Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 59 Issue 10 October 2011 ISSN 0022-5096

ELSEVIER

JOURNAL OF THE
MECHANICS AND PHYSICS

EDITORS
K. BHATTACHARYA H. GAO

Division of Engineering and Applied Science Division of Engineering

California Institute of Technology Brown University

EDITORIAL ADVISERS

M. C. BOYCE—Cambridge, U.S.A. E. VAN DER GIESSEN—Groningen,
R. J. CLIFTON—Providence, US.A. The Netherlands
L. B. FREUND—Providence, US.A. J. R, RICE—Cambridge, U.5.A.
(Edilor: 1992-2003) N. A, FLECK—Cambridge, U.K.
1. R, WILLIS—Cambridge, UK. : :
(Editor: 1982-2006) 1. W. HUTCHINSON—Cambridge, U.5.A.
R. D. JAMES—Minneapolis, U.5.A, M. ORTIZ—Pasadens, U.5.A.
W. YANG—Hangzhou, China P. SUQUET—Manrseitle, France

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Journal of the Mechanics and Physics of Solids 59 (2011) 2103-2115

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps ’jj

JOURNAL OF THE
MECHANICS AND PHYSICS
or saLins

Curvature-dependent surface energy and implications

for nanostructures

P. Chhapadia?, P. Mohammadi?, P. Sharma P

@ Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
b Department of Physics, University of Houston, Houston, TX 77204, USA

ARTICLE INFO

Article history:

Received 4 December 2010
Received in revised form

25 June 2011

Accepted 30 June 2011
Available online 13 July 2011

Keywords:
Surface energy
Surface elasticity
Nanostructures
Size-effects
Surface stress

ABSTRACT

At small length scales, several size-effects in both physical phenomena and properties can
be rationalized by invoking the concept of surface energy. Conventional theoretical
frameworks of surface energy, in both the mechanics and physics communities, assume
curvature independence. In this work we adopt a simplified and linearized version of a
theory proposed by Steigmann-Ogden to capture curvature-dependence of surface energy.
Connecting the theory to atomistic calculations and the solution to an illustrative
paradigmatical problem of a bent cantilever beam, we catalog the influence of curva-
ture-dependence of surface energy on the effective elastic modulus of nanostructures. The
observation in atomistic calculations that the elastic modulus of bent nanostructures is
dramatically different than under tension - sometimes softer, sometimes stiffer - has been
a source of puzzlement to the scientific community. We show that the corrected surface

mechanics framework provides a resolution to this issue. Finally, we propose an
unambiguous definition of the thickness of a crystalline surface.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Several types of nanostructures of various materials are observed to exhibit qualitatively different physical, mechanical and
chemical behavior as compared to bulk state. A few examples among many others are that melting temperature can be severely
suppressed in nanoparticles (Qi, 2005), Si quantum dots may exhibit optical activity not seen in its bulk form (Peng et al., 2006),
and non-piezoelectric materials may be coaxed into behaving like one (Sharma et al,, 2010). The afore-mentioned size-effects and
others are often rationalized by invoking the concept of surface energy and the associated concepts of (residual) surface stress and
superficial elasticity. Ranging from self-assembly (Suo and Lu, 2000), phase transformation (Diao et al., 2003), thin film growth
(Freund and Suresh, 2003), to catalysis (Bertolini, 2000); surface energy based arguments have provided a framework to
understand size-effects. The mechanics community, based on this concept, has heavily investigated the size-dependence of the
elastic modulus of nanostructures. The turning point for research in surface mechanics appears to be the appearance of the paper
by Miller and Shenoy (2000), who (predicated on the theory by Gurtin and Murdoch, 1975) presented both a method and the
actual atomistic calculations of surface elastic constants of various materials and explored the consequences of surfaces on the
size-dependency of elastic properties. Several works then followed: studies on inclusions (Sharma et al., 2003; Sharma and Ganti,
2004; Duan et al., 2005a, 2005b; He and Li, 2006; Tian and Rajapakse, 2007; Mi and Kouris, 2007), thin films and nanoparticles
(Streitz et al., 1994; Dingreville et al., 2005), computational schemes, nanowires (Diao et al. 2003, 2004, 2006; Bar On et al., 2010),
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Fig. 1. Schematic showing the observation that the renormalized elastic modulus of a bent nanowire/beam is always greater than under tension (in
terms of absolute value).

beams (Miller and Shenoy, 2000; Park and Klein, 2008; Jing et al., 2006), frequency modifications for sensing (Park and Klein,
2008; Wang and Feng, 2007), atomistic methods for computation of surface properties (Shenoy, 2005; Shodja and Tehranchi,
2010; Mi et al., 2008) and composites (Mogilevskaya et al., 2008).

