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One of the most tantalizing applications of piezoelectricity is to harvest energy from ambient
mechanical vibrations for powering micro and nano devices. However, piezoelectricity is restricted
only to certain materials and is severely compromised at high temperatures. In this article, we
examine in detail, the possibility of using the phenomenon of flexoelectricity for energy harvesting.
The flexoelectric effect is universally present in all dielectrics and exhibits a strong scaling with size.
Using a simple beam-based paradigmatical design, we theoretically and computationally examine
flexoelectric energy harvesting under an harmonic mechanical excitation. We find that the output
power density obtained from flexoelectricity and conversion efficiency increases significantly when
the beam thickness reduces from micro to nanoscale and that it can provides a strong alternative
to piezoelectrics. Specifically, the conversion efficiency in flexoelectric transduction at sub-micron
thickness levels is observed to increase by two orders of magnitude as the thickness is reduced by
an order of magnitude. The flexoelectric energy harvester works even for a single layer beam with
a symmetric cross section which is not possible in piezoelectric energy harvesting. Our results also
pave the way for exploration of high temperature energy harvesting since unlike piezoelectricity,
flexoelectricity persists well beyond the Curie temperatures of the high electromechanical coupling
ferroelectrics that are often used.

I. INTRODUCTION

Harvesting ambient waste energy into usable en-
ergy has received increasing attention over the last
few years1,2. Efficient conversion of the ubiquitous
ambient mechanical vibrations to electric energy for
the powering of micro and nano systems; without the
use of batteries; is an intensely researched subject.
In particular, piezoelectric materials, as transducers
between mechanical and electrical stimuli, are usu-
ally considered to be the ideal choice for such en-
ergy harvesting due to their high power density and
ease of application3–5. The applications of piezo-
electric energy harvesting range from shoe-mounted
inserts6,7 to unmanned aerial vehicles8. Micro and
nano implementations of piezoelectric energy har-
vesting have also received growing attention in the
last few years due to the developments in ferroelec-
tric thin films for MEMS9–11 and non-ferroelectric
nano wires NEMS12,13.

Recently, a somewhat understudied electrome-
chanical coupling, flexoelectricity, has attracted a
fair amount of attention from both fundamental
and applications points of view leading to intensive
experimental14–22 and theoretical work23–36. Piezo-
electricity is restricted to only certain crystal struc-
tures and refers to a linear coupling between the de-
velopment of polarization due to the action of uni-
form deformation and vice-versa. In contrast, flexo-
electricity links strain gradients to polarization and,
in principle, exists in all dielectrics. In other words,

even in non-piezoelectric materials, strain gradients
can lead to the development of polarization. This
effect is generally small but symmetry allows for
its universal presence—unlike piezoelectricity. The
reader is referred to the following articles for a de-
tailed review: Refs25,37–40. Since strain gradient
scales with feature size, and high values are eas-
ily obtainable at small length scales, flexoelectric-
ity is expected to be significant at the micro and
nanoscale possibly outperforming piezoelectricity in
several scenarios. It is worth while to point out that
flexoelectricity appears to have several ramifications
for biophysics as well. For example, electromechan-
ical transduction related to mammalian hearing ap-
pear to be dictated by flexoelectricity of biological
membranes41–43.

In this paper, we propose a flexoelectric energy
harvester which shares some similarities but is, in
many ways, quite different from the piezoelectric
counterparts. The flexoelectric energy harvester is
simpler in structure, allows a broader range of ma-
terials choice and exhibits strong size-scaling mak-
ing it ideal for some micro scale and possibly all
nanoscale applications. In Section 2, we present the
main formulation and derive the requisite governing
equations. In Section 3, we solve the simplest pos-
sible energy harvesting problem assuming an har-
monic base excitation. Based on the solution, the
performance of the flexoelectric energy harvester is
analyzed in Section 4. In particular, the size effect
is studied in detail.
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FIG. 1. A centrosymmetric flexoelectric energy harvester
under base excitation

