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Continuum field model of defect formation in carbon nanotubes
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While considerable efforts in the form @iumerica) atomistic simulations have been expended to
understand the mechanics of defect formation under applied strain, analogous analytical efforts have
been rather few. In this work, based on the physics at the nanoscale, defect nucleation in
single-walled carbon nanotubes is studied using both classical continuum field theory as well as
gauge field theory of defects. Despite the inherent continuum assumption in our models, reasonably
close qualitative and quantitative agreement with existing atomistic simulations is obtained. The
latter lends credence to the belief that continuum formulations, with correct incorporation of the
relevant physics, can be a powerful and yet simple tool for exploring nanoscale phenomena in
carbon nanotubes. The results are more sensitive to chirality than to the size of the nanotubes. ©
2005 American Institute of PhysidDOIl: 10.1063/1.1870102

I. INTRODUCTION AND MOTIVATION Burgers vector, elastic moduli, and so forti this work, we
present a continuum field interpretation of this phenomenon
The study of defects in carbon nanotub€NTS) is rap-  which incorporates the physics of the defect nucleation pro-
idly acquiring considerable importance. Various types of decess in SWCNTSs. In addition, we also attempt a semianalyti-
fects that form in CNTs severely impact their optoelectroniccal solution based on the gauge field theory of defects, which
properties and mechanical behavigks often expressed in (as has been demonstrated for simple defestsapable of
previous work; defect formations in CNTs are also respon-removing the singularities that plague the classical con-
sible for the so-called “nanoplasticity” and “brittle-ductile” tinuum formulation of defects. Our two solutions, one based
transition. It hardly seems unreasonable to contend that fupn classical continuum mechanics and the other on gauge
ture structure, systems, and devices made from CNTs will bge|d theory, are compared with each other. As will be noted
highly sensitive to defects. Defect generation and growthn due course, both provide reasonable answers with only
have been observed during plastic deformation and fractur§light numerical differences although the gauge field ap-
of CNTs. Topological defects are also necessary to fornproach is far more physical and lead hoc Our analytical
junctions and thus are ubiquitous in electronic device appliand semianalytical expressions, while approximate, provide
cations, among others. For example, a two-terminal heterog clear basis for both a stand-alone interpretation as well as a
junction formed by two nanotubes, one semiconducting angomplement to already published atomistic results and can
the other metallic, can function like a rectifying diotle. be extended to the realistic system of large scale.
Considering the importance of this topic from both fun-  consider the often-discussed case of a SWCNT sub-
damental and technological perspectives several works thfcted to a uniaxial strain along its longitudinal direction.
address this issue theoretically have appeared in recent timgse|ow a critical strain, CNTs simply stretch elastically. How-
The foundational work in this, from a theoretical perspective ever, beyond that critical strain, CNTs prefer to lower the
is found in Refs. 2 and 4-6, where, using massive atomistigccumulated strain energy by the rotation of one of the C—C
simulations, the formation of a 5-7-7-5 defect in single-ponds rather than stretching elasticIf7® This accommo-
walled CNTs(SWCNTS under uniaxial tension is discussed. gation mechanisni.e., rotation of the C—C bondesults in
The aforementioned atomistic simulations have providedhe formation of a pentagon pair and a heptagon pair. This is
profound insights into the microscopic mechanics of defeCtgfien termed as the Stone—Walé8W) defect. Atomistic
under applied strain. However, computational expense oftegimulations indicate that the SW defect becomes energeti-
precludes the extension of atomistic simulations to very largea|ly favored at~6% strain in an armchair nanotub&;’

systems. Further, and perhaps more important, often a Magrhereas this defect is unfavorable up to a very high strain
ping of atomistic numerical results to simpler analyticalygjye (over 12% in a zigzag nanotub’

models is highly desirable which captures the essence of the  The outline of this article is as follows. In Sec. II, we
physics of the numerical results through appropriate paramgiscuss some relevant background and review published re-
etrization in terms of well-defined material constat@sy.,  syits in this area. Our continuum field and gauge theory
based formulations for the SW defect formation in graphene
¥Electronic mail: psharma@uh.edu sheets and nanotubes are presented in Sec. lll. We discuss
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TABLE |. Predicted formation energies and critical strains of graphene sheet and CNTs based on atomic simulations.

