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Several applications involving quantum dots require perfect long-range ordered arrays. Unfortu-
nately, self-assembly �the choice method to fabricate quantum dots� leads to patterns that, although
short range ordered, exhibit defects equivalent to grain boundaries and dislocations on a large scale.
We note that rotational invariance of film growth is one reason for formation of defects, and hence
study an anisotropic model of quantum dot formation. However, nonlinear stability analysis shows
that even in the extreme limit of anisotropy, square arrays whose orientations are in a finite range
are linearly stable; consequently structures created in the film continue to have defects. Building on
insights developed by the authors earlier on a simpler monolayer self-assembly model, we propose
controlling the deposition through a mask to generate ordered quantum dots arrays. General prin-
ciples to estimate geometrical characteristics of the mask are given. Numerical integration of the
model shows that perfectly ordered square arrays of quantum dots can indeed be created using
masked deposition. © 2009 American Institute of Physics. �DOI: 10.1063/1.3227643�

Quantum dots are nanoscale three-dimensionally con-
fined semiconductor structures, which exhibit quantum
effects such as sharp density of states. They are poten-
tially of immense technological importance because their
optical and electronic properties can be tuned using the
size of a dot and the interdot distance of an array. Quan-
tum dots are often considered as the basis for several
revolutionary nanoelectronic devices and applications,
e.g., next generation lighting,1,2 lasers,3,4 quantum com-
puting, information storage and quantum
cryptography,5–7 biological labeling,8 sensors,9 and many
others.10–14 However, several applications require large
arrays rather than a single quantum dot. The most prom-
ising approach to grow large-scale arrays of quantum
dots is self-assembly. Unfortunately, large-scale self-
assembled arrays are imperfect, consisting of multiple
domains, domain walls, and defects (see Fig. 1). Since
optoelectronic properties and responses acutely depend
upon quantum dot size and spacing, predictable and re-
liable controlled applications require arrays with perfect
long range order. For example, “inhomogeneous broad-
ening” (the loss of sharp physical characteristics due to
nonuniformity in the size and imperfections in long-range
order) can lead to the following issues in quantum dot
based lasers: spectral hole burning limits gain, broadens
emission between 30 and 70 meV even for a 15% size
fluctuation, hinders the “promised” temperature stabi-
lized operation, and so on (for more information see Refs.
15–20 and references therein). Our goal in this paper is to
introduce a method that can be used to generate large-
scale perfectly ordered quantum dot arrays. In addition,
based on nonlinear stability analysis, we provide insights
into the conditions necessary for specific classes of
patterns.

I. INTRODUCTION

In the present context, self-assembly is the symmetry
breaking bifurcation of a homogeneous film formed by the
uniform deposition of material on a substrate. It occurs as a
result of competition between the wetting potential and elas-
tic and surface energies of the film. Typically, the homoge-
neous solution is stable for thin films and destabilizes beyond
a specific thickness. This “Stranski–Krastanow” growth has
emerged as an effective and economical way to generate
large-scale quantum dot arrays.21–25 Many film materials and
substrates have been identified where the scale of the quan-
tum dots is of the order of a few nanometers.26–29

It is easy to understand why large-scale self-assembled
arrays are seldom perfect. Consider first the case where the
deposition is isotropic. When the flat film destabilizes to a
self-assembled array, it loses orientational and translational
symmetries. Hence there is a “Goldstone mode” of equiva-
lent solutions, which in this case are related to each other by
translations and/or rotations. In other words, an array that
emerges spontaneously can have any orientation, and the
specific direction along which the arrays form depends on
uncontrollable factors like local stochastic effects. In a large-
scale array, sites far from each other emerge with indepen-
dent orientations. As these arrays grow beyond a character-
istic size, they fail to merge to a single domain, thus leaving
a pattern with multiply oriented domains and associated
defects.

Anisotropic systems, such as the model we study in the
present paper, are slightly different. Here, there is a preferred
orientation for the array. However, as we show below, even
in highly anisotropic systems there is a band of angles about
this preferred direction for which the arrays are linearly
stable. Consequently, large-scale ordered arrays do not form
spontaneously and the problem of defective arrays persists.
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There have been several proposals to guide the fabrica-
tion of large-scale ordered monolayer and quantum dot ar-
rays. The use of external electric fields30,31 was proposed to
drive quantum dot formation in a predesigned arrangement.
This is applicable for highly dielectric materials. The use of
a lithographically prepatterned substrate as a template to
guide the organization of the film �graphoepitaxy� has been
proposed.32,33 Here sites on the template are different from
those outside. In Shi et al.,34 we proposed regulating self-
assembled monolayer formation by applying a control on the
deposition using a mask. This mask is placed a finite distance
above the substrate and the deposited atoms are able to dif-
fuse to sites lying directly below the mask, thus allowing for
patterns to emerge even at these locations. The broad condi-
tions required to generate large-scale ordered monolayer ar-
rays were identified.34

