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While considerable efforts in the form ofsnumericald atomistic simulations have been expended to
understand the mechanics of defect formation under applied strain, analogous analytical efforts have
been rather few. In this work, based on the physics at the nanoscale, defect nucleation in
single-walled carbon nanotubes is studied using both classical continuum field theory as well as
gauge field theory of defects. Despite the inherent continuum assumption in our models, reasonably
close qualitative and quantitative agreement with existing atomistic simulations is obtained. The
latter lends credence to the belief that continuum formulations, with correct incorporation of the
relevant physics, can be a powerful and yet simple tool for exploring nanoscale phenomena in
carbon nanotubes. The results are more sensitive to chirality than to the size of the nanotubes. ©
2005 American Institute of Physics. fDOI: 10.1063/1.1870102g

I. INTRODUCTION AND MOTIVATION

The study of defects in carbon nanotubessCNTsd is rap-
idly acquiring considerable importance. Various types of de-
fects that form in CNTs severely impact their optoelectronic
properties and mechanical behavior.1 As often expressed in
previous work,2 defect formations in CNTs are also respon-
sible for the so-called “nanoplasticity” and “brittle-ductile”
transition. It hardly seems unreasonable to contend that fu-
ture structure, systems, and devices made from CNTs will be
highly sensitive to defects. Defect generation and growth
have been observed during plastic deformation and fracture
of CNTs. Topological defects are also necessary to form
junctions and thus are ubiquitous in electronic device appli-
cations, among others. For example, a two-terminal hetero-
junction formed by two nanotubes, one semiconducting and
the other metallic, can function like a rectifying diode.3

Considering the importance of this topic from both fun-
damental and technological perspectives several works that
address this issue theoretically have appeared in recent times.
The foundational work in this, from a theoretical perspective,
is found in Refs. 2 and 4–6, where, using massive atomistic
simulations, the formation of a 5-7-7-5 defect in single-
walled CNTssSWCNTsd under uniaxial tension is discussed.
The aforementioned atomistic simulations have provided
profound insights into the microscopic mechanics of defects
under applied strain. However, computational expense often
precludes the extension of atomistic simulations to very large
systems. Further, and perhaps more important, often a map-
ping of atomistic numerical results to simpler analytical
models is highly desirable which captures the essence of the
physics of the numerical results through appropriate param-
etrization in terms of well-defined material constantsse.g.,

Burgers vector, elastic moduli, and so forthd. In this work, we
present a continuum field interpretation of this phenomenon
which incorporates the physics of the defect nucleation pro-
cess in SWCNTs. In addition, we also attempt a semianalyti-
cal solution based on the gauge field theory of defects, which
sas has been demonstrated for simple defectsd is capable of
removing the singularities that plague the classical con-
tinuum formulation of defects. Our two solutions, one based
on classical continuum mechanics and the other on gauge
field theory, are compared with each other. As will be noted
in due course, both provide reasonable answers with only
slight numerical differences although the gauge field ap-
proach is far more physical and lessad hoc. Our analytical
and semianalytical expressions, while approximate, provide
a clear basis for both a stand-alone interpretation as well as a
complement to already published atomistic results and can
be extended to the realistic system of large scale.

Consider the often-discussed case of a SWCNT sub-
jected to a uniaxial strain along its longitudinal direction.
Below a critical strain, CNTs simply stretch elastically. How-
ever, beyond that critical strain, CNTs prefer to lower the
accumulated strain energy by the rotation of one of the C–C
bonds rather than stretching elastically.2,5–8 This accommo-
dation mechanismsi.e., rotation of the C–C bondd results in
the formation of a pentagon pair and a heptagon pair. This is
often termed as the Stone–WalessSWd defect. Atomistic
simulations indicate that the SW defect becomes energeti-
cally favored at,6% strain in an armchair nanotube,2,5–7

whereas this defect is unfavorable up to a very high strain
value sover 12%d in a zigzag nanotube.6,7

The outline of this article is as follows. In Sec. II, we
discuss some relevant background and review published re-
sults in this area. Our continuum field and gauge theory
based formulations for the SW defect formation in graphene
sheets and nanotubes are presented in Sec. III. We discussadElectronic mail: psharma@uh.edu
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our results in Sec. IV and compare with existing atomistic
simulations. We finally conclude with a summary in Sec. V.