As far as the foundations of the theoretical frameworks of surface energy effects are concerned, Gurtin and Murdoch
(1975, 1978) were the first to develop a rigorous mechanics based theoretical framework of surface elasticity. These works
were later generalized to address interfaces also (Gurtin et al.,, 1998). Although not fundamentally different, a more
materials science oriented viewpoint has been presented by Streitz et al. (1994). The reader is encouraged to refer to
an excellent recent article by Cammarata (2009a, 2009b). An important series of paper was published by Huang and
co-workers (e.g. Wang et al., 2010; Huang and Sun, 2006). While implicit in the original theory by Gurtin-Murdoch, it was
not quite well-appreciated until the appearance of these works that residual surface stress can also impact overall elastic
behavior (of nanostructures as well as composites). A few other recent review articles (Mogilevskaya et al., 2008, 2010; Ru,
2010; Schiavone and Ru, 2009) have also provided various clarifications regarding mis-concepts related to the Gurtin-
Murdoch theory. The reader is also directed towards a recent tutorial article by Murdoch (2005), which particularly
presents a clear exposition on the direct notation useful for surface mechanics.

The present work looks beyond the circumstances where the Gurtin-Murdoch theory applies and is an attempt to
elucidate the important physical consequences of incorporation of curvature-dependence of surface energy. In the original
Gurtin-Murdoch theory, surface energy depends only on the surface strains and any dependence on curvature is
ignored—this notion is made clearer in Section 2.

There are two main motivations for this work:

(1) The importance of curvature-dependence of surface energy became evident to us through publications by Steigmann
and Ogden (1997, 1999) and personal communication with one of them. Steigmann and Ogden have pointed out that
the Gurtin—-Murdoch theory cannot be used for a compressive stress-state and in particular surface wrinkling or
roughening - ostensibly a key application of the original Gurtin-Murdoch theory - cannot be handled properly within
that framework. Steigmann and Ogden proposed a modified framework showing that incorporating curvature-
dependent surface energy rectified the afore-mentioned issues. Steigmann-Ogden work has gone relatively unnoticed
and nearly all the literature on surface mechanics is based on the Gurtin-Murdoch theory.! It is worth mentioning that
for many problems we expect (intuitively) that the Steigmann-Ogden theory will only be a minor correction to the
Gurtin-Murdoch’s but for certain problems there is no recourse but to use the former (e.g. wrinkling and bending
deformation modes). The following questions remain: (a) what are the numerical values of the material parameters
that characterize the Steigmann-Ogden theory and how can they be evaluated through atomistic calculations?
(b) Setting the niceties of rigor aside, how important is the Steigmann-Ogden correction for some key applications of
surface energy theory e.g. effective elastic modulus of nanostructures?

(2) Several researchers (Miller and Shenoy, 2000; McDowell et al., 2008; Yun and Park, 2009) have observed that the effective
elastic modulus of nanostructures under bending is significantly different than under homogeneous conditions. This has
been a source of puzzlement since the Gurtin-Murdoch theory predicts negligible difference between the two states. Fig. 1

! Two important exceptions appear to be the works of Fried and Todres (2005) and Schiavone and Ru (2009). The former analyzes wrinkling type
instability of a soft film subjected to the action of van der Waals force of a punch while Schiavone and Ru discuss the solvability of the Steigmann-Ogden
theory in 2D context.
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illustrates the observation. Further, the elastic modulus under bending is always found to be higher (in absolute value) as
compared with under tension or compression. Again, this is not readily evident from the Gurtin-Murdoch theory. It is
worth mentioning that gradient elasticity type theories cannot explain this. The typical elemental materials (without
defects) on which atomistic calculations have been performed exhibit very low characteristic nonlocal length scales and
indeed surface energy effects dominate—see for example Maranganti and Sharma (2007a, 2007b).

The outline of our paper is as follows. Section 2 presents the theory of curvature-dependent surface energy, stress and
elasticity. We derive the effective elastic modulus of a cantilever beam in Section 3 and proceed to calculate the material
constants of Steigmann-0Ogden theory in Section 4. In Section 5, we present a discussion on the implications of this work
for nanostructures. In particular we discuss three specific issues: (a) an explanation of the asymmetry of the elastic
response under bending versus tension, (b) correction to the venerable Stoney’s formula (Stoney, 1909) and (c) a proposal
for an unambiguous determination of surface thickness.