The aim of the work reported here is to demonstrate that
the formation of three dimensional quantum dot arrays can
also be controlled, by suitable masking of the deposition, to
the point that perfect order may be achieved. In Sec. II, we
discuss energy components that determine the shape of the
film and outline a particular phenomenological model that
was introduced previously by other researchers. The results
reported here relate to the formation of square arrays of
quantum dots. In Sec. III, we determine conditions for their
spontaneous formation. The nonlinear stability analysis re-
quired to evaluate the stability maps for square arrays is
given in the Appendix. We find that even in highly aniso-
tropic systems, there is a range of orientations where square
arrays are linearly stable. Consequently, it is not possible to
obtain large-scale ordered square arrays without some form
of external guidance. In Sec. IV, we conduct numerical inte-
grations of the model to show that typical patterns generated
in the system are indeed defective, and that suitable masking
of the deposit can be used to create large-scale defect-free
ordered arrays. Section V provides a discussion of our results
and some caveats.

II. THE MODEL SYSTEM

The phenomenological model adopted in this paper was
introduced and analyzed in Ref. 22. We summarize some
conclusions in this section. A solid substrate occupies the
semi-infinite region z�0 �with normal �001��, and a film of
different material is slowly deposited epitaxially or through
chemical vapor deposition. The film shape is characterized

by the height h�x ,y� of the film, which is assumed to fill the
region 0�z�h�x ,y�. The substrate is assumed to remain
unchanged by the deposition and the strain on the film is
assumed to be small enough so that strain-induced renormal-
ization of the material properties can be ignored. Hence, the
energy of the system consists of three components.

�1� Wetting interaction between the substrate and the film,
which is typically appreciable only close to the interface.
The expression used in Ref. 22 is

w = − w0�h

�
�−�

exp�−
h

�
� . �1�

Here w0 represents the intensity of the wetting potential,
� is the characteristic wetting length, and � shows the
singularity of the wetting potential as h→0. Note that
the wetting potential favors a flat film.

�2� When lattice sizes of the substrate and the film are close,
atoms of the film tend to align with those of the
substrate.35,36 The stress caused by alignment increases
with the thickness of the film and can be released by
wrinkling.

�3� The free surface energy of the film. Isotropic surface
energy favors a smaller surface area, and hence a flat
film. However, if the surface energy � is anisotropic, it
can destabilize the homogeneous film. For films with
cubic crystal symmetry, it can be shown that22,23

� = − ���xh,�yh�� + 1
2v�2h , �2�

where ���xh ,�yh� is the anisotropic surface energy den-
sity associated with local surface slopes and the crystal
properties of the thin film and � is the curvature of the
free surface in the reference configuration �Fig. 2�.
When � is isotropic, � can be obtained in the current
configuration as

� =
�x

2h�1 + ��yh�2� − 2�xh�yh�xyh + �y
2h�1 + ��xh�2�

�1 + ��xh�2 + ��yh�2�3/2 . �3�

The second term of Eq. �2�, 1 /2v��h�2, is the additional
energy needed to account for the corners of the quantum
dots �if present�.

When the surface energy is isotropic, wetting potential
and surface energy effects stabilize the homogeneous film,
while elastic energy destabilizes it. The typical structures ob-
served following the instability in symmetric systems are
hexagonal arrays. In this paper, we wish to analyze self-
assembled square arrays—an important pattern style from a
technological standpoint. This requires the system to be an-

FIG. 1. �Color online� Self-assembled arrays of quantum dots in a large
domain. “Defects” in the pattern are readily apparent.

FIG. 2. �Color online� Lattice configuration of the film-substrate model.
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isotropic and, following Ref. 22, we incorporate the aniso-
tropy in the surface energy in our work. An additional impli-
cation of this choice is that surface energy can then
destabilize the homogeneous film. In Ref. 22 the elastic en-
ergy terms are neglected for simplicity, even though they will
be needed for quantitative comparison. We emphasize here
that the novel contributions of the present work are not re-
lated to the creation of the self-assembly model but rather a
thought process to take a pre-existing self-assembly model
and “force” it to create defect-free patterns. Our methodol-
ogy could very well be implemented �at the cost of addi-
tional complexity� with inclusion of elastic energy and pos-
sibly other refinements. With this caveat and these
approximations, the total chemical potential of the system is