Formation energy at zero-

strain
graphene sheet/armchair/zigzag Critical strain %
Reference (eV) graphene sheet/armchair/zigzag
Zhaoet al® ~5.0/~4.05,5/~4.09,0 6.0/7.5/12.0

Nardelli et al® ~2.5/~2.05,5)/- 6.0/5.2/2
Yakobsonet al* a0

Brabecet al® 2.35(5-7-7-5 e

Nardelli et al? ~2.0(5-7-8-7-5

Zhou and SHi -/ ~5.310,10/~4.6(20,0

Zhanget al’ -/ ~4.06,6)/~4.012,0 -16.06,6)/12(12,0

*Simulations are carried at 1800 K.
PSimulations are carried at 50 K.

our results in Sec. IV and compare with existing atomisticlll. FORMULATION

simulations. We finally conclude with a summary in Sec. V. : .
y y The key to our approach is the casting of the SW defect

into equivalent topological defects in crystalline structures
that are relatively well understood and analyzed; namely, dis-
Il. BACKGROUND AND REVIEW OF EXISTING locations and disclinations. Such an exercise enables the use
WORK of several readily available results for latter defects. Figure 1
shows the uniaxial stretching of a CNT and formation of a
Several works have provided insights into this particularSW defect corresponding to both an armchair and a zigzag
problem. Zhaoet al.® based on tight-binding calculations, configuration. Note the difference in the orientation of the
reported that the defect becomes energetically favorable &—C bond, the rotation of which results in a SW defect. In
strains of the order of 7-8% in 4B, 5 armchair CNT and at this study, nucleation of a SW defect in a graphene sheet is
about 10.5% strains for @, 0) zigzag CNT. Corresponding considered in configurations similar to ones shown in Fig. 1,
defect nucleation strain fromb initio calculations for a5,  ignoring the curvature effects due to rolling of a graphene
5) armchair CNT is about 6%. Nardelét al® have also sheet to form a CNT.
reported that the defect structure becomes energetically fa- In a subsequent analysis of the graphene sheet, plane
vorable after about 5.2% strains in(%,5) tube. Nardelliet  stress conditions are considered to be operative and out-of-
al.®> carried out simulation using a classical many-bodyplane buckling is ignored. A uniaxial straif is applied at
Tersoff-Brenner potential. Critical strain for an armchairinfinity in the x direction on the graphene shéEig. 1). In a
CNT (6, 6) is ~6% and for a zigzag tub@ 2, 0 is ~12% as rectangular coordinate system, the stresses are well known to
reported by Zhangt al.” using tight-binding molecular dy- be™® o5, =Ee*/(1-17), oy, = VE€*1(1-17), 03,=0, where
namics calculations. However, it is interesting to note somés Poisson’s ratio, an is Young’s modulus of the graphene
discrepancies in published values fof5a 5) CNT as well as
graphene she&f Zhaoet al® reported the formation energy
for a graphene sheet at zero strain to be abefiteV while
that for (5, 5) tubes is~4 eV. On the other hand, Nardedit
al.® reported the formation energy for a graphene sheet a
zero strain to be about2.5 eV while that for(5, 5) CNTs is -
~2 eV. Yakobsoret al* mentioned that preliminary molecu-
lar dynamics results using the many-body Tersoff—Brenner =
potential(at T=50 K) show a tube stretched by almost 40%
with no damage to its graphitic arrangements. It should be
noted that Nardellet al® carried out simulations at 1800 K
so that the activation barrier in order to rotate the C—C bond ~
can be overcome. At room temperature, the activation energ
barrier for C-C bond rotation is significant and thus the
nanotube continues to deform elastically without the forma-
tion of any defects. Hence, at room temperature, the CNTs
are very stable in their hexagonal equilibrium
configuration‘f’5
In the present work, we solely address the formation

energy(and hot the activation energior a SW defect. For FIG. 1. Uniaxial stretching and formation of a SW defect in a CKJAn

easy refe_rence: existing results on defect formation are SUnyzmchair carbon nanotube afty) a zigzag carbon nanotub@his figure is
marized in Table I. adapted from Zhaet al, see Ref. &
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b) ZigZag tube
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> We begin by first employing classical continuum
a' \a method. In this approach, the self-energy for the edge dislo-
0/ \ cation pair can be written &
) BT %

