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Introduction Quantum Dots (QDs) have recently been the focus of several experimental and theo-
retical researchers due to the promise of improved and new opto-electronic properties [1]. Fre-
quently, embedded QD structures (e.g. InAs/GaAs system), to preserve coherency, must accommo-
date large lattice mismatch. The ensuing elastic relaxation and the hydrostatic strain state within the
QD structure are well known to impact its opto-electronic properties [2, 3]. Several works, of varying
sophistication (both analytical and numerical), have focused on the “accurate” calculation of the
strain state in buried quantum dots [4–8]. Recently, two papers have caught the present authors
attention. Pan and Young [4] indicated significant difference in strain calculation when anisotropic
elastic behavior is assumed compared to simplified isotropic elasticity. Further, a recent article by
Ellaway and Faux [8] indicated (via atomistic simulations) that the elastic properties of QD are stain-
dependent and such a consideration on strain calculation can result in a significant correction (of
16%) to the hydrostatic strain (in their article, for a buried spherical InAs/GaAs QD). In this commu-
nication, we show that the so-far unconsidered interfacial elastic properties can also significantly alter
the strain calculations; the exact correction sensitively being dependent upon the size of the QD
structure and the interfacial elastic constants. We find that the correction resulting from interfacial
elasticity is comparable to that due to either anisotropic or strain-dependency effects.
Classical elasticity (on which most of the previous works are based) does not admit intrinsic size

dependence in the elastic solutions of embedded inhomogeneities. For structures with sizes > 50 nm,
typically, the surface-to-volume ratio is negligible and the deformation behavior is governed by
classical bulk strain energy. Currently, no formulation exists which combines interface elasticity
with bulk elasticity to analyze embedded inclusions. Eshelby’s [9] celebrated formalism, often used
in QD literature, is based entirely on classical bulk elasticity. In this communication (using a varia-
tional approach) we derive a general expression for the correction in hydrostatic strain due to
interfacial elasticity (for an embedded spherical quantum dot). Despite the lack of precise data, we
are able to show (using InAs/GaAs as an example system) that inclusion of interfacial elasticity
effects can result in minimum corrections between 1.8% and 12% in the typical size range of QD
structures (2–20 nm).

Formulation A generic and mathematical exposition on surface/interface elasticity has been pre-
sented by Gurtin and co-workers [10]. The interface/surface stress tensor, sS, is related to the
deformation dependent surface energy, G(eab) by

sS
ab ¼ t0dab þ @G=@eab : (1)

Here, eab is the 2 � 2 strain tensor for surfaces, dab represents the Kronecker delta for surfaces
while t0 is the deformation independent surface/interfacial tension. The equilibrium and constitu-
tive equations for isotropic case can be summarized as follows [10]:
– in the bulk: sB

ij;j ¼ 0; sB
ij ¼ ldijekk þ 2meij; (2a, b)

– on the surface/interface:

sB
banb þ sS

ba;b ¼ 0 ; sB
ji njni ¼ sS

abkab;

sS
ba ¼ t0dba þ 2ðmS � t0Þ eba þ ðlS þ t0Þ eggdba : ð2c�eÞ
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Here, k and m are the Lamé constants for the isotropic bulk material. Isotropic interfaces or sur-
faces can be characterized by surface Lame’ constants lS, mS. Here, kab represents the curvature
tensor of the surface/interface, na is the normal vector on the interface. Where applicable, super-
scripts B and S indicate bulk and surface, respectively. It is to be noted that only certain strain
components appear within the constitutive law for surfaces due to the 2 � 2 nature of the surface
stress tensor (i.e. strains normal to the surface are excluded). Thus, the Greek indices take on
values 1 and 2 while Latin subscripts adopt values 1 through 3.
Consider now a spherical QD, of radius R0, located in an infinite semiconductor matrix and

undergoing a dilatation eigenstrain, i.e., e*11 ¼ e*22 ¼ e*33 ¼ e*. The bulk and surface elastic energy
densities of an inhomogeneity-matrix system can be given as