II. ELECTROELASTIC SYSTEM AND
MATHEMATICAL FORMULATION

The flexoelectric energy harvester configuration
investigated in this work is shown in Fig.1. The
flexoelectric cantilever beam is coated by perfectly
conductive electrodes on its top and bottom sur-
faces. We assume that the electrode layers are very
thin so that their contribution to the vibration of
the cantilever can be neglected while their presence
can easily be incorporated by preserving the cen-
trosymmetry. The coordinate system and the re-
sulting position coordinates x1, x2, x3 are shown in
Fig.1. The longitudinal axis is denoted by x1. The
cantilever beam is mounted to a base moving in the
x3 direction. The transverse base displacement is
denoted by wb(t). Due to the movement of the base,
the cantilever beam undergoes bending vibrations.
Dynamic strain gradient associated with vibration
results in an alternating potential difference across
the electrodes. The electrodes are connected to a
resistive load (R) to quantify the electrical power
output. Although the internal resistance of the di-
electric beam is not taken into account, it can easily
by considered as a resistor connected in parallel to
the load resistance.

A. Variational principle for flexoelectricity

There are several approaches for formulating the
electromechanical coupling in deformable materi-
als. A particularly elegant exposition has been re-
cently presented by Liu44. Other insightful works
and alternative ways of formulating electrostatics
of deformable bodies may also be referred to45–50.
Since the majority of the literature on linear active
materials (such as piezoelectric dielectrics) follows
Mindlin’s approach51, we have followed likewise.

Neglecting fringe fields, the variational principle
for flexoelectric body can be written in the following

form:

δ

∫ t2

t1

dt

∫
V

[
1

2
ρ|u̇m|2 − (WL − 1

2
ε0|∇φ|2 +

P · ∇φ)]dV +

∫ t2

t1

dt

∫
V

(q · δum + E0 · δP)dV

= 0 (1)

where um and φ are the absolute displacement and
potential field in the beam, P is the polarization
density, WL is the internal energy density, q and
E0 correspond to the external body force and the
external electric field, respectively.

At the outset we assume a linearized setting.
Then the internal energy density WL can be written
as23,52

WL =
1

2
P · aP +

1

2
S · cS + P · dS + P · f∇∇u

+
1

2
∇∇u · g∇∇u (2)

where u is the displacement field relative to the mov-
ing base u = {um1 , um2 , um3 − wb(t)}T , S = 1

2 (∇u +

(∇u)T ) is the infinitesimal strain tensor, and ∇∇u
is the strain gradient tensor. The coefficients a, c,
d, f , and g are material properties, i.e., a is the re-
ciprocal dielectric susceptibility which relates to rel-
ative permittivity εr and the vacuum permittivity
ε0 by a = 1

(εr−1)ε0 , c corresponds to elastic modu-

lus, d and f are the piezoelectric and flexoelectric
constants, respectively. The parameter g is nonzero
only if the strain gradient is considered. g relates
strain gradient ∇∇u to its energy conjugate, high
order stress tensor26.

The base movement wb(t) is the given Dirichlet
boundary condition, so we have δum = δu. For
independent P, u, and φ, we have

δ

∫ t2

t1

dt

∫
V

[WL − 1

2
ε0|∇φ|2 + P · ∇φ]dV =∫ t2

t1

dt

∫
V

[
∂WL

∂P
δP +

∂WL

∂S
δS +

∂WL

∂∇∇u
δ(∇∇u)

−ε0∇φδ(∇φ) + Pδ(∇φ) +∇φδP]dV (3)

and

δ

∫ t2

t1

dt

∫
V

1

2
ρ|̇u̇m|2dV = −

∫ t2

t1

dt

∫
V

ρümδudV

Then, from Eq. (1), we have the Euler-Lagrange
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equations

Div[
∂WL

∂S
−Div(

∂WL

∂∇∇u
)] + q = ρüm

∂WL

∂P
+∇φ = E0

Div(−ε0∇φ+ P) = 0 (4)

in the domain V and the corresponding boundary
conditions

−ε0∇φ+ P = 0

∂WL

∂S
−Div(

∂WL

∂∇∇u
) = 0

∂WL

∂∇∇u
= 0 (5)

on its boundary Γ.