_ ub?h ar
FIG. 2. Rotation of C-C band in the SW defect can be represented by four Wp = 2m(1 - ) In F -Y/ (3
disclinations(5-7-7-5, and the four disclinations form an edge dislocation ™ v
dipole.

wherea is usually taken to be 3 as suggested in Ref 18
sheet. Our main premise is that the rotation of the C—C bonthe shear modulus, is the distance between centers of the
for the SW defect in a graphene sheet can be treated as th@o edge dislocations, arfdis the thickness of the graphene
formation of two pairs of heptagon/pentagofY5) disclina-  sheet.yis given as 1-2/4(1-v). An implicit assumption of
tions. This is shown schematically in Fig. 2. Eq. (3), is that the two-edge dislocations are separated such

In Sec. Il A, we start with the discussion of the SW that the distanceis greater than the cutoff radius of the edge
defect formation in a graphene sheet. The formation energglislocation. This is somewhat problematic since, in our case,
and the critical strain formulae using classical theory as well is less than the Burgers vector. So, E8). can only be an
as gauge theory are discussed. Subsequently, in Sec. Ill Bpproximation of the self-energy of the dislocation dipole.
we will consider defect nucleation in CNTs by taking into As is well known[and obvious from Eq.3)], the solution of
account curvature effects due to the rolling of a graphenelislocations by classical continuum mechanics contains sin-
sheet. gularities at the dislocation line, which somewhat contradict
its application within the dislocation core region or for very
short dipole separations. This is unfortunate since, as men-
tioned earlier, in the present case the two-edge dislocations
are indeed located very close to each other. There are several

From a purely topological point of vielsee for ex- nonstandard continuum models of dislocations, such as the
ample, Nelsor{Ref. 11)], a pair of heptagon/pentagon discli- nonlocal continuum modéP*® strain gradient elasticity/*®
nation pair can be grouped to form an edge dislocation, anduasi-continuum modéf, and gauge dislocation thedfy:?2
an edge dislocation pair will form a dipole, as shown in Fig.For reasons mentioned earlier in the introduction, we prefer
2. The corresponding Burgers vector can be approximatelyhe gauge theory. Dislocations and other topological defects,
calculated asb,=zX &, wherez is the normal direction of in this theory, are seen to arise naturally via simply symme-
the graphene sheet an is the vector from the center of try conditions and obviate the need fad hocpostulates. In
pentagon disclination to the center of heptagon disclinatioraddition, the divergence of the stress fields and the energy is
(the accurate value of Burgers vector of each 5/7 defect isemoved. Further, other methods, such as the quasi con-
equal to the lattice constant of the graphene sh&aus, the  tinuum method(which can also remove the singulariljié%
rotation of C-C bond in a graphene sheet can be conceivegbpear to exhibit oscillations in its stress solutions, which
of as the nucleation of an edge dislocation dipole. Due to thgan be rather unphysical. So, those methods are not adopted
D,n symmetry of the SW defect, it requires that the represenhere. In contrast, the results for edge dislocation given by the
tation of a SW defect be one-half of the sum of that producedjauge theory not only converge at the dislocation line, but
by the representing dipolé;"*as shown in Fig. 2. also match the classical continuum solution at the far fiéld.

Now, we employ a simple energy based criterion to esUnfortunately, the solution based on the gauge field theory is
timate the strain at which the SW deféot in our approach, only available for asingleedge dislocation. We herein
an edge dislocation dipolés nucleated. A similar approach present a gauge theory solution for the interaction energy
is often also followed in thin films; we can express the totalbetween two-edge dislocations, which is necessary for the
energy of the graphene sheet as present formulation.