� = � + w . �4�

Changes in the film shape are assumed to occur through
mass transport on the surface of the thin film. Near the onset
of instability of the homogeneous film, the derivatives of
h�x ,y� are expected to be small. Under these conditions, the
spatiotemporal dynamics of h�x ,y� reduces to37

�th =
DS	

RT
�s�
�h + v�2h − a��xh�2�x

2h − b��yh�2�x
2h

− b��xh�2�y
2h − a��yh�2�y

2h + 4b�xh�yh�x�yh + w� ,

�5�

where D is the surface atom diffusivity �cm2 /s�, R is the
Boltzmann constant �J /K�, T is absolute temperature �K�,
and 	 is the molecular volume. a and b are parameters that
quantify the anisotropy of the surface energy.

Rescaling in-plane distances by l1= �v /
�1/2, the normal
distances by l2= �v /a�1/2, and the time scale by �
=v2 / �DS	 /RT�
3, the equation is reduced to

�th = �s��h + �2h − ��xh�2�x
2h − q��yh�2�x

2h − q��xh�2�y
2h

− ��yh�2�y
2h + 4q�xh�yh�x�yh + W� �6�

where q=b /a and W= �a��+1�/2 /
2v��−1�/2�w. Equation �6� is
the model used in our studies. In Sec. III, we outline the
linear stability analysis to study the destabilization of the
homogenous film. The nonlinear stability analysis to evaluate
stability domains for striped and square arrays is given in the
Appendix.

III. STABILITY ANALYSIS FOR SQUARE ARRAYS

Before conducting the stability analysis, we emphasize
that our primary aim is to study square quantum dot arrays,
which are known to stabilize when the surface energy aniso-
tropy is sufficiently high.22 Accordingly, we analyze the ex-
treme limit of anisotropy when q is zero. Our aim in this
section is to show that even when the anisotropy is extreme,
the orientation of linearly stable square arrays in not unique.
We make the simplification that the deviation of the free
surface of the thin film away from the flat surface is negli-
gible during the quantum dot formation, and thus approxi-
mate the surface Laplacian in Eq. �6� by the planar Laplac-
ian. The corrections due to this approximation are of a higher
order than terms considered here.

Expanding the homogeneous film thickness as h�x ,y�
=h0+ h̃ei�kxx+kyy�e
t and expanding to linear order22 gives the
linear dispersion relation �see Fig. 3�


 = − k2��k2 − 1
2�2 + r� . �7�

Here 
 is the linear growth rate of the perturbation ��eik·x�
of a planar film with initial thickness h0, k denotes the mag-
nitude of the wave vector in the reciprocal space, and r
= ��W /�h�h=h0

− 1
4 is the bifurcation parameter.

From Eq. �7�, the critical wave number, where the �lin-
ear� growth away from the homogeneous film is fastest, is
found to be kc= �2+�1+12r /6�1/2. The next step is to iden-
tify the stability map for square arrays. We use a symmetric
�in x and y� formulation of the traditional multiple scale
analysis for this purpose.38,39 The analysis is outlined in the
Appendix. We find that even when the anisotropy is extreme,
there is no unique orientation for stable square arrays. In fact,
there is a finite range of angles where they are linearly stable.
Consequently, typical large-scale arrays can be expected to
contain domain walls and defects.

As an example, we consider the deposition of germa-
nium on a silicon �001� substrate �Fig. 4�. The relevant con-
trol parameters for this case are a=11.1 J /m2, w=8.2
�105 J /m3, 
=0.2 J /m2, v=5.0�10−19 J, and �=3.22 The
thickness of the film was chosen to be 3.82 nm. Under these
conditions, nonlinear stability analysis shows that square ar-
rays are stable when 
�27.5°. The striped arrays are un-

FIG. 3. The linear dispersion curve. The conservation of material is re-
flected in the vanishing of 
 at k=0.

FIG. 4. Stability boundaries of square patterns for control parameters ap-
propriate for the slow deposition of germanium on a silicon �001� substrate.
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stable here. The entire process of the destabilization of a
striped pattern to a square array is demonstrated by an inte-
gration of Eq. �6� in a domain of size 24�24 nm2 shown in
Fig. 5.

Note that if a suitable model system for a specific ex-
perimental setup is not available, parameter ranges where
square arrays are stable need to be determined experimen-
tally.