II. BACKGROUND AND REVIEW OF EXISTING
WORK

Several works have provided insights into this particular
problem. Zhaoet al.,6 based on tight-binding calculations,
reported that the defect becomes energetically favorable at
strains of the order of 7–8% in ans5, 5d armchair CNT and at
about 10.5% strains for as9, 0d zigzag CNT. Corresponding
defect nucleation strain fromab initio calculations for ans5,
5d armchair CNT is about 6%. Nardelliet al.5 have also
reported that the defect structure becomes energetically fa-
vorable after about 5.2% strains in as5,5d tube. Nardelliet
al.5 carried out simulation using a classical many-body
Tersoff–Brenner potential. Critical strain for an armchair
CNT s6, 6d is ,6% and for a zigzag tubes12, 0d is ,12% as
reported by Zhanget al.7 using tight-binding molecular dy-
namics calculations. However, it is interesting to note some
discrepancies in published values for as5, 5d CNT as well as
graphene sheet.5,6 Zhaoet al.6 reported the formation energy
for a graphene sheet at zero strain to be about,6 eV while
that for s5, 5d tubes is,4 eV. On the other hand, Nardelliet
al.5 reported the formation energy for a graphene sheet at
zero strain to be about,2.5 eV while that fors5, 5d CNTs is
,2 eV. Yakobsonet al.4 mentioned that preliminary molecu-
lar dynamics results using the many-body Tersoff–Brenner
potentialsat T=50 Kd show a tube stretched by almost 40%
with no damage to its graphitic arrangements. It should be
noted that Nardelliet al.5 carried out simulations at 1800 K
so that the activation barrier in order to rotate the C–C bond
can be overcome. At room temperature, the activation energy
barrier for C–C bond rotation is significant and thus the
nanotube continues to deform elastically without the forma-
tion of any defects. Hence, at room temperature, the CNTs
are very stable in their hexagonal equilibrium
configuration.4,5

In the present work, we solely address the formation
energysand not the activation energyd for a SW defect. For
easy reference, existing results on defect formation are sum-
marized in Table I.

III. FORMULATION

The key to our approach is the casting of the SW defect
into equivalent topological defects in crystalline structures
that are relatively well understood and analyzed; namely, dis-
locations and disclinations. Such an exercise enables the use
of several readily available results for latter defects. Figure 1
shows the uniaxial stretching of a CNT and formation of a
SW defect corresponding to both an armchair and a zigzag
configuration. Note the difference in the orientation of the
C–C bond, the rotation of which results in a SW defect. In
this study, nucleation of a SW defect in a graphene sheet is
considered in configurations similar to ones shown in Fig. 1,
ignoring the curvature effects due to rolling of a graphene
sheet to form a CNT.

In a subsequent analysis of the graphene sheet, plane
stress conditions are considered to be operative and out-of-
plane buckling is ignored. A uniaxial straine` is applied at
infinity in the x direction on the graphene sheetsFig. 1d. In a
rectangular coordinate system, the stresses are well known to
be:10 sxx

` =Ee` / s1−n2d, syy
` =nEe` / s1−n2d, sxy

` =0, wheren
is Poisson’s ratio, andE is Young’s modulus of the graphene

TABLE I. Predicted formation energies and critical strains of graphene sheet and CNTs based on atomic simulations.

Reference

Formation energy at zero-
strain

graphene sheet/armchair/zigzag
seVd

Critical strain %
graphene sheet/armchair/zigzag

Zhaoet al.6 ,5.0/,4.0s5,5d / ,4.0s9,0d 6.0/7.5/12.0
Nardelli et al.5 ,2.5/,2.0s5,5d / - 6.0/5.2/ -a

Yakobsonet al.4 ¯ 40b

Brabecet al.8 2.35 s5-7-7-5d ¯

Nardelli et al.2 ,2.0 s5-7-8-7-5d ¯

Zhou and Shi9 - / ,5.3s10,10d / ,4.6s20,0d ¯

Zhanget al.7 - / ,4.0s6,6d / ,4.0s12,0d - /6.0s6,6d /12s12,0d
aSimulations are carried at 1800 K.
bSimulations are carried at 50 K.