To arrive at a gauge solution for the present problem
under consideration, we begin by employing the stress and
gnergy function for a single-edge dislocation derived by
Lazaf! and the broad procedure employed in Refs. 20 and
22. The total energy of the dislocation dipole can then be

A. Graphene sheet

W=We+Wp + W, 1)

whereW is the stored elastic strain energy of the graphen
sheet in absence of a defdahduced by the stress due to
applied strain at infinity, henceforth called the applied stres
field), Wp, is the self-energy of the nucleated edge dislocatiorfXPressed as:

dipole (that simulates the SW defecandW, is the interac-

tion energy between the applied stresses and the dislocation

dipole. The change in the energy of the graphene sheet rela- \/\/gDauge:f (W, + sW,)dv,
tive to its defect-free state can be written as v

AW=Wy+W,. (2)
i i thi 1
Clearly, .defect nu_cleatlon then becomes favorable if this We:_[)\(sii)2+2M8ij8ij]v 4)
change in energy is zero or less. 2
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== Gauge solution yy
—Classical solution
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kx FIG. 4. Peach—Koehler force due to external stresses.

FIG. 3. The interaction forc& between an edge dislocation dipole as a
function of separation distandeof the dislocation dipole. Note that bokh equa| to the work done by stress in deforming the system

andR are expressed in dimensionless units. Our gauge solution is comparqqom its original shape which can be described by the
with the classical one. !
Peach—Koehler formula:1#1324

1
Wy = EFITFIT andFi'= émji = i, fi= = &ijNiojmbm, (7

where s is a coupling constantg represent the so-called wheree is the Levi-Civita permutation symbaf;, is the
gauge fields) is the Lamé constang;; is the gauge version external stressy, is dislocation line direction, ant, is the
of strain of the graphene sheet due to the edge dislocatioBurger vector in them direction. With the B, symmetry of
dipole, andrj is the dislocation density of an edge disloca-the SW defect, the Peach-Koehler force glide force and
tion. For the edge dislocation dipole, by considering the cenclimb force (see Fig. 4 can be obtained*®
ter of the one-edge dislocation to be origin and the other at
R=(R,R)), the strains and dislocation density of an edge
- aa

ggsrll?catlon dipole at poinp can be obtained by superposi fgide = pe™bh sin<2)(+ E)

8

&ij = &ij(k,p) + &ij(k,p"), fimp = ua”bh<1l} _ 005<2X + Z)) ,
(5) 1-v 6
Fij = Fi(x.p) + Fij(x.p"),

o wherey is the chiral angle of the graphene sheet correspond-
wherex=+2u/s andp’ =p—R. Further details of our gauge ing to the nanotube. From the changes in the topology, the
solution to the interaction energy between two-edge dislocaSW defect is equivalent to either of the two dipoles resulting
tions will be reported elsewhere. To illustrate our gauge sofrom ana/2 slip in the hexagonal lattic®, where a is the
lution, we have plotted the numerically calculated force bedattice constant of the graphene sheet/nanotube. Also, there
tween the two dislocations and compared it with the classicagxists aa/2y3 climb between the two dipoles, as shown in
solution in Fig. 3. It can be observed that, in the gauge soFig. 4. Then, the energy due to the externally applied stress
lution, the interaction force between an edge dislocation dican be expressed as:
pole is zero wherR is equal to zerowhich conforms to
intuition) in contrast with the infinite interaction force given

by classical solution. a a
Finally, to complete our model, we need the interaction Wi = fg"dei * fc'imbﬁ

energy between the applied stress field and the dislocation

dipole that represents the SW dipole. From dislocation _ pe”bah sin(z . 7_T>

theory, we can evaluate it by 2 X

Aead] o
Bl1-y X)) | 2

Thus, the defect becomes energetically favorable when
AW<O0. At this point, the system lowers its energy by for-
whereoff is the applied stress field due to uniaxial strai, ~ mation of a defect rather than stretching elastically.
andg;; is the strain field due to dislocation dipole. Interaction Finally, the critical strain predicted based on classical
energy between the applied stress field and the dislocations &asticity is obtained by

VV|:J ojj&;dv, (6)
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b

arl
Ecrit = (In — - y)_ (109
W(l—v)a{sin(2X+7_g)+%<1+V_CO<2X+%>>J b

\s’3 1-v
If the self-energy is calculated using the gauge theory, the critical strain for the defect to be favorable can be obtained as:

auge
We

Erit = ue”bah| T 1(1+v T '
sin2xy+—<|+—= —Ccoy 2y + —
2 6 V3\1l-» 6

(10b)