2. Theory of curvature-dependent surface energy, stress and elasticity

In this section, we primarily follow Steigmann and Ogden (1999) except that we have preferred the direct notation of
Gurtin—-Murdoch and therefore equations appear somewhat different. We have liberally used the formalism as well as
notation in the work of Wang et al. (2010), in their representation of Gurtin-Murdoch’s work. Our derivation of the
boundary conditions is somewhat different from that of Steigmann-Ogden.

Consider Ay, a smooth surface in the reference configuration (Wang et al., 2010) represented by parametric coordinates
R =R(0',6%), where R is the position vector of the points on the surface from the origin and (6',0%) represents the
curvilinear coordinates on the surface. Under deformation, the point R will move to a point r on the deformed surface A. In
Cartesian coordinate system, the covariant base vectors at R are A, = R, (2=1,2) in the reference configuration and
a, =r, in the deformed configuration system. We assume that there is a linear transformation that maps a vector in the
tangent plane of the undeformed surface into a vector in the tangent plane of the deformed surface. This mapping can be
expressed by the surface deformation gradient Fs =a, ® A* in a two-dimensional space. In the above relation, A* are the
contravariant base vectors at R (Fig. 2).

The right and left Cauchy-Green tensors of the surface are defined as Cs :F§~F5 and Bg :F5-F§. Since Cs and Bs are
symmetric and positive definite, we further define right and left stretch tensor on the surface Us = C;/ 2 and Vs = B;/ 2. The
surface deformation tensors Cs and Bs and their material derivatives are nonlinear in the displacement gradients and their
consequent displacements. The linearized expressions of the surface deformation tensors under infinitesimal deformations are

Cs=1Ip+2E;s and Bs =1-2¢g;,
Us = (Cs)'/* =1 +Es (1)

where Eg and €s are Green Lagrange strain tensors and Iy and I are the identity tensors on the tangent planes of undeformed
and deformed surface, respectively.

1< - 1o <
Es = E(Vosuo+uovos)y &= Z(Vsu+uvs)- (2)

U is the displacement vector of a point on the surface in undeformed state and u is the displacement vector in deformed
configuration. Vs and Vs are the gradient operators on the surfaces A, and A, respectively, and can be defined as
Vsu= Vu—n(n-Vu), where n is the unit normal vector of the surface after deformation. Under the Lagrangian description,
surface Piola-Kirchhoff stress tensor of second kind (asymmetric) is given by the relation

0(J2y)

Ts=2 aCs

3)

[ & =

Deformed Configuration

Reference Configuration

Fig. 2. Schematic representing the undeformed and deformed configuration of a surface.



2106 P. Chhapadia et al. / J. Mech. Phys. Solids 59 (2011) 2103-2115

where 7 is the surface energy density and J, = detUs is the ratio between the area elements of before and after deformations.
(Jy) denotes the surface energy in the undeformed configuration. The relation between the first and second Piola-Kirchhoff
stress is given as

S5 =Fs-Ts. 4)
The surface deformation gradient can be written in the reference configuration as (Wang et al., 2010)
Fs=1y —|—uOvO5 + F_(go) 5)

where F§°’ denotes the out-plane term of Fs in the reference configuration. The reader is referred to the paper by Wang
et al. (2010) for details of kinematic relations leading to derive this expression.

The surface strain energy functional may be formulated using the concepts of tensor functions and invariant theory
(Truesdell and Noll, 1971). Principal invariants of a tensor A, which are represented by Ji,(A),(k=1,2,...,n), are the
coefficients of the following polynomial in 4

det(GI+A) = A"+ /1A +. . +Jp1(A)A+Ja(A). (6)
In particular for any tensor A
J1(A)=trA, Jn(A) =detA. 7

Steigmann and Ogden (1999) have used the formulation of surface energy density as proposed by Cohen and DeSilva
(1966)

7 =(Cs,; 0",0°). ®)

In the above relation Cs is the right surface Cauchy-Green deformation tensor and k is the curvature tensor and (6',6?)
are the parametric coordinates of the system. In general, for an isotropic body, the surface energy density is a functional of
seven invariants. For our purposes, we consider only the first four invariants of the energy functional to formulate the
surface energy density. These invariants are

J1=trUs

J> =detUs

Iz = (tre)?