YB
L ¼ 1

2 lLðeiiÞ
2 þ mLeijeij � 3KLe*eii; YS ¼

Ð

S

dS
Ðe
S
ij

0
sS
ijde

S
ij ; ð3Þ

where L represents either the inhomogeneity “I” or the matrix ‘M’, KL is the bulk-modulus (= lL
+ mL/3) for isotropic elastic solids, e* the eigenstrain which is finite in the inhomogeneity and zero
outside of it. The free energy of the spherically symmetric system, in the presence of interface
elasticity, can then be written as

P ¼ 4p
ÐR0

0
r2YB

I dr þ 4pR2
0

Ðe
S
ij

0
sS
ij de

S
ij þ 4p

ÐR1

R0

r2YB
M dr : ð4Þ

The Euler-Lagrange equations and the appropriate boundary conditions are obtained by setting
the variation of the free energy to be zero, i.e. dP = 0. The spherically symmetric problem leads to
a displacement field that is radially symmetric, i.e., u = u(r). Using the strain-displacement relation
in spherical coordinate basis, Eq. (4), the constitutive Eqs. (2), and taking the variation of the total
energy with respect to the displacement fields, we obtain Eq. (5a): Euler’s equation for the inte-
grand in both the inhomogeneity and matrix domains; Eq. (5b): the equilibrium of the bulk and
surface forces at the interface, and finally Eq. (5c): the natural boundary condition:

r2@2u=@r2 � 2r@u=@r � 2u ¼ 0 ; ð5aÞ
sþ
rr � s�

rr ¼ ð2sS
qq=R0Þr!R0

; ð5bÞ
srrjr!1 ¼ 0 : ð5cÞ

The general solutions to the differential equation of Eq. (5a) are simply r and 1/r2. The proper
solutions of Eqs. (5a–5c) are obtained by satisfying the following additional constraints: (i) at the
center of the QD, u(r) must approach zero; (ii) at r ! 1, e ! 0, and finally (iii) displacements
must be continuous across interface i.e. u+(r ! R0) = u—(r ! R0). The final solution, after the
necessary mathematical manipulation, is then

err ¼ ð3KIe*� 2t0=R0Þ=ð4mM þ 3KI þ 2KS=R0 Þ ; ð6Þ
where KS ¼ 2ðmS þ lSÞ is introduced in this article to be the “surface modulus”. Note that the
interfacial elasticity effects enter the equations via KS and t0 weighted appropriately by the curva-
ture (1/R0) of the QD. Making R0 arbitrarily large can trivially retrieve the classical solution. An-
other interesting feature of our solution is that the hydrostatic strain within the QD structure is
now size dependent unlike the classical elasticity analysis of previous researchers (e.g. [4–8]).

Results and Discussion Our formulation is applied to InAs/GaAs system. The eigenstrain (or
lattice mismatch strain) is 6.685% [8]. The bulk elastic constants used are {mInAs = 19, KInAs = 57.1}
GPa and {mGaAs = 32.9, KGaAs = 75.4} GPa. For the interfacial properties one needs deformation
dependent constants KS and deformation independent interfacial tension, t0. While the latter is
known experimentally [11], the former is not known precisely. Nevertheless, we can provide the
lower bound on the corrections to the hydrostatic strain calculated by classical methods via a sim-
ple consideration. A glance at Eq. (6) indicates that ignoring the surface modulus KS, will result in
the underestimation of the strain. Thus, incorporating interfacial elasticity only through t0 (ne-
glecting KS) will result in a lower bound on the actual hydrostatic strain. We use t0 = 0.72 J/m2

(taken from Ref. [11]) in our calculations. In Fig. 1, the absolute value of the percentage correction
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to the classical solution is plotted with respect to varying QD size. Clearly, the interfacial effects
can add a substantial correction to the elastic state especially at smaller sizes. Interestingly the
corrections we suggest due to interfacial effects are comparable to both anisotropic effects [4] and
strain-dependent modulus effect [8].
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n Fig. 1. Lower bound on strain correction