It can be observed from E@10) that the critical strain  small region around the SW defect, which is denote®as
for nucleation of the SW defect predicted by both the classiAssuming the curvature of the graphene sheet at gohie
cal solution and gauge theory is independent of Young'so the buckling of the dipole to bey(p) and the curvature of

modulus of the graphene sheet. We note though that the Criti:he nanotube b&o(p), the buck”ng energy of the d|po|e in
cal strain does depend on the Poisson’s ratio of the grapheRge nanotube can be approximated by:

sheet and angle between the applied stress and Burgers vec-
tor.

1
Whulking = f EC(Kd(p)_Ko(P))ZdS
S

B. Carbon nanotube

1 1
We now turn our attention to the CNT. As we alluded to :f ECKS(P)OIS*'f ECKg(p)dS
earlier, the nanotube containing a defect can be viewed ap- % %
propriately as a rolled-up graphene sheet. The energy of the
nanotube is - JSO cko(p) k4(p)ds, (12

W=We +Wp + W, + Wy + W, (11 , , _ _ _
where c is the elastic bending constafwith the units of
where the first three terms on the right-hand side of (gg). ~ €nergy. For out-of-plane curvature, the first term on the
are the same as that of the graphene sheet iflgW,, is  right-hand side of Eq(12) is the buckling energy of the
the energy due to bending the graphene sheet in its defedtislocation dipole in the graphene sheet. The second term on
free state to form the nanotube. This energy can be calculatagtie right-hand side of Eq12) is the energy in the regio§,
asW,;=Eh®/24Q/R?, where() is the atomic volume, and due to bending the graphene sheet into the nanotube. The
Ry is the radius of lthe ngnotupwbz i§ the change in the third term on the right-hand side of Eq12), Wi,
energy due to a dislocation dipole in the nanotube Whe&—stCKo(P)Kd(P)dSZ—ISOC/de(P)dS is the couple energy
compared to the graphene sheet. o due to the curvature of the nanotube and dislocation buck-
As pointed out by Nelso?ﬁ the dislocation dipole in a |ing \whered is the diameter of the nanotube. With the as-
graphene sheet is equivalent to four disclinations. The for’sumption thak, andky are scalar, the chiral angjedepen-
mation energy of four disclinations in a cylindrical curved dent term for the bending part is ignored in this analysis.
surface can be solved by the method presented by Lenz anﬂi. . : . .
is term will be used to approximate the difference in the

Nelson®® But, as shown by atomistic simulatioli$, the ner f a dislocation dinole in the araphene sheet and th
critical strain and formation energy of the nanotube are onlye ergy ot a dislocation dipole € graphe .e S eg a ) €
notube. The mean curvatukg due to the dislocation di-

weakly dependent on the diameter of the nanotube. So, somi& ) ] A )
approximations are made in this article and a much mor&°!€ in @ graphene sheet is assumed to be (LOA) in this

simple approach is adopted here. The difference in the erfrticle. Using the same energy-based defect nucleation crite-
ergy of a dislocation dipole in the graphene sheet and th&éon as for the graphene sheet, we can write

nanotube is due to the curvature of the nanotube. The dislo-

cation dipole will cause out-of-plane buckling in the

graphene sheet as well as in the nanotube. Only a small AW= W + W, + Wy. (13)
region around the SW defect will buckle out of plane and the

rest will remain flat in case of the graphene sheet and on the The critical strain of the nanotube for defect to be ener-
surface of cylinder in case of the nanotube. A change irgetically favorable is obtaine@he classical continuum solu-
energy due to the SW defect is assumed to be limited to thgon):
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B} b <| ar _ )
o (1-va sin(z +7—T>+i<1+v—cos<2 +Z>> "o
mETy X"6) B\1-v X6
1 c
- - ds, 14
pe’bahl T 1(1+v T LdKO(p) S (143
——|sin2x+ < |+—F —co§ 2y + —~
2 6/ 3\1-» 6

Correspondingly, the critical strain of the nanotube predicted using the gauge theory is obtained as
Vv%auge