IV. LARGE-SCALE DEFECT-FREE QUANTUM
DOT ARRAYS

Although self-assembly can be an inexpensive way to
create quantum dot arrays, as alluded to earlier, self-
assembled arrays are irregular. In a previous study, we pro-
posed that large-scale ordered monolayer patterns can be cre-
ated by a suitable masking of the deposition.34 There, it was
also shown that geometrical properties of the mask can be
deduced by studying the spatial-temporal dynamics of mono-
layer growth. In this section, we wish to demonstrate that the
same technique can be used as a control to create perfectly
ordered three dimensional quantum dot arrays as well.

The integration of the model system �6� was conducted
using the pseudospectral method. It provides a highly effi-
cient implementation and boosts the computational speed. In
Fourier space, Eq. �6� can be expressed as

�H

�t
= k2H − k6H + k2N , �8�

in which H=H�k� is the Fourier transform of h�x ,y� �i.e.,
H�k�=	h�x ,y�eik·x�, k is the magnitude of k, and N�k� de-
notes the Fourier transform of the nonlinear terms in Eq. �6�.

Equation �8� was integrated using a semi-implicit
scheme, where linear terms are calculated exactly, and the
nonlinear terms implicitly to ensure numerical stability with-
out loss of accuracy. Then, Eq. �8� is simplified to

Ht+1 =
Ht + k2Nt�t

1 − k4�t + k6�t
, �9�

where the superscripts indicate the time and �t is the time
step that is set to 0.001 for our simulation. We use periodic
boundary conditions and a domain of size 971�971 nm2.
Each side of the domain is partitioned into 1024 lattice
points.

We have chosen a highly anisotropic model �q=0�, and
the square arrays are mostly aligned in the x and y directions.
However, as discussed before all square arrays oriented by
an angle less than 27.5° from it are also linearly stable for
our film, whose thickness is 3.82 nm. As a result of the

competition between these arrays, large aspect ratio systems
contain multiple domains, grain boundaries, and defects, see
Fig. 6�a�.

On the other hand, in a sufficiently small region �specifi-
cally, one smaller than the characteristic domain size�, self-
assembled arrays are ordered. Figure 6�b� shows such a pat-
tern formed in a domain with periodic boundary conditions.
The creation of perfect quantum dot arrays for this domain is
repeatable. Can this observation be exploited to prevent de-
fect formation in large-scale arrays? For monolayer self-
assembly, we proposed the use of a mask to control the depo-
sition in order to partition a large area into smaller
subregions in which ordered self-assembled arrays could
form. We next demonstrate that the same algorithm applies
to quantum dot formation as well.

Figure 7�a� shows the setup with the mask placed a finite
distance above the substrate. �Note that we have assumed
that the deposition occurs normal to the substrate, and hence
our results are independent of the distance between the mask
and the substrate.� Since the self-assembled array has square
symmetry the mask is required to have this symmetry as

FIG. 5. �Color online� The transition from an unstable stripe pattern to the
square array of quantum dots.

FIG. 6. �Color online� Square arrays obtained from the numerical integra-
tion of Eq. �6�. The pattern is generated with the material parameters a
=11.1 J /m2, w=8.2�105 J /m3, 
=0.2 J /m2, v=5.0�10−19 J, and �=3.
�a� The domain of size 971�971 nm2 units with periodic boundary condi-
tions. �b� The domain of size 121�121 nm2 units with periodic boundary
conditions.

FIG. 7. �Color online� An ordered square array generated when the deposi-
tion is controlled with a suitable mask shown in �a�. �b� The shape of the
film immediately after the deposition. �c� The quantum dot array that results
from self-assembly. �d� The arrays is perfectly ordered as can be seen from
an expanded view. Note that as each subregion in �a� begins to destabilize,
the self-assembled arrays form with their symmetry axes parallel to the
directions of the mask.
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well.34 Geometrical characteristics of the mask can be de-
duced by the following considerations. The width of the
stripes of the mask is required to be smaller than the diffu-
sion length of the deposit on the substrate, since we need
atoms to be able to move to all sites below the mask. On the
other hand, openings of the mask need to be smaller than the
characteristic domain size of the quantum dot array.34 Inter-
estingly, both these quantities can be obtained purely experi-
mentally by an analysis of the spatiotemporal dynamics of
self-assembly in a large domain.34 Specifically, it is known
that the structure factor S�t� relaxes in two stages. During the
first, domain-forming stage S�t�� t−1/2. A slower, domain-
coarsening stage follows. The diffusion length of the atoms
deposited on the substrate is the inverse of S�t� at the end of
the domain forming stage, while the characteristic domain
size is the inverse of the long-time value of S�t�.34

For our control parameters, the width of the stripes of
the mask is �20 nm and the distance between stripes is
�42 nm. Such masks can be manufactured with current
technology40 using very elaborate methods. However, note
that the mask can be used repeatedly. The mask itself is not
perfect. Current etching techniques introduce a 5%–10%
level of stochasticity in the width of a stripe where width is
�20 nm.40 In our integration �Fig. 7� we have used masks
with this level of irregularity. Imperfections in the mask do
not preclude the formation of perfect quantum dot arrays.