B. Flexoelectric Euler-Bernoulli beam model

The deformation of the cantilever beam is as-
sumed to be small. To illustrate the central ideas
of flexoelectric energy harvesting, we use the Euler-
Bernoulli model. The key conclusions, that we are
interested in emphasizing in this work, are unlikely
to be affected by this assumption. Future works
may consider more sophisticated beam-assumptions
in particular nonlinear effects. The relative displace-
ment field in the Euler-Bernoulli model is:

u(x1, t) = {−x3
∂w(x1, t)

∂x1
, 0, w(x1, t)}T (6)

where w(x1, t) is the transverse displacement of the
neutral surface at point x1 and time t. From this
displacement field, the normal strain in x1 direction
is the only non-zero strain component which can be
written as

S11 = −x3
∂2w

∂x21
(7)

The non-zero strain gradient components are

S11,1 = −x3
∂3w

∂x31
, S11,3 = −∂

2w

∂x21
(8)

where S11,1 is small as compared to S11,3 due to the
thin beam assumption. Therefore the component
S11,1 is ignored in the present work.

Generally, strain gradient S11,3 will induce the
separation of positive and negative charge centers.
A schematic representation for the polarization in-
duced by strain gradient is shown in Fig.2. The blue
and red particles represent the negative and positive
material particles in a unit cell. As can be seen from

FIG. 2. Polarization due to bending of a centrosymmet-
ric beam

Fig. 2, after deformation, the induced polarization
is generated along the x3 direction. The polariza-
tion density field within the cantilever beam has the
following form:

P(x1, t) = {0, 0, P (x1, t)}T (9)

Given the above assumptions, and settings a =
a33, c = c1111, d = d311, f = f3113, and g = g113113,
the internal energy density WL is rewritten as:

WL =
1

2
aP 2 +

1

2
cx23(

∂2w

∂x21
)2 − dx3P

∂2w

∂x21
− fP ∂

2w

∂x21

+
1

2
g(
∂2w

∂x21
)2 (10)

Using the above expression for internal energy
density, the left hand side of Eq. (3) can be written
as∫ t2

t1

dt

∫
V

[aPδP + cx23
∂2w

∂x21
δ(
∂2w

∂x21
)− dx3Pδ(

∂2w

∂x21
)

−dx3
∂2w

∂x21
δP − fPδ(∂

2w

∂x21
)− f ∂

2w

∂x21
δP +

g
∂2w

∂x21
δ(
∂2w

∂x21
)− ε0

∂φ

∂x3
δ(
∂φ

∂x3
)− ε0

∂φ

∂x1
δ(
∂φ

∂x1
)

+Pδ(
∂φ

∂x3
) +

∂φ

∂x3
δP ]dV (11)

There are no external body forces or electric fields
in the present work. Then (1) can be further written
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as∫ t2

t1

dt

∫
V

ρ(ẅ + ẅb)δwdV +

∫ t2

t1

dt

∫
V

[(aP −

dx3
∂2w

∂x21
− f ∂

2w

∂x21
+

∂φ

∂x3
)δP + (cx23

∂2w

∂x21
− dx3P

−fP + g
∂2w

∂x21
)δ(

∂2w

∂x21
) + (P − ε0

∂φ

∂x3
)δ(

∂φ

∂x3
)

+(−ε0
∂φ

∂x1
)δ(

∂φ

∂x1
)]dV = 0 (12)

where the kinetic energy contribution from the ro-
tary inertial is neglected. It should also be noted
that the mechanical dissipation mechanism will be
included later in the form of proportional damping
whereas dielectric losses are neglected in this frame-
work.