Fot = ue”bah| | T 1(1+vw T
———|sin2x+ < |+ = —Ccoy 2y +—
2 6/ v3\l1-v 6

¢

1 J
me bah{Sin<2X+z>+%(1+V—COS<ZX+7_T>>J sd
2 6/ 3 6

1-v

IV. RESULTS, DISCUSSION, AND COMPARISON WITH ergy of the edge dislocation dipole in the graphene sheet
EXISTING ATOMISTIC SIMULATIONS varies with the uniaxial strain as shown in Fig. 5. It can be
In this section, formation energy and critical strain—for observed that the formation energy of the edge dislocation

the nucleation of an edge dislocation dipole for the graphengiPole decreases when uniaxial strain in thelirection in-
sheet and CNTs for both an armchair and zigzagréases. The critical strain at which the defect becomes en-
configuration—are calculated and compared with the existérgetically favorable is the strain corresponding to zero-
ing atomistic simulation results. Sensitivity of the formation formation energy in Fig. 5 and can be calculated using Eq.
energy at zero strain and critical strain for the nucleation of10)- As shown in Fig. 5, the gauge solution yields the criti-
an edge dislocation dipole to the chirality of the nanotube a§l strain for an(5,5) armchair CNT as 6.24% and for cor-
well as to the size of the CNT is discussed. We have used th@sponding graphene sheet as 6.50%. This matches well with
f0||owing numerical values in our Ca|cu|atioﬁ%:Y0ung’s the results given in the Iiteratu?éfﬁ The critical strain for
modulusE of the graphene sheet is 1.08 TPa, Poisson ratio an armchair CNT, as predicted by the classical elasticity so-
equals 0.19, the C—C bond length is 1.4 A, the lattice conlution, is 7.61% and that for corresponding graphene sheet is
stant of the graphene sheets 2.43 A, and the thickness of 7.30%, which is also close to the result given in
the graphene shedt is 3.35 A. The out-of-plane bending literature®*~1t can be observed that the formation energy of
elastic constant is 1.02 eV. Finally, in the gauge solution,
an inverse characteristic length scate1/(0.40a) is adopted
as proposed by Altan and Aifantié.

...b -
A. Armchair carbon nanotube and corresponding s —c
graphene sheet 2 g
> —<-e
First results for an armchair nanotube and the graphene Ef If
sheet with a configuration corresponding to an armchair 4 SIRON o
CNT are discussed. The graphene sheet is rolled to form a % 1 T
CNT and, depending upon the rolling direction, CNTs with g RN
different chiral angles are formed, e.g., an armchair CNT & 0 S S
with a chiral angle 30° and a zigzag CNT with angle 0°. All 1 k T ¢
other nanotubes have chiral angles between 0° and 30°. 1 R
While a graphene sheeer sedoes not have an “armchair” 2y 2 10

4 6
or “zigzag” configuration, however, when formed by the un- Strain (%)

rolling of a nanotube of a specific chirality, the angle at _ . o .
hich th lied strain acts will be different dependin FIG. 5. Formation energy of an edge dislocation dipole as a function of

whic € app ) p Yuniaxial strain for an armchair CNTa) Graphene sheet present work: Clas-

upon the chirality. We term such a graphene sheet as ongral continuum solution(b) (5,5 armchair CNT present work: Classical

“corresponding” to the specified chirality, i.e., in the presentcontinuum solution{c) Graphene sheet present work: Gauge field theory;
case. an armchair sheet (d) (5,5 armchair CNT present work: Gauge field theofg) Graphene

! ’ sheet atomistic resultsee Ref. § (f) (5,5 armchair CNT atomistic results
For the graphene sheet that corresponds to an unrolledee Ref. § () Graphene sheet atomistic resusse Ref. § and (h) (5,5

armchair nanotube, the chiral angeis 30°. Formation en-  armchair CNT atomistic resulisee Ref. &
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Formation Energy (eV)
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FIG. 7. Gauge field theory solution of formation energy of an edge dislo-
FIG. 6. Formation energy of an edge dislocation dipole as a function ofcation dipole as a function of uniaxial strain for CNTs with different diam-
uniaxial strain for a zigzag CNTa) Graphene sheet present work: Classical eters and different chiralitiesa) (9,0) Zigzag CNT;(b) (18,0 zigzag CNT;
continuum solution;(b) (9,00 zigzag CNT present work: Classical con- (¢) (5,5 armchair CNT; andd) (10,10 armchair CNT.
tinuum solution;(c) Graphene sheet present work: Gauge field the@ty;
(9,0 zigzag CNT present work: Gauge field theofg) Graphene sheet L . o
atomistic resultésee Ref. § and(f) (9,0 zigzag CNT atomistic resulisee ~ C. Sensitivity to size and chirality of carbon nanotube