Ja =detk 9)

where Us is the right stretch tensor of the surface. We can simplify the expression for the invariants J; and J,
Ji=2+trEs, o= 1+trE5+detE5 (10)

where for small deformations detEs would be of higher order. For hyperelastic media, the surface energy density y can be
assumed to be some function of Us. In particular, for an isotropic surface, y can be written as a function of the all the
invariants of ). Therefore representing in term of invariants

Y=Y0+71U1=2)+ 22—+ 33 +VJa+ 71201 =2) =D +71301 =2)3+ Y1401 =2)a + 72302 =13 + V2402 —1)]a+734)3)4

1
+50m01=2 +72202 =1 +733/3 + 744D+ - an
Then from Eq. (3) we have
o, 612_ o o o ) 5 2
Ts=2J, —~+ aCs +2V 2)> a; BCS + J, oCs +2y oCs
I3 _ da _
as aC; = oG =0. (12)
Using the identities for any tensor A (Holzapfel, 2000)
odetA _r oOtrA
A =(detAATT, ZE 1 (13)

we can derive the second Piola-Kirchhoff surface stress tensor.
i 9h oUs 1. 4

oCs  aUs oCs 2%

d 9 dUs 1 -1
aCs ~ aUs aCs — ]2(CS)
=290 ), J St (Jz = "‘V)cs (14)
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Using Eq. (1), (10) and (11) for small deformation, we have
oy
ah

0
§p) (]2 a]% +V> ~ (Po+72)+ o+ 71 432+ P12 + 722 +73(trK) 4+ detic+ 37,3 (trk)® + 37,4 detk + 7, 5(trk)?

J2 o =y + 1 11 V12)UEs + (0133 +714J4)(1 + tEs),

+7124etiOtrEs + (723 +73)(T1K)? + (724 +74)deti). (15)

Substituting Eq. (15) into Eq. (14) and simplifying the expression, the surface Piola-Kirchhoff stress of the second kind
can be rewritten as

Ts = (Yo +71+72Mo+ (Vo +271 +3V2+711 + 722 +2712)(tTEs)o
+ (1 —2(70+ 71 +70)Es + (5 (trk)* + pdetio)ly (16)

where V% =7,3+7; and y; =7,4+74. In this expression of surface stress the last two terms y3J3 and y;J4 are nonlinear
terms and (in this linearized theory) we discard those. The surface stress can be written as

Ts=o+71+v2Mo+Go+2Y1+3V2 711+ V22 +2712)(TESIo + ()1 —=2(Vo +71 +70))Es. (17)
The linearized first Piola-Kirchoff surface stress can be found using the relation given in Eq. (2), (4) and (5)

Ss=(Yo+71 +72Mo+ Vo +271+272+ 711 + 722 +2712)UE)lo— (g +71 +70) Vosto + 71 Es+ (o +71 +72)FS . (18)
Redefining constants, Eq. (18) may be rewritten in a more standard form as

Ss = Tolo + Zo(trEs)lo + 240 Es +To VosUo + (7o + 71 +2)FL (19)

where 1o, 49 and po are the material constants of the surface. The above representation of surface stress resembles the
definition of surface stress proposed by Gurtin and Murdoch (1975)

Ss = Tolg + Zo(trEs)Ig + Z,UOES +fov05u0. (20)
The surface Cauchy stress tensor can be determined by the following relation:
GsleS'Ts'F}.. (2])
J2

Steigmann and Ogden (1999) have defined the surface moment stress Ms, also known as edge traction, as

_ 5 002y)
Mg =220, (22)

Essentially repeating the analysis of the preceding few pages, the surface moment stress can be written as

Ms = 4y5(tri)lo +4()3 + 713 + Y23 (TrEstrio)lo. (23)
The term (trEstrk) is a nonlinear contribution and accordingly discarded. We have then

Ms =4y, (trk)lp. 24

In summary, the constitutive equations we will use can be derived from the following simplified surface energy
functional:

1 1
7 =7yo+ToEs+ iC01~:§+jcﬂc2 (25)

where 1y is the residual surface stress, Cy is the surface elastic constant (same as in Gurtin—-Murdoch theory) and C; is the
(new) Steigmann-Ogden material constant that reflects the penalty in surface energy upon changes in curvature.

We now proceed to outline the governing equations and boundary conditions. The picture below is a schematic of the
bulk-surface system.