In the above equation, δP is arbitrary, so we have

aP − dx3
∂2w

∂x21
− f ∂

2w

∂x21
+

∂φ

∂x3
= 0 (13)

Since there are no free charges inside the beam and
the beam is thin, it is reasonable to assume that the
self-field inside the beam is independent of the spa-
tial coordinates implying that E3 = − ∂φ

∂x3
= const.

and E1 = − ∂φ
∂x1

= const. Given the top and bot-
tom electrode boundary conditions, we further have
E1 = 0 and E3 = −v(t)/h where v(t) is the po-
tential difference between the two conductive elec-
trodes. Substituting Eq. (13) into the above vari-
ational equation and changeing the volume integra-

tion
∫
V

into
∫ L
0

∫
A

(A is the cross section of the
beam), we obtain the following variational equation
without the polarization density P :∫ t2

t1

dt

∫ L

0

ρAP (ẅ + ẅb)δwdx1 +

∫ t2

t1

dt

∫ L

0

{[(c

−d
2

a
)IP −

2df

a
HP − (

f2

a
− g)AP ]

∂2w

∂x21

−(
d

a
HP +

f

a
AP )

v(t)

h
δ(
∂2w

∂x21
)}dx1 = 0 (14)

where (AP , HP , IP ) =
∫
A

(1, x3, x
2
3)dA and HP van-

ishes for a structure that is symmetric with respect
to the neutral axis (x1-axis) of the beam. Fur-
thermore we define the effective bending rigidity

(EI)∗ = (c − d2

a )IP − 2df
a HP − ( f

2

a − g)AP which
describes the resistance of the flexoelectric beam to
bending. A limitation in the linear framework is
that, beyond a certain critical point the effective
bending rigidity may turn negative. Future work
may consider a nonlinear framework to alleviate this
issue. The present work uses the geometrically and
electroelastically linear framework to explore the ba-

sic phenomena within the applicable range.

The current i(t) flow through the resistor R must
be equal to the time rate of change of the average
electric displacement D̃3 = 1

h

∫
V
D3dV , resulting in

the electrical circuit equation with flexoelectric cou-
pling:

i(t) =
v(t)

R
=

1

h

d

dt

∫
V

(−ε0
v(t)

h
+ P )dV

= −AP
h

(ε0 +
1

a
)v̇(t) +

1

h

∫ L

0

(
d

a
HP

+
f

a
AP )

∂2ẇ

∂x21
dx1 (15)

III. SOLUTION AND FREQUENCY
RESPONSE

We adopt the assumed-modes method53,54 to solve
the energy harvesting problem posed in the preced-
ing section. The assumed-modes method employs
a series discretization approach that is similar to
the Rayleigh-Ritz method55. In fact these two tech-
niques yield the same results for the same admissible
functions. The distributed-parameter variable in the
mechanical domain is w(x1, t) whereas the electrical
variable is v(t). The following finite series is used to
represent the mechanical response of the beam:

w(x1, t) =

N∑
k=1

ak(t)ξk(x1) (16)

where N is the number of modes used in the series
discretization, ξk(x1) are the kinematically admissi-
ble trial function which satisfy the essential bound-
ary conditions, while ak(t) is unknown generalized
coordinate. If the problem has an exact solution,
the eigenfunctions are available (as in the uniform
cross-section cantilever case shown in Fig. 1 and
studied in this work), the admissible functions can
be taken as the eigenfunctions and convergence is
not an issue. However, for problems with no exact
solution (such as a varying cross-section problem),
sufficient number (N) of admissible functions must
be used to ensure convergence.

For the symmetric Euler-Bernoulli cantilever
beam studied here, the trial function is taken to be
the eigenfunction54,56 is given by

ξk(x1) = cos
λk
L
x1 − cosh

λk
L
x1 +

sinλk − sinhλk
cosλk + coshλk

(sin
λk
L
x1 − sinh

λk
L
x1) (17)

where λk is the kth root of the transcendental char-
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acteristic equation

1 + cosλ coshλ = 0

Substituting the series representation Eq. (16)
into Eqs. (14) and (15), the discrete Euler-Lagrange
equations for the structurally undamped Euler-
Bernoulli beam model are obtained as

Mä(t) + Ka(t)− (Θp + Θf )v(t) = f̄

Cpv̇(t) +
v(t)