FIG. 1. Uniaxial stretching and formation of a SW defect in a CNT:sad An
armchair carbon nanotube andsbd a zigzag carbon nanotube.sThis figure is
adapted from Zhaoet al., see Ref. 6d.
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sheet. Our main premise is that the rotation of the C–C bond
for the SW defect in a graphene sheet can be treated as the
formation of two pairs of heptagon/pentagons7/5d disclina-
tions. This is shown schematically in Fig. 2.

In Sec. III A, we start with the discussion of the SW
defect formation in a graphene sheet. The formation energy
and the critical strain formulae using classical theory as well
as gauge theory are discussed. Subsequently, in Sec. III B,
we will consider defect nucleation in CNTs by taking into
account curvature effects due to the rolling of a graphene
sheet.

A. Graphene sheet

From a purely topological point of viewfsee for ex-
ample, NelsonsRef. 11dg, a pair of heptagon/pentagon discli-
nation pair can be grouped to form an edge dislocation, and
an edge dislocation pair will form a dipole, as shown in Fig.
2. The corresponding Burgers vector can be approximately
calculated as:bk>z3dk, wherez is the normal direction of
the graphene sheet anddk is the vector from the center of
pentagon disclination to the center of heptagon disclination
sthe accurate value of Burgers vector of each 5/7 defect is
equal to the lattice constant of the graphene sheetd. Thus, the
rotation of C–C bond in a graphene sheet can be conceived
of as the nucleation of an edge dislocation dipole. Due to the
D2h symmetry of the SW defect, it requires that the represen-
tation of a SW defect be one-half of the sum of that produced
by the representing dipoles,12,13 as shown in Fig. 2.

Now, we employ a simple energy based criterion to es-
timate the strain at which the SW defectsor in our approach,
an edge dislocation dipoled is nucleated. A similar approach
is often also followed in thin films; we can express the total
energy of the graphene sheet as

W= WE + WD + WI , s1d

whereWE is the stored elastic strain energy of the graphene
sheet in absence of a defectsinduced by the stress due to
applied strain at infinity, henceforth called the applied stress
fieldd, WD is the self-energy of the nucleated edge dislocation
dipole sthat simulates the SW defectd, andWI is the interac-
tion energy between the applied stresses and the dislocation
dipole. The change in the energy of the graphene sheet rela-
tive to its defect-free state can be written as

DW= WD + WI . s2d

Clearly, defect nucleation then becomes favorable if this
change in energy is zero or less.

We begin by first employing classical continuum
method. In this approach, the self-energy for the edge dislo-
cation pair can be written as14

WD =
mb2h

2ps1 − nd
Sln

ar

b
− gD , s3d

wherea is usually taken to be 3 as suggested in Ref. 13,m is
the shear modulus,r is the distance between centers of the
two edge dislocations, andh is the thickness of the graphene
sheet.g is given as 1−2n /4s1−nd. An implicit assumption of
Eq. s3d, is that the two-edge dislocations are separated such
that the distancer is greater than the cutoff radius of the edge
dislocation. This is somewhat problematic since, in our case,
r is less than the Burgers vector. So, Eq.s3d can only be an
approximation of the self-energy of the dislocation dipole.
As is well knownfand obvious from Eq.s3dg, the solution of
dislocations by classical continuum mechanics contains sin-
gularities at the dislocation line, which somewhat contradict
its application within the dislocation core region or for very
short dipole separations. This is unfortunate since, as men-
tioned earlier, in the present case the two-edge dislocations
are indeed located very close to each other. There are several
nonstandard continuum models of dislocations, such as the
nonlocal continuum model,15,16 strain gradient elasticity,17,18

quasi-continuum model,19 and gauge dislocation theory.20–22

For reasons mentioned earlier in the introduction, we prefer
the gauge theory. Dislocations and other topological defects,
in this theory, are seen to arise naturally via simply symme-
try conditions and obviate the need forad hocpostulates. In
addition, the divergence of the stress fields and the energy is
removed. Further, other methods, such as the quasi con-
tinuum methodswhich can also remove the singularitiesd,19

appear to exhibit oscillations in its stress solutions, which
can be rather unphysical. So, those methods are not adopted
here. In contrast, the results for edge dislocation given by the
gauge theory not only converge at the dislocation line, but
also match the classical continuum solution at the far field.21

Unfortunately, the solution based on the gauge field theory is
only available for a single-edge dislocation. We herein
present a gauge theory solution for the interaction energy
between two-edge dislocations, which is necessary for the
present formulation.