In Fig. 3 the surface is represented by S and the bulk volume and area are represented by V and A, respectively. Let n
represent the outward unit normal to the surface, and ¢t be the unit vector tangential to the surface. Bulk stress is notated
as 6”" At mechanical equilibrium the sum of all forces acting on the considered system must be identically zero. Using
(Danov et al., 2010; Fried and Todres, 2005) force balance yields

/ (n- 6Pl ds + 74 (t-So)dL = 0. (26)
JA JL
Green'’s theorem gives us the following result:
/ Vs SgdS = ]{ (t-Sg)dL. 27)
A L

Using Green’s theorem on Eq. (26), we can simplify it to

Gbu’k'ﬂ—l—Vs’Ss:O. (28)
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Fig. 3. Schematic of the surafce and bulk repressentation for the equilibrium equations.

For equilibrium, the net moment of all acting forces should be identically zero (i.e.)

/R x (n-o-b””‘)d5+f[R x (t-Sg)+t-Ms]dL = 0. (29)
A L
Tensor identity gives us
R x (n;-6)=—n; (6 x R). (30)
Using tensor identity and Eq. (28) we can simplify Eq. (29) in the following form:
/R x (n-Gb“lk)dS—k}z{[t-Ms—t-(Ss x R)jdL=0. 31)
A L
Applying Green’s theorem, the above equation can be rewritten as
/ R x (- 6" 4 Vg - Ms— V- (S x R)JdS = 0 (32)
A

which gives us the following simplification:
R x (n-6®"¥) 4+ V5-Ms—Vs-(Ss x R) =0. (33)
Using the result from Eq. (28) we rewrite Eq. (33)
Vs Mg = Vs+(Ss x R)—R x (Vs-Ss) (34)

The reader is also referred to Fried and Todres (2005) and Schiavone and Ru (2009) for alternative representations of
the boundary conditions.

3. Predictions for a thin cantilever beam

Consider a thin cantilever beam loaded with a uniform lateral load g(x) on top. The beam has longitudinal axis in x
direction and vertical deflection in y direction (we assume a square cross section with side a without loss of any generality
of our final qualitative results). Let w(x) denote the deflection of the beam as a function of position x from the fixed end.
Using the variational method, we will re-derive the equations governing beam bending theory considering surface free
energy (25).

The axial and vertical displacements of the beam are approximated by

dw(x)
Ug=—y—p— Uy =WX). (35)
For thin beams, we ignore the shear deformation of the beam. Therefore the bulk strains are
d*w(x)
bx=—Y—g5 o Exy=ty=0. (36)

Liu and Rajapakse (2010) have shown that the effect of vertical stress y, on beam deformation is very small and can be
neglected. So, the relevant bulk stresses are

d>w(x)
dx?

where E is the bulk Young's modulus. Also, the elastic surface with outward unit normal ny has surface free energy
represented by Eq. (25). We proceed by computing the total energy U(w) of the cantilever beam by noting tangential
surface strain as &, and curvature as d*w(x),/dx>

L Pw)
U= [ [ 5B(y% ) dadx (38)

oxx = —Ey Oxy =0y =0 (37)
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where A is the cross section area and [ is length of the beam. Also, the surface energy is

' d? 1 > S >
UBulk(W) = /0 /5 |:f0y (;j:gx) + jCOyZ ( dV;SX)> + EC] ( dv)\;gx)> :|de)( (39)

where Cy and C; are surface elastic modulus and Steigmann-Ogden constant, respectively, and S is the perimeter of the
cross section. The potential energy of the external force is

Ug(w) = — /0 l qyw(x)dx. (40)
Standard variational arguments require
/0 l [(EI+ Col* +C1S%) (dz(;’)‘g") dzi‘;‘f")) —q(x)éw(x)} dx=0 (41)
wherg 12= [ay?dA is the moment of inertia of the beam cross section, I = [(y?dSis the perimeter moment of inertia, and
° T_Jiizétjiitegration by part, the governing equation for bending of thin cantilever beam is obtained as
(El+Col* +C,S%) d;‘fgx) —qx)=0 42)
Upon comparison with the classical Euler-Bernoulli beam equation with an “effective” elastic modulus, i.e.
Earl 20 g0 =0, (43)

dx?
We find the following:
Eosf _ El+Col* +C 5%

E El @4
In the case of a beam with square cross section of side a
a . 2a
I=15. I'==5- S'=2a (45)
the effective elastic modulus is obtained as
Eert -1 8Co | 246 (46)

E T aE " &3
——

It is worth pointing out that the asymmetrical term in the surface constitutive law and the dependence of elastic
modulus on the residual stress should not be ignored in general (Mogilevskaya et al., 2008; Wang et al., 2010); however, it
is justified in the present case for two reasons: (i) inclusion of that term makes no qualitative difference to our conclusions
and (ii) while residual surface stress can be important for the stress-state, its impact on renormalized elastic modulus has
been found to be small in recent works see for example (Liu et al., 2011).

