by classical elasticity and
researchers often see enriched continuum theories
such as non-local elasticity as a replacement for ato-
mistic simulations (or alternatively a bridge between
atomistic and conventional continuum mechanics).
For example, the ubiquitous singularities ahead of

crack tips and dislocation cores (as predicted by
classical mechanics) are indeed a breakdown of tra-
ditional elasticity at short wavelengths [74]. The
obvious alternative method to compute strain is the
use of atomistic simulations. An alternative (coarse-
grained) field theoretical method is highly desirable
(in the same vein as previous works [38, 39, 42–46,
75]), albeit one that also accounts for the scaling or
size effects in strain likely to be prevalent at these
small length scales (over and beyond surface/
interfacial energy effects already addressed in the
references [73, 75, 76]).

Non-local elasticity is formulated by using modi-
fied energy density [77]. Extra terms related to strain
gradients are introduced

W xð Þ ¼ m @iuj

� �2þl

2
@lulð Þ2þ2mþ l

2
l02@i@lul@i@juj

þ ml2

2
@2
l ui@

2
l ui � @i@lul@i@juj

� � ð1Þ

Here, the first two quadratic terms form the
classical energy density; m and l are shear modulus
and Lame’s modulus of elastic medium. It is
presumed that the energy density would not only
depend on strain but also on strain gradient.
Additional material parameters (in addition to the
Lame parameters) now appear, namely l0 and l (the
so-called characteristic length scales). Here, ui is
the displacement and is related to strain «ij via

"ij ¼ 1

2
ui;j þ uj;i

� �
@i is equivalent to @/@xi and the two notations will be
used interchangeably to indicate differentiation with
respect to the spatial variables. Assume that a lattice
mismatch strain exists between the embedded
quantum dots and the host matrix. The mismatch
strain, «m in terms of the lattice parameters is
given as

"mij ¼ 2ðaqd � ahostÞ
ðaqd þ ahostÞ dij ¼ "mdij ð2Þ

where aqd and ahost are lattice parameters for
quantum dot and matrix material; dij is the
Kronecker delta.

For the simple spherical shape, closed-form results
can be derived for the size-dependent strain [72]

"iiðrÞ ¼
J
3 þJe�

R0
l0 R0 þ l0ð Þ FinðxiÞ

r5
2 V

iJR3
0

3r5
Fou1ðxiÞ þJLe�r=l0 Fou2ðxiÞ

r5
=2V

8<
:

"jkðrÞ ¼ 0, k 6¼ j ð3Þ
where

J ¼ 3lþ 2m

lþ 2m

The electronic band structure of embedded quantum dots 3

JNN57 � IMechE 2006 Proc. IMechE Vol. 220 Part N: J. Nanoengineering and Nanosystems



Additional unknown terms in the above function
are defined as

FinðxiÞ ¼ l0r 2x2i � x2j � x2k

� �
cosh

r

l0

� sinh
r

l0
l02 2x2i � x2j � x2k

� �
þ x2i r

2
h i

i 6¼ k 6¼ j

Fou1ðxiÞ ¼ �2x2i þ x2j þ x2k i 6¼ k 6¼ j

Fou2ðxiÞ ¼ l02 x2j þ x2k � 2x2i

� �h
�l0r 2x2i � x2j � x2k

� �
� x2i r

2
i

i 6¼ k 6¼ j

L ¼ l0 sinh
R0

l0
� R0 cosh

R0

l0
ð4Þ

The classical elasticity solution may be recovered
by simply letting the length scale tend to zero