To arrive at a gauge solution for the present problem
under consideration, we begin by employing the stress and
energy function for a single-edge dislocation derived by
Lazar21 and the broad procedure employed in Refs. 20 and
22. The total energy of the dislocation dipole can then be
expressed as:20,22

WD
gauge=E

n

sWe + sWpddn,

We =
1

2
fls«iid2 + 2m«i j«i jg, s4d

FIG. 2. Rotation of C–C band in the SW defect can be represented by four
disclinationss5-7-7-5d, and the four disclinations form an edge dislocation
dipole.
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Wp =
1

2
Fij

mFij
m andFij

m = fmj,i − fmi,j ,

where s is a coupling constant,f represent the so-called
gauge fields,l is the Lamé constant,«i j is the gauge version
of strain of the graphene sheet due to the edge dislocation
dipole, andFij

m is the dislocation density of an edge disloca-
tion. For the edge dislocation dipole, by considering the cen-
ter of the one-edge dislocation to be origin and the other at
R=sRx,Ryd, the strains and dislocation density of an edge
dislocation dipole at pointr can be obtained by superposi-
tion:

«i j = «i jsk,rd + «i jsk,r8d,

s5d
Fij

m = Fij
msk,rd + Fij

msk,r8d,

wherek=Î2m /s andr8=r−R. Further details of our gauge
solution to the interaction energy between two-edge disloca-
tions will be reported elsewhere. To illustrate our gauge so-
lution, we have plotted the numerically calculated force be-
tween the two dislocations and compared it with the classical
solution in Fig. 3. It can be observed that, in the gauge so-
lution, the interaction force between an edge dislocation di-
pole is zero whenR is equal to zeroswhich conforms to
intuitiond in contrast with the infinite interaction force given
by classical solution.

Finally, to complete our model, we need the interaction
energy between the applied stress field and the dislocation
dipole that represents the SW dipole. From dislocation
theory, we can evaluate it by

WI =E
n

si j
`«i jdn, s6d

wheresi j
` is the applied stress field due to uniaxial strain«`,

and«i j is the strain field due to dislocation dipole. Interaction
energy between the applied stress field and the dislocations is

equal to the work done by stress in deforming the system
from its original shape, which can be described by the
Peach–Koehler formula:23,12,13,24

fk = − «i jknis jm
` bm, s7d

where«i jk is the Levi–Civita permutation symbol,s jm
` is the

external stress,ni is dislocation line direction, andbm is the
Burger vector in them direction. With the D2h symmetry of
the SW defect, the Peach–Koehler force glide force and
climb force ssee Fig. 4d can be obtained:12,13

fglide = m«`bhsinS2x +
p

6
D ,

s8d

fclimb = m«`bhS1 + n

1 − n
− cosS2x +

p

6
DD ,

wherex is the chiral angle of the graphene sheet correspond-
ing to the nanotube. From the changes in the topology, the
SW defect is equivalent to either of the two dipoles resulting
from an a/2 slip in the hexagonal lattice,25 wherea is the
lattice constant of the graphene sheet/nanotube. Also, there
exists aa/2Î3 climb between the two dipoles, as shown in
Fig. 4. Then, the energy due to the externally applied stress
can be expressed as:

WI = fglide
a

2
+ fclimb

a

2Î3

=
m«`bah

2 FsinS2x +
p

6
D

+
1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDG . s9d

Thus, the defect becomes energetically favorable when
DW,0. At this point, the system lowers its energy by for-
mation of a defect rather than stretching elastically.

Finally, the critical strain predicted based on classical
elasticity is obtained by

FIG. 3. The interaction forceF between an edge dislocation dipole as a
function of separation distanceR of the dislocation dipole. Note that bothF
andR are expressed in dimensionless units. Our gauge solution is compared
with the classical one.