Following the stability analysis of Sec. III and the Ap-
pendix, we use an initial thickness of the germanium film of
�3.82 nm with a small amount of random noise. Initially,
there is no deposit at locations below the mask. Figure 7�b�
shows the initial deposit of the film on the Si substrate. The
system is integrated from these initial conditions. The film in
each region self-assembles independently. However, in each
domain the orientation defined by the mask provides a
�weak� guide to the square array; in fact, the two symmetry
axes of the self-assembled square array lie parallel to the
directions of the mask. Furthermore, diffusion of the film
material allows for the quantum dot array to extend to sites
below the mask. Consequently, as seen from Figs. 7�c� and
7�d� the final self-assembled array is ordered on the large
scale.

V. CONCLUSIONS AND DISCUSSION

The question we address in this paper is whether a gen-
eral scheme can be devised to prevent the formation of de-
fects in self-assembled arrays of quantum dots. We studied a
highly anisotropic model system where defects are least
likely to form. However, we find that even in this case,
square arrays with multiple orientations can be linearly
stable, thus setting the stage for the spontaneous generation
of defective structures. Indeed, as seen in Fig. 6, square ar-
rays formed under these conditions are imperfect.

We note, however, that self-assembly can give ordered
arrays in sufficiently small regions presumably due to the
slight bias provided by the boundary conditions. Our pro-
posal, based on this observation, was to partition the domain
into smaller segments by selective masking of the deposit.
Interestingly, geometrical properties of the mask can be de-

duced by analyzing the dynamics of the structure factor in an
experimental realization of self-assembly in the system.

We hope our work motivates an experimental study of
the proposed algorithm to create large-scale ordered quantum
dot arrays. As we outlined for the deposition of germanium
on a Si �001� substrate, masks at the required size can be
manufactured using current technology. The level of errors
incurred in the manufacturing process does not preclude the
self-assembly of large-scale ordered arrays.
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APPENDIX: MULTIPLE-SCALE EXPANSION
OF THE NONLINEAR TERMS
IN THE EVOLUTION EQUATION

The starting point of nonlinear stability analysis is to
note that the destabilization of the homogeneous film leads to
local arrays �striped, square, and hexagonal� that vary over a
scale much larger than the characteristic scale of the array. A
systematic expansion is implemented by writing variations
on the large scale by rescaling spatial variables x and y by a
factor �.41 Specifically,

X = �x, Y = �y . �A1�

Linear expansion of the spatiotemporal dynamics near the
onset reveals that the temporal variable t and the bifurcation
parameter contribute at the order of �2. Thus, the appropriate
scalings are

T = �2t, r = �2r2. �A2�

Thus, derivatives of the film thickness are expanded as

�x = �x + ��X, �y = �y + ��Y, �t = �2�T, �A3�

where �x, �y act only on the “fast” variables �i.e., on the scale
of the basic array� and �X, �Y act only on the “slow” variables
�i.e., changes in the arrays�. Following this separation the
slow and fast variables are viewed as independent.

The operators in Eq. �6� can be divided into linear and
nonlinear components L�h� and N�h�. L�h� can be expanded
in powers of � as

L = L0 + �L1 + �2L2 + �3L3 + h.o.t., �A4�

where

L0 = ��x
2 + �y

2�2�1 + �x
2 + �y

2� ,

L1 = 2��X�x + �Y�y��2��x
2 + �y

2� + 3��x
2 + �y

2�2� ,

L2 = ��X
2 + �Y

2���x
2 + �y

2��2 + 3��x
2 + �y

2��

+ 4��X�x + �Y�y�2�1 + 3��x
2 + �y

2�� ,
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L3 = 4��X�x + �Y�y��5��X�x + �Y�y�2 + 3��X�x − �Y�y�2

+ �x
2 + �y

2� ,

and h.o.t. denotes higher order terms.
The thickness of the thin film h�x ,y� is expanded as

h = h0 + �h1 + �2h2 + �3h3 + �4h4 + h.o.t. �A5�

Next, expanding Eq. �6� by substituting Eqs. �A3�–�A5� we
find that

L�h� → �L0 + �L1 + �2L2 + �3L3�

��h0 + �h1 + �2h2 + �3h3 + �4h4�

= �L0h1 + �2�L0h2 + L1h1� + �3�L0h3 + L1h2 + L2h1�

+ �4�L0h4 + L1h3 + L2h2 + L3h1� . �A6�

The corresponding expansion of N�h� in the small-slope ap-
proximation is derived as follows:

N�h� = ��− ��xh�2�x
2h − q��yh�2�x

2h − q��xh�2�y
2h

− ��yh�2�y
2h + 4q�xh�yh�x�yh + W� . �A7�

The first term in N�h� becomes

����xh�2�x
2h� → ���x + ��X�2 + ��y + ��Y�2�����x + ��X���h1 + �2h2 + �3h3 + �4h4��2��x + ��X�2��h1 + �2h2 + �3h3 + �4h4��

= �3��x
2 + �y

2����xh1�2�x
2h1� + �4���x

2 + �y
2����xh1�2��x

2h2�� + 2��x
2 + �y

2����xh1�2�x�Xh1� + 2��x
2 + �y

2���xh1�xh2�x
2h1�

+ 2��x
2 + �y

2���xh1�Xh2�x
2h1� + 2��X�x + �Y�y����xh1�2�x

2h1�� + h.o.t. �A8�

The other terms in N�h� can be derived in the similar manner,

q����yh�2�x
2h� → q���x + ��X�2 + ��y + ��Y�2�����y + ��Y���h1 + �2h2 + �3h3 + �4h4��2��x + ��X�2��h1 + �2h2 + �3h3 + �4h4��

= q�3��x
2 + �y

2����yh1�2�x
2h1� + q�4���x

2 + �y
2����yh1�2��x

2h2�� + 2��x
2 + �y

2����yh1�2�x�Xh1�

+ 2��x
2 + �y

2���yh1�yh2�x
2h1� + 2��x

2 + �y
2���yh1�Yh2�x

2h1� + 2��X�x + �Y�y����yh1�2�x
2h1�� + h.o.t., �A9�

����yh�2�y
2h� → ���x + ��X�2 + ��y + ��Y�2�����y + ��Y���h1 + �2h2 + �3h3 + �4h4��2��y + ��Y�2��h1 + �2h2 + �3h3 + �4h4��

= �3��x
2 + �y

2����yh1�2�y
2h1� + �4���x

2 + �y
2����yh1�2��y

2h2�� + 2��x
2 + �y

2����yh1�2�y�Yh1� + 2��x
2 + �y

2���yh1�yh2�y
2h1�

+ 2��x
2 + �y

2���yh1�Yh2�y
2h1� + 2��X�x + �Y�y����yh1�2�y

2h1�� + h.o.t., �A10�

q����xh�2�y
2h� → q���x + ��X�2 + ��y + ��Y�2�����x + ��X���h1 + �2h2 + �3h3 + �4h4��2��y + ��Y�2��h1 + �2h2 + �3h3 + �4h4��

= q�3��x
2 + �y

2����xh1�2�y
2h1� + q�4���x

2 + �y
2����xh1�2��y

2h2�� + 2��x
2 + �y

2����xh1�2�y�Yh1�

+ 2��x
2 + �y

2���xh1�xh2�y
2h1� + 2��x

2 + �y
2���xh1�Xh2�y

2h1� + 2��X�x + �Y�y����xh1�2�y
2h1�� + h.o.t., �A11�

4q���xh�yh�x�yh� → 4q���x + ��X�2 + ��y + ��Y�2�����x + ��X���h1 + �2h2 + �3h3 + �4h4��

����y + ��Y���h1 + �2h2 + �3h3 + �4h4����x + ��X���y + ��Y���h1 + �2h2 + �3h3 + �4h4��

= 4q�3��x
2 + �y

2���xh1�yh1�x�yh1� + 4q�4���x
2 + �y

2���xh1�yh1�x�yh2� + ��x
2 + �y

2���xh1�yh1�x�Yh2�

+ ��x
2 + �y

2���xh1�yh1�X�yh2� + ��x
2 + �y

2���xh1�yh2�x�yh1� + ��x
2 + �y

2���xh2�yh1�x�yh1�

+ ��x
2 + �y

2���xh1�Yh1�x�yh1� + ��x
2 + �y

2���Xh1�yh1�x�yh1� + 2��X�x + �Y�y���xh1�yh1�x�yh1�� + h.o.t.