We defer to Section 5 a discussion of the restriction on the values C; can take. We will simply state here that
Sgn(Cy)=Sgn(C;). In other words, if surfaces tend to soften the material at the nanoscale (under tension); then under
bending they will be even softer. The reverse is true as well: if the surfaces tend to stiffen the material under tension then
under bending they will be stiffer. Following the similar analysis we also derive the renormalized effective elastic modulus
of the wire under tension based on the Gurtin-Murdoch model

Esr . 2GCo

E -

Obviously, in computation of Eq. (47), the Steigmann-Ogden term does not enter. These expressions agree with prior
work if C; is set to zero.

(47)

4. Atomistic calculations, computation of Steigmann-0Ogden constants

We carried out the atomistic simulations of the nanowire using LAMMPS (Plimpton, 1995) molecular dynamics (MD)
code. Embedded Atom Method (EAM) potential developed by Williams et al. (2006) was used for our simulations of Silver
(Ag) nanowires. Molecular static simulations were performed on the nanowires with thickness ranging from 1.6 to 6 nm.
We consider two configurations of the nanowire for our simulations. The first configuration corresponds to <1 0 0) axially
oriented wire where the lateral surfaces are [0 0 1] and [0 1 0]. The second configuration of the nanowire is chosen to be
{110} axially and [1 1 0] and [0 0 1] along the lateral surfaces (Fig. 4).

Tension loading: We employed the method described by Diao et al. (2004) to determine the effective Young’s modulus
of the wire under tension. The wire is non-periodic along the lateral surfaces but is periodic axially. The wire is initially
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Displacement

Fixed End

[010] [001]

[100] [110]

z E z
[001] [110]

Fig. 4. Schematic representation of the orienations of nanowire. The bending experiment was performed with methodology given by McDowell et al.
(2008).

relaxed using conjugate gradient method. The wire is then strained axially along X axis keeping Y and Z surface free. The
wire is subjected to uniaxial loading at a given value of strain (0.2%). After application of the strain the wire is relaxed
again using the conjugate gradient method. The change in the total potential energy of the system is attributed to the work
done due to the force, which causes stretching

AL e 3
AU= [ FdAL) = / Solds = / Vode (48)
0 0 0

where AU is the strain energy of the system, S is the cross section area of the wire after initial relaxation, F is the axial load
applied which is balanced by the axial stress ¢ (F=S &), e=dL/L is the axial strain, and L and V are the length and volume of
the nanowire, respectively. The silver nanowire is stretched to a total of 1.2% strain in X direction in 6 steps of 0.2%. The
elastic modulus (Young’s Modulus) is determined by the expansion of ¢ and V in (48)

AU 1, 1,

where Vj is the initial volume of the nanowire and ¢ is a constant. E.¢ is calculated by fitting strain energy data to applied
strain data and determining the unknown constant.

Bending loading: Cantilever bending simulations were performed on the nanowire as described by McDowell et al.
(2008). Non-periodic boundary conditions were imposed in all three directions of the nanowire and it is allowed to relax
initially using conjugate gradient method. One end of the nanowire was fixed and the free end is given incremental
downward displacement of 0.5 nm. The nanowire was relaxed twice after each displacement increment as described in the
work of McDowell et al. (2008). Using classical beam theory and energetics from the molecular static simulations we
determined the effective elastic modulus of the wire. The effective Young’s modulus of the nanowire is given by the
relation (Gere and Goodno, 2004)

L 2
_ EeffI o°v
AU= /0 5 (a?) (50)

where L is the length, I is the moment of inertia and v is the beam deflection along the axial direction x. The curvature of
the beam was determined from the profile of the beam after every strain increment as shown in (Fig. 5).

The deflection follows a cubic polynomial relation with axial position and therefore the curvature is a linear function.
Fitting the strain energy data versus the curvature in Eq. (50) we determined the effective Young’s modulus of the
nanowire under bending.

Figs. 6 and 7 present our results. We observe stiffening effect for (11 0) axially oriented nanowire (Fig. 7) with
decreasing width and the reverse for <100} axially oriented nanowire (Fig. 6). This could be attributed to larger number
of atoms found in the similar dimension of wire as compared to (1 00) wire. Shenoy (2005) computed the effective
elastic constants for the [1 0 0] surface orientations and found the constants to be negative for Silver. Since the (100
axially oriented wire has four edges belonging to [1 0 0] family of planes, the overall effect decreases the effective value
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Fig. 5. Plot of deflection vs. axial distance to determine the curvature of bent beam.