FIG. 4. Peach–Koehler force due to external stresses.
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«crit =
b

ps1 − ndaFsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDGSln

ar

b
− gD . s10ad

If the self-energy is calculated using the gauge theory, the critical strain for the defect to be favorable can be obtained as:

«crit =
WD

gauge

m«`bah

2 FsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDG , s10bd

It can be observed from Eq.s10d that the critical strain
for nucleation of the SW defect predicted by both the classi-
cal solution and gauge theory is independent of Young’s
modulus of the graphene sheet. We note though that the criti-
cal strain does depend on the Poisson’s ratio of the graphene
sheet and angle between the applied stress and Burgers vec-
tor.

B. Carbon nanotube

We now turn our attention to the CNT. As we alluded to
earlier, the nanotube containing a defect can be viewed ap-
propriately as a rolled-up graphene sheet. The energy of the
nanotube is

W= WE + WD + WI + Wb1 + Wb2, s11d

where the first three terms on the right-hand side of Eq.s11d
are the same as that of the graphene sheet in Eq.s1d, Wb1 is
the energy due to bending the graphene sheet in its defect-
free state to form the nanotube. This energy can be calculated
as Wb1=Eh3/24V /RN

2, whereV is the atomic volume, and
RN is the radius of the nanotube.Wb2 is the change in the
energy due to a dislocation dipole in the nanotube when
compared to the graphene sheet.

As pointed out by Nelson,11 the dislocation dipole in a
graphene sheet is equivalent to four disclinations. The for-
mation energy of four disclinations in a cylindrical curved
surface can be solved by the method presented by Lenz and
Nelson.25 But, as shown by atomistic simulations,5–8 the
critical strain and formation energy of the nanotube are only
weakly dependent on the diameter of the nanotube. So, some
approximations are made in this article and a much more
simple approach is adopted here. The difference in the en-
ergy of a dislocation dipole in the graphene sheet and the
nanotube is due to the curvature of the nanotube. The dislo-
cation dipole will cause out-of-plane buckling in the
graphene sheet as well as in the nanotube. Only a small
region around the SW defect will buckle out of plane and the
rest will remain flat in case of the graphene sheet and on the
surface of cylinder in case of the nanotube. A change in
energy due to the SW defect is assumed to be limited to the

small region around the SW defect, which is denoted asSb.
Assuming the curvature of the graphene sheet at pointr due
to the buckling of the dipole to bekdsrd and the curvature of
the nanotube bek0srd, the buckling energy of the dipole in
the nanotube can be approximated by:

Wbulking =E
Sb

1

2
cskdsrd − k0srdd2ds

=E
Sb

1

2
ckd

2srdds+E
Sb

1

2
ck0

2srdds

−E
Sb

ck0srdkdsrdds, s12d

where c is the elastic bending constantswith the units of
energyd. For out-of-plane curvature, the first term on the
right-hand side of Eq.s12d is the buckling energy of the
dislocation dipole in the graphene sheet. The second term on
the right-hand side of Eq.s12d is the energy in the regionSb

due to bending the graphene sheet into the nanotube. The
third term on the right-hand side of Eq.s12d, Wb2

=−eSb
ck0srdkdsrdds=−eSb

c/dkdsrdds, is the couple energy
due to the curvature of the nanotube and dislocation buck-
ling, whered is the diameter of the nanotube. With the as-
sumption thatk0 andkd are scalar, the chiral anglex depen-
dent term for the bending part is ignored in this analysis.
This term will be used to approximate the difference in the
energy of a dislocation dipole in the graphene sheet and the
nanotube. The mean curvaturekd due to the dislocation di-
pole in a graphene sheet is assumed to be 0.04s1/Åd in this
article. Using the same energy-based defect nucleation crite-
rion as for the graphene sheet, we can write

DW= WD + WI + Wb2. s13d

The critical strain of the nanotube for defect to be ener-
getically favorable is obtainedsthe classical continuum solu-
tiond:
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«crit =
b

ps1 − ndaFsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDGSln

ar

b
− gD

−
1

m«`bah

2 FsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDGEs

c

d
k0srdds, s14ad

Correspondingly, the critical strain of the nanotube predicted using the gauge theory is obtained as