"iiðrÞ ¼
J
3 2 V

JR3
0

3r5 Fou1ðxiÞ =2V

(

"jkðrÞ ¼ 0, k 6¼ j ð5Þ
The classical and non-local strain fields are

compared in Figs 1 and 2.
In both Figs 1 and 2, the strain is normalized as

Tr(«ij)(3K þ 4m)/9K«m. Figure 1 emphasizes the size
dependency of non-local elasticity. The results are
plotted for various positions inside the quantum dot.
It can be seen from sub-plot (a) that the size depen-
dency of strain is prominent for a quantum dot with
radius less than 6l0. Because the internal length scale
is usually very small (see discussion in section 3), the
non-local effect should be appreciable for small
quantum dots. Large deviation can exist for even
‘large’ quantum dots near the interface of the quan-
tum dot and matrix. Figure 2 shows another impor-
tant feature of non-local elasticity that which is the
total strain is continuous across the boundary. Unlike
the classical result, which is a constant dilation inside
the quantum dot and zero outside, the non-local
strain dilation is non-uniformboth inside andoutside
the quantum dot and continuous. This is more physi-
cal. It also needs to be emphasized that non-local
elasticity removes singularity of the strain field at the
vertices of polyhedral-shaped quantum dots [72].

After duly subtracting mismatch strain inside the
quantum dot [50], the strain fields obtained in equa-
tions (4) and (5) will be used in the following section
for band structure calculations.

3 BAND STRUCTURE CALCULATION FOR
InAs–GaAs QUANTUM DOT SYSTEM

A typical procedure, used for zinc blende semicon-
ductors in several references, is to employ the
eight-band envelope function framework. Most
work essentially uses the Bir–Pikus [78] Hamiltonian
or some modification of it. The reader is referred to
Bahder [79] and Pollak [34] for good reviews of this

subject, in addition to the book by Singh [12]. Several
other works can be consulted as well, which utilize this
multiband k.p approach (e.g. references [20, 60, 80]).

The starting point for the eight-band model that
incorporates the effect of strain is the following
single-particle Schrodinger’s equation [71]

� �h2

2m
r2c rð Þ þ V rð Þc rð Þ þWstrainc rð Þ ¼ Ec rð Þ ð6Þ

Here V is extra potential induced by the external field
and W is a coupling potential caused by the strain
field. By incorporating the spin–orbital coupling
effect, equation (6) is re-written as [71]

� �h2

2m
r2c rð Þ þ V rð Þc rð Þ þ þWstrainc rð Þ

þ �h

4c2m2
rV · pð Þ s ¼ Ec rð Þ ð7Þ

Fig. 1 Dilatational strain in non-local elasticity: size
dependency of strain. (a) Inside the quantum
dot: classical strain dilation is normalized as 1.
The results are plotted for various positions inside
the quantum dot. (b) Outside the quantum dot:
classical strain dilation is zero
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Where V is the potential energy term of the
Hamiltonian, p is the momentum operator, and s
is the Pauli spin tensor. The wave function can be
expanded in terms of the so-called envelope
functions [71]

c rð Þ ¼
XNb

n¼1

X
k

bn kð Þeik r

" #
�n;k¼0 rð Þ ð8Þ

Here Nb is the number of energy bands. Nb is 1 for a
single-band model (conduction band and valence
band), or 8 for a standard 8 · 8 envelope function
method. �n, k ¼ 0(r) is the atomic function near the
G point.

Fn rð Þ ¼
X
k

bn kð Þeik r,

is the slowly varying envelope function. With the
linear expansion given in equation (8), equations
(6) and (7) are expanded into the Nb band
model. The derivation from equation (7) in
multiband formulae is well known [80] hence using
this directly, the following can be written:

XNb

m¼1

c rð Þ¼

XNb

n¼1

En;0þh� 2k2

2m0
�En;k

� �
dm;nþ h�

m0
KPn;mþWnm

� �
bm kð Þ¼0

ð9Þ

where Wnm represent the linear expansion
coefficients in multiband coordinates for the strain
coupling part. The above equation could be
transformed into a more familiar form by addingP

ke
ik r to both sides. Finally, the following can be

writtenX
m

Hnm rð ÞþWnm rð Þð ÞFm rð Þ¼EFn ð10Þ

Hnm(r) can be written as [20, 81]
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The terms in the above equation are differential
operators and are defined as