R
+ (Θp + Θf )T ȧ(t) = 0 (18)

where

Mkl = ρAP

∫ L

0

ξk(x1)ξl(x1)dx1

Kkl = (EI)∗
∫ L

0

ξ′′k (x1)ξ′′l (x1)dx1

θpl =
1

h

d

a
HP

∫ L

0

ξl(x1)dx1

θfl =
1

h

f

a
AP

∫ L

0

ξl(x1)dx1

f̄l = −ẅb(t)
∫ L

0

ρAP ξl(x1)dx1

are the components of M, K, Θp, Θf , and f̄ , re-
spectively. The parameter Cp is given by

Cp =
AP
h

(ε0 +
1

a
)

Since the focus in energy harvesting is placed on
the resonance behavior (i.e. damping controlled re-
gion), it is necessary to account for structural dis-
sipation in the system. In this work, we resort to
Rayleigh damping which is proportional to the mass
and the stiffness matrices. We introduce the damp-
ing matrix D with

D = µM + γK

where µ and γ are constants of proportionality which
can be calculated using two modal damping ratios,
ζ1 and ζ2 through the following equation57:[

γ
µ

]
=

2ω1ω2

ω2
1 − ω2

2

[
1
ω2
− 1
ω1

−ω2 ω1

] [
ζ1
ζ2

]
where ω1 and ω2 are the first two nature frequencies
of the beam. In the absence of other damping mech-
anisms, the damping ratio is related to the material
quality factor (Q = 1/2ζ).

With the consideration of Rayleigh damping, the

Euler-Lagrange equations (18) are written as

Mä(t) + Dȧ(t) + Ka(t)− (Θp + Θf )v(t) = f̄

Cpv̇(t) +
v(t)

R
+ (Θp + Θf )T ȧ(t) = 0 (19)

Note that the coupling vectors Θp and Θf are pa-
rameters corresponding to the piezoelectricity and
the flexoelectricity of the material, respectively.
They couple the mechanical and electrical behav-
iors of the cantilever beam. The two Euler-Lagrange
equations in (18) or (19) would be decoupled if both
Θp and Θf are zero. For a symmetric cross section
beam with respect to the neutral axis (x1-axis), Θp

equals to zero since HP = 0. Therefore the flexo-
electric term Θf is important as the major source of
electromechanical coupling in such centrosymmetric
beams. However, the flexoelectric effect is too slight
to be detected at macroscale. In the next section
of this paper, we show that the significance of flexo-
electricity changes with the sample size which throw
light on the energy harvesting for MEMS and NEMS
applications.

If the base vibration is harmonic of the form,
wb(t) = W0e

jωt, then the force vector f̄ becomes

f̄ = Fejωt (20)

where

Fk = W0ω
2

∫ L

0

ρAP ξk(x1)dx1

Since the base vibration is harmonic and the sys-
tem is assumed to be linear, it is reasonable to as-
sume that the steady-state responses of the system
are also harmonic with the same frequency ω. There-
fore the generalized coordinate a(t) and output volt-
age v(t) can be expressed as the following harmonic
forms

a(t) = Aejωt , v(t) = V ejωt

Using the above assumption, the solution is re-
duced to solving a set of algebraic equations (19).
They are given by

[−ω2M + jω(µM + γK) + K]A−ΘV = F(21)

(jωCP +
1

R
)V + jωΘTA = 0 (22)

where Θ = Θp + Θf is the total coupling term and
is equal to Θf for a centrosymmetric beam (a beam
that is symmetric with respect to x1-axis in Fig. 1).

Then the complex-valued unknowns A and V are
obtained through solving the above linear algebraic
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equations

V = jω(jωCP +
1

R
)−1(−ΘT )[−ω2M

+jω(µM + γK) + K + jω(jωCP

+
1

R
)−1ΘΘT ]−1F (23)

A = [−ω2M + jω(µM + γK) + K]−1(F

+ΘV ) (24)

which contain both the amplitude and phase infor-
mation of the voltage across the electrical load and
flexoelectrically shunted vibration response. Note
that the A vector is the vector of generalized coor-
dinates and it is the back substitution of Eq. (24)
into Eq. (16) that yields the physical vibration re-
sponse w(x1, t).