Ref. 6. . . . .. ..
Formation energies as a function of uniaxial strain in the

x direction for different diameters and chiralities of nano-
the CNT at zero strain is less than that of the graphene shetitbes are plotted in Fig. 7. It can be observed that the forma-
as shown in Fig. 5. Also, critical strain for nucleation of an tion energy of the nanotube with the same chirality is less for
edge dislocation dipole in a CNT is less than that of for aa smaller diameter of nanotubes. The same observation can
graphene sheet. The differences in the formation energy dte made about the critical strain for the nucleation of an edge
zero strain and in critical strain for the nucleation of an edgedislocation dipole. The lower formation energy and lower
dislocation dipole can be attributed to the additional bendingritical strain are due to increased bending energy in CNTs
energy in a CNT due to the rolling of a graphene sheet tovith smaller diameters. Note that the critical strain for nucle-
form a CNT. Atomistic simulation results are also plotted ination of a dislocation dipole in CNTs depends on the diam-
Fig. 5. Clearly, while both classical and gauge solutions ar&ter, as well as the chirality of the carbon nanotube, though a
reasonable, the latter gives results closest to the existing atehange in critical strain for nanotubes with different diam-
mistic simulation result&® eters is small as compared to change in critical strain for

nanotubes with different chiralities.

The critical strain for a CNT, whether it is an armchair or

a zigzag CNT, is smaller than the corresponding strain in a

graphene sheet in that particular configuration. The lower
B. Zigzag carbon nanotube and corresponding critical strain in CNTs is attributed to its curvature, which
graphene sheet allows a better relaxation of energy. The reduction in critical
nstrain for a CNT and graphene sheet in a zigzag configura-

The nucleation of an edge dislocation dipole is studied in>~ ™. . .
a zigzag CNT and the results are compared with the correlon 1S more(13.61-14.28than that for an armchair configu-

sponding graphene sheet, armchair CNT, as well as existin@tion (6.54—6.5(). This is conS|s§ent wnh the results in the
atomistic simulations of other researchers. [terature; where the corresponding strains #t®.5-10.50

For the graphene sheet corresponding to a zigzag cor‘?‘-nd (7.0-6.0.
figuration, the chiral a_nglg is 0 .\(arlatu_)n of the formation V. SUMMARY
energy of the edge dislocation dipole in the graphene sheet
with the uniaxial strain is shown in Fig. 6. We find, based on ~ The atomistic simulations provide profound insights into
our models, the critical strain for €,0) nanotube to be the microscopic mechanics of defects under applied strain.
15.90% and the critical strain for the corresponding graphen&lowever, computational expense often precludes the exten-
sheet to be 16.58% using classical continuum mechanicsion of atomistic simulations to very large systems. Con-
Using the gauge theory, the critical strains obtained are, for inuum formulation presented in this article gives a clear
(9,0 nanotube, 13.61% and corresponding graphene sheetechanistic interpretation of this phenomenon. We have pre-
14.29%. It appears that this defect is unfavorable up to a vergented closed-form and semiclosed-form expressions to com-
high strain valug~14%) in a zigzag nanotube as compared pute the critical strain for defect nucleation, both in the
to ~6% strain in an armchair nanotube. In a zigzag tube, thédramework of continuum elasticity theory as well as the
C-C bond, which rotates to form an edge dislocation dipolegauge field theory. Application of classical formulation to
forms a 60° angle with the tube axis, as compared to 90° irstudy the nucleation of the SW defects is hindered by the fact
case of an armchair tube and thus cannot effectively releagbat the stresses and strains from the classical solution are
the stres$. singular at the center of nucleation, although classical solu-
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