A ¼ Ec � �h2a
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The strain coupling Hamiltonian has the following
form

Wnm¼
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Similarly, the terms in above matrix are defined as

p ¼ av exx þ eyy þ ezz
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q ¼ b ezz � 1

2
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ffiffiffi
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Fig. 2 Dilatational strain distribution in non-local elasti-
city plotted for various quantum dot sizes
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Where m is the mass of a bare electron and �h is
the modified Planck’s constant. The required rele-
vant parameters for the InAs–GaAs system are sum-
marized in Table 1.

Another important parameter is the valence band
offset, which in the current study is chosen to be
0.27 eV [10, 21, 82]. In order to incorporate the
non-local size-dependent strain, the length scale
parameter l0 needs to be fixed. Clearly, the numerical
values of the characteristic length scale determine
the strength of the non-local or dispersive behaviour

of the crystal. Eringen [74] provides an elementary
discussion of this length scale. Of course this para-
meter is different for different materials. Generally
the rough magnitude of this length scale is around
the lattice parameter. Realistic values can only be
obtained using detailed atomistic simulations. How-
ever, a crude one-dimensional Born–Karman type
chain model (presented by Eringen [74]; pages
100–101) indicates this parameter to be exactly equal
to the lattice parameter (‘a’). Further, Eringen also
indicates (page 107) that matching non-local the-
ories to experimental phonon dispersion curves
yields l ¼ 0.39a (unfortunately he does not specify
which material, other than indicating that it is of
face-centred cubic structure). Altan and Aifantis
[60] suggest a similar number. A better way to
resolve this matter is through detailed lattice level
models. DiVincenzo [83] precisely appears to have
done so. In fact he addresses dispersivity (non-
locality) in the semiconductor material GaAs. To
understand this issue further, a discussion of a key
concept is in order. As used in the present authors’
earlier works [72], for GaAs the length scale is taken
to be roughly � 0.832 nm. In any event, since there
is some uncertainty surrounding this number, a
sample calculation is also provided based on a
much smaller value �a/2 (see Fig. 4 in section 4).

Table 1 Band structure calculation parameters [83]

Parameter GaAs* InAs*

K (GPa) 75.3 78.1
g1 7.10 19.7
g2 2.02 8.4
g3 2.93 9.3
Eg (eV) 1.518 0.413
D (eV) 0.34 0.38
Ep (eV) 28.0 22.0
ac (eV) �8.01 �5.08
av (eV) �0.22 �1.00
b (eV) �1.824 �1.8
d (eV) �5.062 �3.6
C1111 (GPa) 121.1 83.3
C1122 (GPa) 54.8 45.3
C1212 (GPa) 60.4 39.6

Fig. 3 Band edge profile for quantum dot heterogeneous system (InAs–GaAs) with
conduction band and valence bands [heavy hole (HH); light hole (LH);
spin–orbital (SO)]
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A finite difference method is employed to solve the
coupled eight-band eigenvalue equations indicated
in the previous equations. The embedded quantum
dot system is simulated by using a sphere contained
in a cubic box meshed with a grid of 50 · 50 · 50.
The size of the box is chosen to be large enough to
justify an ‘infinite matrix’ approximation, as used to
derive the strain field in the previous section. The
box size (in which the quantum dot is embedded)
is chosen to be 36nm · 36 nm · 36nm. Dirichlet
boundary conditions are applied at the outer bound-
ary of the box. The discrete model contains 125 000
nodes. Based on the obtained large-scale eigenvalue
linear system, the Jacobi–Davidson (JD) method [84]
is used to extract the eigen-energies. Since only the

eigenvalues near the smallest conduction band and
largest valence band are sought, a shift-invert
method is used, which searches the eigenvalues
around the desired target energy.