0

3 085

=

©

=]

= 08

2

b7

8 085

w

o :

£ 08 —

é visdal Tension

g 0.75 @) EammishcsTenSion raneee]
ﬁ ; : : —E, osel Bend?ng (G-M model)

E 07 [yttt ——E L Bending (Presentwork) |-
=] . Ealnmlsljcs Bending

Z 085 i T

i i P i i i i i
15 20 25 30 35 40 45 50 55 60
NanowireWidth { x107'? m)

Fig. 6. Effective elastic modulus of (1 0 0)axially oriented nanowire.

45 T T T T T
]
'g L EalOm\SIICS TBHSIUI'I
2 E Tension
= 35 | = “model o
S —F Bending (Present work)
7] maodel
w ,
w 3 | ° Ealom\slicﬁendmg 4
.g _Emouel Eending (G-M model)
° : i
£ 25 |
w
-
o
N 2
®
E
2 15 [
1 i i i ; i i
10 20 30 40 50 60 70 80

Nanowire Width { x 10" m)

Fig. 7. Effective elastic modulus of (11 0) axially oriented nanowire.

2111

thereby softening the wire. As already indicated in the Section 1 and evident in the work of Mcdowell et al. (2008), the
elastic modulus is always (in absolute value) greater than under tension (regardless of whether it is a softening type of
behavior or stiffening). Also evident is that the Gurtin—-Murdoch theory is unable to explain these observations.
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5. Discussion: asymmetry of elastic modulus under bending and tension, correction to Stoney’s formula, and thickness of
a crystalline surface

The renormalized effective elastic coefficient for the simulations was derived as

Ear _;, 8C , 24G
E aE ' aE"

We used orthogonal least squares method to fit the atomistic simulation results to the theoretical model. The
coefficients Cy and C; were determined using the best curve fit obtained from least squares method. Cy is determined from
tension loading simulations alone (where by definition, the Steigmann-Ogden term is inactive). For Fig. 6 i.e. <100)
axially oriented nanowire, the coefficients are: Co=—0.37938 eV/A? and C; = —42.3155 eV. For Fig. 7 i.e. (110) axially
oriented nanowire, the coefficients are: C;=2.5227 eV/;Z\2 and C;=114.189 eV.

The key conclusion from our derivation of the effective elastic modulus of a bent beam is that the Steigmann-Ogden
theory predicts a qualitatively different elastic modulus under bending than under tension. This is well-evident (at least
qualitatively) in our atomistic calculations as well. Upon fitting the theoretical predictions to the atomistic calculations we
can readily derive the constitutive parameter C; of the Steigmann-Ogden theory. It must be emphasized that the Gurtin-
Murdoch theory cannot account for the difference.

Taking inspiration from shell-theory, we may now define the thickness of a surface as a ratio of the energy stored under
bending to stretching:

(51

t=/= (52)

This provides an unambiguous (and physically intuitive) means to define the thickness of a surface. For the two
orientations we have analyzed, we obtain: t 100y =10.56, and t1 1 o3 —6.73A.

What is the importance of defining a surface thickness? The answer is rooted in history of surface energy theory. The
Gurtin—-Murdoch theory (and theories of capillarity in general) assumes a zero surface thickness. There is good reason for
doing this dating back to Gibbs (1928). There is no clear physical way to decide where the surface terminates—in other
words the choice of surface thickness is somewhat ambiguous and different researchers may justifiably choose slightly
different thicknesses. The lack of flexural resistance in Gurtin-Murdoch theory indeed stems from the zero-thickness
assumption. In principle, if conventional three-dimensional elasticity is used (with a finite thickness surface) then the need
for the use of the (rather complex) Steigmann-Ogden theory is eliminated (in essence, the curvature-dependence of
surface energy provides the flexural resistance and as per Eq. (52), a definition of surface thickness). However that requires
an unambiguous determination of surface thickness for a crystalline surface—once this has been determined for a
particular material (i.e. the Steigmann-Ogden constants), standard finite elements may be employed to assess effects of
surface energy. We note that Park et al. (2006) have presented an all-numerical work on surface Cauchy-Born rule to
handle surface effects in nanostructures. They use a finite thickness surface. In principle, if their choice of surface thickness
is correct, their work incorporates the curvature-dependence correction.

It is also now clear why the elastic modulus under bending is always (in absolute value) greater than that under tension
(i.e. stiffer or softer). Although a more rigorous thermodynamic argument is possible it is evident that given the physical
interpretation in Eq. (52) C; must always be the same sign as Cp.