«crit =
WD

gauge

m«`bah

2 FsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDG

−
1

m«`bah

2 FsinS2x +
p

6
D +

1
Î3

S1 + n

1 − n
− cosS2x +

p

6
DDGEs

c

d
k0srdds. s14bd

IV. RESULTS, DISCUSSION, AND COMPARISON WITH
EXISTING ATOMISTIC SIMULATIONS

In this section, formation energy and critical strain—for
the nucleation of an edge dislocation dipole for the graphene
sheet and CNTs for both an armchair and zigzag
configuration—are calculated and compared with the exist-
ing atomistic simulation results. Sensitivity of the formation
energy at zero strain and critical strain for the nucleation of
an edge dislocation dipole to the chirality of the nanotube as
well as to the size of the CNT is discussed. We have used the
following numerical values in our calculations:26 Young’s
modulusE of the graphene sheet is 1.08 TPa, Poisson ration
equals 0.19, the C–C bond length is 1.4 Å, the lattice con-
stant of the graphene sheeta is 2.43 Å, and the thickness of
the graphene sheeth is 3.35 Å. The out-of-plane bending
elastic constantc is 1.02 eV. Finally, in the gauge solution,
an inverse characteristic length scalek=1/s0.40ad is adopted
as proposed by Altan and Aifantis.27

A. Armchair carbon nanotube and corresponding
graphene sheet

First results for an armchair nanotube and the graphene
sheet with a configuration corresponding to an armchair
CNT are discussed. The graphene sheet is rolled to form a
CNT and, depending upon the rolling direction, CNTs with
different chiral angles are formed, e.g., an armchair CNT
with a chiral angle 30° and a zigzag CNT with angle 0°. All
other nanotubes have chiral angles between 0° and 30°.
While a graphene sheetper sedoes not have an “armchair”
or “zigzag” configuration, however, when formed by the un-
rolling of a nanotube of a specific chirality, the angle at
which the applied strain acts will be different depending
upon the chirality. We term such a graphene sheet as one
“corresponding” to the specified chirality, i.e., in the present
case, an armchair sheet.

For the graphene sheet that corresponds to an unrolled
armchair nanotube, the chiral anglex is 30°. Formation en-

ergy of the edge dislocation dipole in the graphene sheet
varies with the uniaxial strain as shown in Fig. 5. It can be
observed that the formation energy of the edge dislocation
dipole decreases when uniaxial strain in thex direction in-
creases. The critical strain at which the defect becomes en-
ergetically favorable is the strain corresponding to zero-
formation energy in Fig. 5 and can be calculated using Eq.
s10d. As shown in Fig. 5, the gauge solution yields the criti-
cal strain for ans5,5d armchair CNT as 6.24% and for cor-
responding graphene sheet as 6.50%. This matches well with
the results given in the literature.2,4–6 The critical strain for
an armchair CNT, as predicted by the classical elasticity so-
lution, is 7.61% and that for corresponding graphene sheet is
7.30%, which is also close to the result given in
literature.2,4–6It can be observed that the formation energy of

FIG. 5. Formation energy of an edge dislocation dipole as a function of
uniaxial strain for an armchair CNT:sad Graphene sheet present work: Clas-
sical continuum solution;sbd s5,5d armchair CNT present work: Classical
continuum solution;scd Graphene sheet present work: Gauge field theory;
sdd s5,5d armchair CNT present work: Gauge field theory;sed Graphene
sheet atomistic resultsssee Ref. 6d; sfd s5,5d armchair CNT atomistic results
ssee Ref. 6d; sgd Graphene sheet atomistic resultsssee Ref. 5d, andshd s5,5d
armchair CNT atomistic resultsssee Ref. 5d.
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the CNT at zero strain is less than that of the graphene sheet
as shown in Fig. 5. Also, critical strain for nucleation of an
edge dislocation dipole in a CNT is less than that of for a
graphene sheet. The differences in the formation energy at
zero strain and in critical strain for the nucleation of an edge
dislocation dipole can be attributed to the additional bending
energy in a CNT due to the rolling of a graphene sheet to
form a CNT. Atomistic simulation results are also plotted in
Fig. 5. Clearly, while both classical and gauge solutions are
reasonable, the latter gives results closest to the existing ato-
mistic simulation results.2,6

B. Zigzag carbon nanotube and corresponding
graphene sheet

The nucleation of an edge dislocation dipole is studied in
a zigzag CNT and the results are compared with the corre-
sponding graphene sheet, armchair CNT, as well as existing
atomistic simulations of other researchers.