�A12�

For the wetting potential, we need to perform Taylor expansion on W, which leads to

�W = ���x + ��X�2 + ��y + ��Y�2��w0 + w1�h + w2�h2 + w3�h3�

= �� 1
4 ��x

2 + �y
2�h1� + �2� 1

4 ��x
2 + �y

2�h2 + 1
2 ��X�x + �Y�y�h1 + w2��x

2 + �y
2�h1

2� + �3� 1
4 ��x

2 + �y
2�h3 − r2��x

2 + �y
2�h1

+ 2w2��x
2 + �y

2��h1h2� + w3��x
2 + �y

2�h1
3 1

2 ��X�x + �Y�y�h2 + 2w2��X�x + �Y�y�h1
2 + 1

4 ��X
2 + �Y

2�h1�
+ �4� 1

2 ��X�x + �Y�y�h3 + 1
4 ��x

2 + �y
2�h4 − r2��x

2 + �y
2�h2 + 2w2��x

2 + �y
2��h1h3� + w2��x

2 + �y
2�h2

2 + 3w3��x
2 + �y

2��h1
2h2�

− 2r2��X�x + �Y�y�h1 + 4w2��X�x + �Y�y�h1h2 + 2w3��X�x + �Y�y�h1
3 + 1

4 ��X
2 + �Y

2�h2 + w2��X
2 + �Y

2�h1
2� , �A13�
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where �h=h−h0=�h1+�2h2+�3h3+�4h4+h.o.t. w0, w1, and
w2 are the coefficients of the Taylor expansion of W from the
lowest order to the third order,

w1 =
1

4
− r2�2 =

�

�h

− w�h

�
�−�w

e−h/��
h=h0

=
wc

�
��w +

ch0

�
�� ch0

�
�−��w+1�

e−ch0/�, �A14�

w2 =
�2

�h2
− w�h

�
�−�w

e−h/��
h=h0

= −
wc2

2�2
��w +
ch0

�
�2

+ �w�� ch0

�
�−��w+2�

e−ch0/�,

�A15�

w3 =
�3

�h3
− w�h

�
�−�w

e−h/��
h=h0

=
wc2

6�2
��w +
ch0

�
�3

+ �w�3
ch0

�
+ 3� + 2��

�� ch0

�
�−��w+3�

e−ch0/�. �A16�

Equating terms with the same power of � in the fully ex-
panded Eq. �6�, we get a set of linear differential equations.
At the order of �1, we find that

L0h1 + 1
4 ��x

2 + �y
2�h1 = 0 → ��x

2 + �y
2���x

2 + �y
2 + 1

2�2h1 = 0.

�A17�

The solutions to this equation are linear combinations of har-
monic functions with a wave-number kc. Note that the solu-

tion to ��x
2+�y

2�h1=0 is unbounded, and hence discarded.
Square arrays, which are of primary interest to the authors,
can be expanded as

h1 = A11e
ik1·x + A12e

ik2·x + c.c., �A18�

where k1=kc�cos 
x̂+sin 
y� and k2=kc�−sin 
x̂+cos 
y�
are a pair of wave vectors perpendicular to each other and
c.c. represents the complex conjugate.

At order �2, we find

L0h2 + L1h1 + 1
4 ��x

2 + �y
2�h2 + 1

2 ��X�x + �Y�y�h1

+ w2��x
2 + �y

2�h1
2 = 0. �A19�

Using the expression �A18� we find

��x
2 + �y

2���x
2 + �y

2 + 1
2�2h2 + w2��x

2 + �y
2�h1

2 = 0. �A20�

The solution to Eq. �A20� is found to be

h2 = A21e
2ik1·x + A22e

2ik2·x + A23e
i�k1+k2�·x + A24e

i�k1−k2�·x

+ G + c.c., �A21�

where

A21 = − 4
9w2A11

2 , A22 = − 4
9w2A12

2 ,

�A22�
A23 = − 8w2A11A12, and A24 = − 8w2A11Ā12.

G is the Goldstone �zero wave vector� mode.42 Since this
mode is translational invariant, it usually decouples from
other modes in the envelope equation.