4 RESULTS AND DISCUSSION

In Fig. 3, the zero k (band edge) profile is plotted and
results are compared for both classical elasticity-
based results and non-local elasticity. It can be
observed that the non-local elasticity gives a non-
uniform band edge profile inside the quantum dot
in contrast to the classical result, which is similar to
that obtained in references [38] and [85].

Fig. 4 Band gap of embedded quantum dots with increase of
diameter for non-local case with l0 ¼ 0.832 nm and
a/2 ¼ 0.2826nm and classical case
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Band edge profile is very useful to determine the
confinement condition of carriers. In Fig. 3, electrons
and holes are all confined in each of the bands, both
in classical and non-local elasticity cases. This is des-
pite the fact that there are large differences between
these two theories, especially around the interface.

Figure 4 depicts the energy band gap (the lowest
conduction energy minus the highest valence
energy) versus size. Clearly, the non-local strain
effects induce an additional size dependency in the
quantum confinement size effect.

Interestingly, the deviation of band gap in the
non-local case from the classical result can be as
high as 150meV for a quantum dot with radius of
3 nm. A difference of 100meV still exists between
the non-local and classical results for a quantum
dot with radius up to 4nm. As mentioned above,
there is uncertainity in the estimation of the length
scale. A conservative estimate of l0 ¼ a/2 ¼ 0.2826nm
is also chosen. A band gap difference from the classi-
cal solution of 30meV still exists for a quantum dot
with diameter of 6 nm. Considering the intervalence

bands transition energy is only around 10meV,
30meV is indeed a large difference.

A band gap of 1.33 eV has been reported previously
[86] for a quantum dot with diameter around
4.22nm. The present calculation gives a value of
1.37 eV for l0 ¼ 0.832, 1.27 eV for l0 ¼ 0.2826, and
1.24 eV for the classical case. It can only be said
that all the calculations approach the true result.
However, the strain calculation in reference [86] is
based on the Keating valence force field. It is a two-
parameter force field and is not accurate for incor-
porating dispersive (non-local) effects, as indicated
by Keating himself [61]. There are other force fields
which perhaps are better for inclusion of the disper-
sive (non-local) effect, such as Herman’s force field
[87]. Hence, calculation based on reference [87],
other more appropriate empirical forced fields, or,
more ideally, ab initio methods could be employed.
This is currently under investigation by the authors.

Apart from the energy spectra, the confinement
condition for electrons and holes is presented below.
In Fig. 5, the magnitude of wave function for

Fig. 5 Magnitude of wave function
P

i¼1::8 ciðrÞj j for quantum dot (R0 ¼ 3.5 nm),
first four lowest conduction bands: (a) ground state, (b), (c), and (d) are
the 1st, 2nd, and 3rd excited states
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electrons in conduction bands is shown for a quan-
tum dot with radius equal to 3.5nm (with strain
taken from non-local elasticity). The contour plots
are in the x–y plane and since there is barely any qua-
litative difference between the non-local and classi-
cal elasticity cases, only the former is shown here.

As can be seen from Fig. 5, the carriers are con-
fined in the quantum dot for all the bands shown
above. The ground state conduction band shows
wave function with s-like symmetry, as expected
from the empirical pseudopotential method [86].
The splitting of the wave function can be observed
in higher excited states. Similarly, wave functions
for valence states are presented in Fig. 6.

5 CONCLUSIONS

In conclusion, in the present work, a detailed elec-
tronic band structure calculation has been provided
for the InAs–GaAs quantum dot system that duly
incorporates size effects in the mechanical strain at
the nanoscale owing to dispersive (non-local)
effects. There is some uncertainty as to the true mag-
nitude of non-local effects; despite that, even for
conservative estimates, large quantitative differences
in the calculated band gaps are found when the
aforementioned size effects are included. No signifi-
cant qualitative differences are found, although
some tentative evidence exists (to be explored in
future works) that incorporation of the non-local
strain effects may help to eliminate spurious solu-
tions that often arise in the use of the multiband
envelope function approach.
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