For the graphene sheet corresponding to a zigzag con-
figuration, the chiral anglex is 0°. Variation of the formation
energy of the edge dislocation dipole in the graphene sheet
with the uniaxial strain is shown in Fig. 6. We find, based on
our models, the critical strain for as9,0d nanotube to be
15.90% and the critical strain for the corresponding graphene
sheet to be 16.58% using classical continuum mechanics.
Using the gauge theory, the critical strains obtained are, for a
s9,0d nanotube, 13.61% and corresponding graphene sheet,
14.29%. It appears that this defect is unfavorable up to a very
high strain values,14%d in a zigzag nanotube as compared
to ,6% strain in an armchair nanotube. In a zigzag tube, the
C–C bond, which rotates to form an edge dislocation dipole
forms a 60° angle with the tube axis, as compared to 90° in
case of an armchair tube and thus cannot effectively release
the stress.6

C. Sensitivity to size and chirality of carbon nanotube

Formation energies as a function of uniaxial strain in the
x direction for different diameters and chiralities of nano-
tubes are plotted in Fig. 7. It can be observed that the forma-
tion energy of the nanotube with the same chirality is less for
a smaller diameter of nanotubes. The same observation can
be made about the critical strain for the nucleation of an edge
dislocation dipole. The lower formation energy and lower
critical strain are due to increased bending energy in CNTs
with smaller diameters. Note that the critical strain for nucle-
ation of a dislocation dipole in CNTs depends on the diam-
eter, as well as the chirality of the carbon nanotube, though a
change in critical strain for nanotubes with different diam-
eters is small as compared to change in critical strain for
nanotubes with different chiralities.

The critical strain for a CNT, whether it is an armchair or
a zigzag CNT, is smaller than the corresponding strain in a
graphene sheet in that particular configuration. The lower
critical strain in CNTs is attributed to its curvature, which
allows a better relaxation of energy. The reduction in critical
strain for a CNT and graphene sheet in a zigzag configura-
tion is mores13.61–14.28d than that for an armchair configu-
ration s6.24–6.50d. This is consistent with the results in the
literature,6 where the corresponding strains ares12.5–10.50d
and s7.0–6.0d.

V. SUMMARY

The atomistic simulations provide profound insights into
the microscopic mechanics of defects under applied strain.
However, computational expense often precludes the exten-
sion of atomistic simulations to very large systems. Con-
tinuum formulation presented in this article gives a clear
mechanistic interpretation of this phenomenon. We have pre-
sented closed-form and semiclosed-form expressions to com-
pute the critical strain for defect nucleation, both in the
framework of continuum elasticity theory as well as the
gauge field theory. Application of classical formulation to
study the nucleation of the SW defects is hindered by the fact
that the stresses and strains from the classical solution are
singular at the center of nucleation, although classical solu-

FIG. 6. Formation energy of an edge dislocation dipole as a function of
uniaxial strain for a zigzag CNT:sad Graphene sheet present work: Classical
continuum solution;sbd s9,0d zigzag CNT present work: Classical con-
tinuum solution;scd Graphene sheet present work: Gauge field theory;sdd
s9,0d zigzag CNT present work: Gauge field theory;sed Graphene sheet
atomistic resultsssee Ref. 6d; andsfd s9,0d zigzag CNT atomistic resultsssee
Ref. 6d.

FIG. 7. Gauge field theory solution of formation energy of an edge dislo-
cation dipole as a function of uniaxial strain for CNTs with different diam-
eters and different chiralities:sad s9,0d Zigzag CNT;sbd s18,0d zigzag CNT;
scd s5,5d armchair CNT; andsdd s10,10d armchair CNT.
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tion results are reasonably good. The gauge theory formula-
tion used in this study is free from such singularity of
stresses and strains at the center of nucleation. Results from
the gauge theory presented in this study are close, both quali-
tatively and quantitatively, to the existing atomistic simula-
tions. One of our conclusions is that by incorporating the
relevant physics, continuum formulation can be a powerful
tool for exploring nanoscale phenomena in CNTs.
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