IV. CASE STUDY AND RESULTS

In this section, the electromechanical behavior
of the proposed flexoelectric energy harvester un-
der harmonic base excitation is simulated using the
continuum framework and its assumed-modes solu-
tion approach. We choose Polyvinylidene difluoride
(PVDF) as the model material system which has
the following properties: a = 1

(εr−1)ε0 = 1.38 ×
1010Nm2/C2 where εr = 9.2 is the relative permit-
tivity of PVDF58 and ε0 = 8.854×10−12C2/(Nm2);
f = −aµ′12 = −179Nm/C is calculated from the
flexoelectric coefficient µ′12 = 1.3×10−10C/m58; For
PVDF, c = 3.7GPa is the Young’s modulus59; It is
known that

√
g/c is of the same order of the radius

of gyration of PVDF, so we chose g = 5 × 10−7N
for the current work; ρ = 1.78 × 103kg/m3 is the
density of PVDF; d = −1.02 × 109N/C is obtained
from the piezoelectric coefficient d31 = 20pm/V 60

by d = −cad31; The damping ratios are given by
ζ1 = ζ2 = 0.0561. The length/width/thickness as-
pect ratio of the beam is fixed to 100 : 10 : 1 for
all the sample sizes considered. It is worthwhile to
mention that, since the beam section is uniform in
the axial direction, the trial function given by Eq.
(17) is the eigenfunction, and therefore convergence
is not an issue in the series discretization even for
very small number of modes N . We use N = 5 for
all the following simulations. Furthermore, since the
sample is made of a single layer with doubly sym-
metric cross-section, it is entirely centrosymmetric.
Although PVDF exhibits both piezoelectric and flex-
oelectric effects, only flexoelectricity is expected to
be pronounced in the simulations.

As is known, flexoelectricity only becomes signif-
icant at submicron or nanometer scale. So in this

work, we set the size of the model to several mi-
crons or even smaller. For comparison, two different
values for the beam thickness, 3µm and 0.3µm, are
chosen in the following simulations while keeping the
aforementioned length-to-width-to-thickness aspect
ratio. All the simulation results are given in forms of
frequency response functions (FRFs) in magnitude
form by taking the base acceleration to be the known
kinematic input. In other words, we normalized the
results by the base acceleration, ẅb = −ω2W0e

jωt,
which is quantified in terms of the gravitational ac-
celeration (g = 9.81m/s2). We also chose a range
of different load resistance values for the simulations
to demonstrate the performance of the system under
different loadings and identify the optimal electrical
load of the maximum power output.

A. Voltage FRFs

Fig.3 shows the voltage output FRFs of a beam
with a thickness of 3µm and the above mentioned
aspect ratio (yielding the dimensions of 300µm ×
30µm × 3µm). As an expected monotonic trend
in energy harvesting, with the increasing load resis-
tance R from 100Ω through 1GΩ, the voltage out-
put also increases. The lowest and highest curves
are close to the short-circuit(R → 0) and open-
circuit(R → ∞) conditions, respectively. It is also
observed that the fundamental resonance frequency
is insensitive to the load resistance, it maintains a
constant value, 7665Hz, for all the cases. The insen-
sitive behavior of resonance frequency to changing
load resistance (from short- to open-circuit condi-
tions) is an indication of very low electromechanical
coupling. Note also that the resonance frequency
reported here is about 10 times higher than our pre-
vious work dealing with piezoelectric energy harvest-
ing at meso-scale even if we are dealing with a softer
material. This is an expected trend since the reso-
nance frequency increases with decreased specimen
size and the specimen we use in the current work
is about 100 times smaller than our previous work
using meso-scale piezoelectric cantielvers53.