At the order of �3, we have

�Th1 = L0h3 + L2h1 + L1h2 − ��x
2 + �y

2����xh1�2�x
2h1� − q��x

2 + �y
2����yh1�2�x

2h1� − ��x
2 + �y

2����yh1�2�y
2h1�

− q��x
2 + �y

2����xh1�2�y
2h1� − 4q��x

2 + �y
2���xh1�yh1�x�yh1� + 1

4 ��x
2 + �y

2�h3 − r2��x
2 + �y

2�h1 + 2w2��x
2 + �y

2��h1h2�

+ w3��x
2 + �y

2�h1
3 + 1

2 ��X�x + �Y�y�h2 + 2w2��X�x + �Y�y�h1
2 + 1

4 ��X
2 + �Y

2�h1. �A23�

The repeated application of Fredholm alternative on Eq. �A23� gives us

�A11

�T
= �cos 
�X + sin 
�Y�2A11 −

1

8
�A11�2A11�cos4 
 + 6q cos2 
 sin2 
 + sin4 
� −

1

4
�A12�2A12�q cos4 
 − 4q cos2 
 sin2 


+ 2 cos2 
 sin2 
 + q sin4 
� +
1

2
r2A11 − w2�Ā11A21 + A11G + A12A24 + Ā12A23� −

1

2
w3�3�A11�2A11 + 6�A12�2A11� ,

�A24�

�A12

�T
= �− sin 
�x + cos 
�y�2A12 −

1

8
�A12�2A12�cos4 
 + 6q cos2 
 sin2 
 + sin4 
� −

1

4
�A11�2A11�q cos4 
 − 4q cos2 
 sin2 


+ 2 cos2 
 sin2 
 + q sin4 
� +
1

2
r2A12 − w2�Ā12A22 + A12G + A11A24 + Ā11A23� −

1

2
w3�3�A12�2A12 + 6�A11�2A12� .

�A25�
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For the case q=0 �highly anisotropic surface energy�, Eqs.
�A24� and �A25� can be rescaled back to normal state vari-
ables. Defining A1=�A11 and B=�G, then we have

�A1

�t
= �cos 
�x + sin 
�y�2A1 + g1�A1�2A1 + g2�A2�2A2

− w2A1B +
1

2
rA1, �A26�

�A2

�t
= �− sin 
�x + cos 
�y�2A2 + g1�A2�2A2 + g2�A1�2A1

− w2A2B +
1

2
rA2, �A27�

where g1= 4
9w2

2− 1
8 �cos4 
+sin4 
�− 3

2w3 and g2=16w2
2

− 1
2cos2 
 sin2 
−3w3.

The expansion has to be carried out at order �4 to derive
the dynamics for the zero frequency mode,

�B

�t
=

1

4
��x

2 + �y
2�B + 2w2��x

2 + �y
2���A1�2 + �A2�2� . �A28�

Equations �A26�–�A28� form the amplitude equations for
square arrays, which consist of two stripe arrays normal to
each other. The amplitude equation for striped arrays can be
obtained by setting the amplitude of one of the arrays to
zero, giving

�A

�t
= �cos 
�x + sin 
�y�2A + g1�A�2A − w2AB +

1

2
rA ,

�A29�

�B

�t
=

1

4
��x

2 + �y
2�B + 2w2��x

2 + �y
2��A�2. �A30�

The steady-state solution43 to Eqs. �A26�–�A28� is the per-
fect square pattern A1=R0eikx, A2=R0eiky with 
=0 and B
=0, and

k2 = g1R0
2 + g2R0

2 + 1
2r .

In order to examine the stability of a square array, we
perturb the system as

A1 = R0�1 + a1�eikx+�, A2 = R0�1 + a2�eikx+�, B = b .

�A31�

Substituting Eq. �A31� into Eqs. �A26�–�A28�, and separat-
ing the real and imaginary terms, we have

�ta1 = �x
2a1 − 2k�x� + 2g1R0

2a2 − w2b , �A32�

�ta2 = �y
2a2 − 2k�y� + 2g1R0

2a1 − w2b , �A33�

�tb = 1
4 ��x

2 + �y
2�b + 4R0

2w2��x
2 + �y

2��a1 + a2� . �A34�

The infinitesimal amplitude perturbation can be expressed in
Fourier modes

a1 = â1e
t+imx+ily, a2 = â2e
t+imx+ily, b = b̂e
t+imx+ily .

With fixed � and �, we may find out the growth rates cor-
responding to the amplitude modes �â1+ â2� and �â1− â2� are


1 = 2R0
2�g1 − g2� , �A35�


2 = 2R0
2�g1 + g2� . �A36�

Square arrays are stable when 
1�0 and 
2�0. Similarly,
the stability conditions for a striped array can be derived as


1 = − 5
8m2 + g1R0

2 + �− 3
4m2g1R0

2 + �g1R0
2�2 + 4w0

2m2,

�A37�


2 = − 5
8m2 + g1R0

2 − �− 3
4m2g1R0

2 + �g1R0
2�2 + 4w0

2m2.

�A38�

Note that Eqs. �A35� and �A36� and Eqs. �A37� and �A38�
are the general stability conditions for square and striped
patterns, respectively. Now, we are able to deduce the types
of patterns that can arise for film growth on specific sub-
strate, provided all the material properties are known.
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