We now turn to another possible application of the Steigmann-Ogden correction. Stoney’s formula is frequently used to
obtain the surface stress difference between two faces of a thin film or nanobeam. The surface stress difference may be
caused due to adsorption or absorption on one face of the nanostructure. The difference in surface stress causes bending.
The ensuing curvature is measured and related to the stress differential through the so-called Stoney’s formula.

Considering only the first order terms in the definition of surface stress, we can simplify the surface stress on the upper
and lower layer of a beam as

Su=Tu+buey, Si=T11+bg (53)

In the above equation 7 represents the residual surface stress in the upper layer with subscript u and lower surface
layer with subscript 1. b is the material constant associated with the surface strain ¢ for the respective surface layer
bu=Aou+2Uou, bi= 701+ 2101 Since the residual surface stresses on both the surfaces are different the beam undergoes axial
as well as bending deformations. The strain induced in the beam due to these stresses can be written as

&0 = (z—hn)/R (54)

where h,, the height of neutral axis is from the lower surface and R is the radius of curvature.
Therefore the stress in the bulk is given by

00 =E(@z—hy)/R (55)
where E is the bulk modulus of elasticity. For the upper and lower surface layers the surface couple is given by
My = cy(trx), M, = ¢ (trx) (56)
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where «, is the curvature of the cantilever and be expressed by the relation x =1/R, for pure bending assumption. Using the
mechanical relations outlined in the earlier sections we write the equilibrium equations. First we balance the forces

h
/ 00(2)dz+Ty+bueu+T11+b1g =0. (57)
0

which gives us
_ (R(zu+11)/Eh)+(h/2)+(by/E)

fi T+ ((bu+by)/Eh) (8)
Similarly balancing the moments about the lower surface we have
h
/ 00(2)zdz+hty+hbyey +(My+M)) =0. (59)
0
This gives us
1 (V©)h—2(tyb—by1))/E (60)
R~ (ER3/6)+(h*(by+by)/3)+((2hbuby)/E)+2(cu +c1)+((2(cu +c1)(bu+by))/ER)
where V= —(1,—1)).
The above equation can be rewritten as
1 _6(Vr) i ((12(tubu—1b1))/E)—((72V1byb)) /E*h)—((72VT(Cu + 1)) /ER*)—((72VT(Cu + 1) (bu + by)) /E*h3) (61)
R~ En2 EhZ(ER3 +2h2(by + by) + ((12hbuby) /E) + 12(Cu + 1)+ (12(Ca + C1)(bu + by)) /ER))
Alternatively
1 6(Vr) (1 n ((zubu—11by)/EVT)—((12byby)/E*h)—((12(cu +¢1))/ER*)—((12(cu +c))(by +b1))/52h3)) (62)
R~ Eh? (Eh3 +2h2(by +by)+ ((12hbyby)/E)+12(cy +¢) +(12(cy + ¢))(by + by)/Eh))

To make a clean comparison of Stoney’s formula with and without Steigmann-Ogden correction, we ignore the strain
dependent part of surface stress. We have already computed the values of the Steigmann-0Ogden constant for two different
surface orientations of a silver nanowire. Using an example of a 2 nm thick nanowire we find that

1 6(VD) 12(cy+0) _ 6(VD)
R~ ER2 ( _[Eh3+12(cu+q)]) =~ ER2

We see that the curvature of the nanowire changes by a value of 17.21% when we include the Steigmann-Ogden
correction to the Stoney’s formula.

(0.8279) (63)

6. Closing remarks

In this work, extending the claim made by Steigmann and Ogden (1999) we have highlighted the importance of the
curvature-dependence of surface energy. In particular, this notion can readily explain the asymmetry in the renormalized
elastic modulus of nanostructures under bending as compared to under tension. A simple connection to atomistics readily
provides the evaluation of phenomenological constants that enter into the curvature-dependent surface energy theory
providing an unambiguous definition of the so-called “thickness of a crystalline surface”. Several novel directions may be
explored: impact of the “curvature-correction” on rough surfaces, Stoney’s formula among others. We note again that
nearly all work that has appeared on surface energy effects is predicated on the Gurtin—-Murdoch theory. Indeed, for many
such mechanics problems, Gurtin-Murdoch’s theoretical framework should suffice. However, given our findings of the
numerical values of the curvature-dependence of surface energy for some sample materials, problems that exhibit
wrinkling, bending deformation modes in general or where unusually high curvature changes are expected should be
revisited.
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