If we further shrink the specimen size by 10 times
(to have 0.3µm thickness) to have the dimensions of
30µm×3µm×0.3µm and perform the same analysis,
the fundamental resonance frequency grows by an
order of magnitude as shown in Fig.4. It is very im-
portant to note that, unlike the 3µm thickness case,
the resonance frequency monotonically shifts from
74230Hz to 75820Hz with increased load resistance.
The amount of change in the resonance frequency
as the electrode boundary condition is altered from
short- to open-circuit conditions is a measure of
electromechanical coupling. This shift was reported
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FIG. 3. Voltage FRFs of the centrosymmetric cantilever
with 3µm thickness.

6.5 7 7.5 8 8.5 9
x 10

4

0

1

2

3

4

5x 10
−5

Frequency [Hz]

|V
ol

ta
ge

 F
R

F
s|

 [V
/g

]

 

 

Short−circuit
R=1MΩ
R=5MΩ
R=10MΩ
R=50MΩ
R=100MΩ
R=500MΩ
Open−circuit

74230Hz

R increases

75820Hz

FIG. 4. Voltage FRFs of the centrosymmetric cantilever
with 0.3µm thickness.

previously for piezoelectric energy harvesting using
strongly coupled harvesters54,56,62. Therefore, com-
paring Figs. 3 and 4 in terms of the resonance fre-
quency shift reveals substantial improvement in the
electromechanical coupling as the sample thickness
is reduced from 3µm to 0.3µm. Furthermore, since
the cantilever is centrosymmetric, the electrome-
chanical coupling is due to flexoelectricity only, and
it grows significantly with reduced device thickness.
Note that, for a non-centrosymmetic sample that
exhibits piezoelectricity, flexoelectric coupling can
be comparable to piezoelectric coupling at much
smaller thickness levels.
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FIG. 5. Tip velocity FRFs of the centrosymmetric can-
tilever with 3µm thickness.

B. Tip velocity FRFs

It is more clear to observe the size effect of the
proposed flexoelectric energy harvester through the
tip velocity FRFs with changing load resistance. As
we can see in Fig.5, there is almost no difference be-
tween the curves of various load resistance values for
the 3µm-thick beam case. Therefore, for this thick-
ness level, the flexoelectric coupling is indeed negligi-
ble. As a consequence, the effect of vibration atten-
uation due to the energy dissipation in the resistor
(i.e. delivered to the load) is negligible for all values
of load resistance. It is worth mentioning that the
effective bending stiffness incorporating flexoelectric

terms is (EI)∗ = (c− d2

a )IP − 2df
a HP − ( f

2

a − g)AP ,
where the relative importance of the terms change
with varying sample scale, and HP is zero for the
centrosymmetric sample explored here. For the case
of 0.3µm thickness, as shown in Fig.6, significant res-
onance frequency shift (from 74230Hz to 75820Hz)
is observed, in agreement with the voltage FRFs of
this thickness level (Fig. 4). We should emphasize
again that the enhancement of the electromechani-
cal coupling with changing thickness level is not the
case in piezoelectric transduction. It should be noted
that the tip velocity of the harvester is strongly at-
tenuated for certain resistance values, which is due
to the shunt damping effect of the resistor i.e. dissi-
pation due to Joule heating. This phenomenon cor-
responds well with the piezoelectric energy harvest-
ing case in the presence of sufficient electromechan-
ical coupling.
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C. Power density FRFs

Regarding the size effect observed here, a question
is how would we exploit it. One popular measure of
the performance of an energy harvester is its power
density, i.e. power output per device volume for a
given excitation level. The output power here is ob-

tained based on the output voltage by p(t) = |v(t)|2
R .

Therefore the power FRFs should be normalized by
the square of base acceleration for consistence. The
power density FRF is the volumetric density of the
power FRF introduced above. Fig.7 and 8 show the
power density for the 3µm and 0.3µm beams, re-
spectively. As in the case of piezoelectric energy
harvesting, the power output does not exhibit mono-
tonic behavior with increasing (or decreasing) the
load resistance, revealing the existence of an optimal
resistive load at each frequency. Both of the two fig-
ures shows maximum output power at R = 100MΩ
among the set of resistor considered here, for re-
sponse around the respective resonance frequencies.
Again, we see the resonance frequency shift (from
74230Hz to 75820Hz) in 0.3µm-thickness beam case
as the electrical load is changed from short-to open-
circuit conditions. The resonance frequency of the
maximum power output lies in between these two ex-
tremes for a finite non-zero load. The highest curve
corresponding to R = 100MΩ shows the resonance
frequency of 75180Hz. It is important to note that
there is an increase in the output power density with
decreased specimen size. Comparing Fig.7 and 8, it
is found that the maximum output power density
for 0.3µm beam is around 7 times that of the 3µm
beam. Substantial increase in the power density is
observed for higher vibration modes as well (not re-
ported here).
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FIG. 7. Power density FRFs of the centrosymmetric
cantilever with 3µm thickness.
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D. Scaling of the conversion efficiency

To further demonstrate the effect of scaling, we
explore the energy conversion efficiency of the flexo-
electric energy harvester. The conversion efficiency
is simply the ratio of the electric power output to
the mechanical power input, i.e. the power due to
the shear force exerted on the beam by the base. As
mentioned previously, the peak electric power out-

put is |v(t)|
2

R . The shear force exerted on the beam
by the base is the shear force at x1 = 0, which can be

easily expressed by cIP
d3w(0)
dx3

1
. Therefore the power

due to the shear force is the product of the shear

force and the base velocity dwb(t)
dt . The mechanical-
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FIG. 9. Resonant energy conversion efficiency for dif-
ferent beam thickness levels (aspect ratio is the same:
100:10:1).

to-electrical energy conversion efficiency is then

η =
|v(t)|2/R

|cIP d3w(0)/dx31| · |dwb(t)/dt|
(25)

We maintain the shape of the sample (in terms
of the aspect ratio, 100:10:1) and vary the thick-
ness of the beam from 3µm through 0.3µm. As
shown in Fig.9, for the 10 different sizes considered
in this thickness range, the energy conversion effi-
ciency monotonously increases as the decrease of the
sample size. Specifically, the magnitude of the high-
est curve is about two orders higher than that of the
lowest one. Further enhancement in the conversion
efficiency can be expected as the beam thickness is
reduced to nanometer scale.

V. CONCLUSIONS

In this paper, a flexoelectric Euler-Bernoulli
model for energy harvesting is proposed following

a continuum mathematical framework accounting
for two-way flexoelectric coupling. Linear constitu-
tive law is used for describing the elastic, dielectric,
and flexoelectric behavior of the material. Based
on the variational principle for flexoelectricity, the
Euler-Lagrange equations are derived. A generalized
assumed-modes method which accounts for two-way
electromechanical coupling is employed for solution
of the governing equations and frequency-response
simulations of case studies. Unlike the case of piezo-
electricity, a single centrosymmetric beam can be
used for generating electricity through flexoelectric-
ity since the phenomenon is due to strain gradient
rather than strain. As we have shown in this work,
the simple symmetric thin beam serves as a good
candidate for the flexoelectric energy harvester at
sub-micron scales, which is a fabrication advantage.
Another advantage of flexoelectric energy harvesting
is that it offers more flexibility in choosing materials
since flexoelectric coupling is a general property re-
gardless of the material’s symmetry group. Not only
single crystals, but also some amorphous soft materi-
als or even biomaterials can be used as a flexoelectric
energy harvester. These factors make the manufac-
turing of flexoelectric energy harvesting device at
micron or submicron scale easier than piezoelectric
energy harvester. Most importantly, we have shown
substantial size effect on the electromechanical cou-
pling in flexoelectric energy harvesting. A two orders
of magnitude increase in the mechanical-to-electrical
energy conversion efficiency is shown due to reducing
the sample’s thickness from 3µm to 0.3µm. Because
of this size effect, the proposed flexoelectric energy
harvester could be more attractive in the fields of
MEMS and especially NEMS.
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