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Much work has been done in the approximation of the stress state of microelectronic interconnects
on chips. The thermally induced stresses in passivated interconnects are of interest as they are used
as input in interconnect reliability failure models~stress-driven void growth,
electromigration-driven void growth!. The classical continuum mechanics and physics typically
used is, however, intrinsically size independent. This is in contradiction to the physical fact that at
the size scale of a few nanometers, the elastic state is size dependent and a departure from classical
mechanics is expected. In this work, we address the various physical causes~and the affiliated
mathematical modeling! of the size dependency of mechanical stresses in nanointerconnects. In
essence, we present scaling laws for mechanical stresses valid for nanosized interconnects. ©2004
American Institute of Physics.@DOI: 10.1063/1.1632011#

I. INTRODUCTION

The technological importance of assessing the reliability
of conventional microelectronic interconnects can hardly be
overemphasized. One of the important failure modes in elec-
tronic systems and also a major impediment to the develop-
ment of miniaturized electronics is the mechanical failure of
interconnects during fabrication and operation.1–7 A sche-
matic of a typical passivated interconnect is shown in Fig. 1.
The passivation process, whereby a dielectric oxide layer is
deposited on the interconnect structure, is necessary both for
the proper functioning of several devices as well as for en-
vironmental protection. Passivation is typically accom-
plished at high temperatures~;400 °C!. Due to thermal ex-
pansion mismatch between the various constituents of the
electronic system, subsequent cooling to operational tem-
peratures~;25 °C! leads to the development of residual
stresses in interconnects. These mechanical stresses gener-
ated during the fabrication process~and modified in the sub-
sequent operational electrical and thermal environment! are
then responsible for the eventual nucleation, evolution, and
coalescence of voids. The final void coalescence, when
spread across the thickness of the interconnect, causes com-
plete mechanical failure~and often catastrophic electrical
failure! ~e.g., Refs. 8 and 9 and references therein!. This
problem is exacerbated by technology-driven reduction in
interconnect and chip feature sizes. It is worth recalling that
the various electronic industry roadmaps~e.g., the ‘‘Interna-

tional Technical Roadmap for Semiconductors’’10! have
forecast interconnect sizes of 20–30 nm by the year 2009.
Considering the rapid advances being made in nanowire
technology for use in nanoelectronics,11 the scaling of me-
chanical stresses in nanointerconnects~and hence their reli-
ability! is of crucial importance. The scaling of mechanical
stresses as the interconnect dimensions shrink also has im-
portant implications for the continued validity of the so-
called Moore’s law.12 Worth noting is that size effects in
interconnects at less than 65 nm and the consequent impact
on reliability are considered to be one of the key technologi-
cal challenges.10 Kaloyeros et al.13 provide an interesting
perspective on the use of nanotechnology for nanointercon-
nects.

Clearly, mechanical stresses are only one of the several
issues that need to be addressed in regard to nanointercon-
nects. Other aspects that may be as important as or even
more important than mechanical stresses are electromigra-
tion, dimensional control of processing/fabricating intercon-
nects at the nanoscale, electrical design issues, suitable low-k
dielectric materials, etc. For further information and discus-
sion, see, for example, Panget al.14 This work is limited in
its scope; only scaling of mechanical stresses for nanointer-
connects is addressed. With the current lack of such a scaling
model, one can only speculate about the nature of stresses in
nanointerconnects. Will they increase dramatically so as to
override and cause the early demise of Moore’s law or de-
crease sufficiently to exclude mechanical stresses from the
list of reliability concerns? Perhaps the change in mechanical
stresses in the nanointerconnects would be insignificant so
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that classical mechanics may continue to be used at such
small length scales, and attention to the scaling of other
~aforementioned! nanointerconnect related issues must then
be intensified. The present work, based on theoretical con-
siderations, attempts to provide answers to such questions
and speculations.

While a tremendous amount of work~within the context
of classical continuum mechanics! has been done on assess-
ing the mechanical stress state as well as the reliability of
on-chip interconnects in the past two decades, the scaling of
stresses in nanointerconnects~which requires incorporation
of size effects! has not been addressed yet. This limitation of
existing literature pertains to both detailed numerical
simulations1–3 as well as to approximate analytical
models.4–7 In short, all existing models will predict the same
stress state regardless of the absolute size of the interconnect
~as long as it is scaled larger or smaller in a self-similar
fashion!. The size independence of classical mechanics~and
by extension all previous work! is in contradiction to the
physical fact that, at the size scale of a few nanometers,
deformations and elastic states are size dependent, and a
qualitative departure from classical mechanics is expected
~of course, the relevant question then is how great is this
departure for interconnects of the size of, say, 20–30 nm?!.
While it is clearly possible that once all necessary scaling
laws have been established classical mechanics may turn out
to be not so bad an approximation, such a conclusion~or the
lack of it! cannot be reached via classical continuum me-
chanics models.

Even though all existing work on interconnect stress and
reliability estimation is size independent and hence inappro-
priate for extension to nanointerconnects, to establish the ap-
propriate context, a brief review of the representative exist-
ing work on the estimation of stresses in microinterconnects
is provided below.

Some of the earliest work on stress determination in pas-
sivated electronic interconnects is due to Niwaet al.,5 Kato
et al.,15 and Korhonenet al.4 While the last work was impor-
tant in its discussion of various stress generation and relax-
ation mechanisms, the first two are often cited for their ana-
lytical model. References 5 and 15 employed Eshelby’s
treatment16 of an embedded inclusion in an infinite elastic
matrix to formulate their closed-form model. In their model,
the interconnect is a circular/elliptical cylindrical inclusion
embedded in an ‘‘infinite amount’’ of passivation material
while subjected to a thermal mismatch eigenstrain. The last

assumption allowed them an almost direct use of Eshelby’s
solution of an embedded inclusion containing a stress-free
eigenstrain located in an infinite elastic medium. Subse-
quently, their model was improved by various researchers,
e.g., Korhonenet al.4 distinguished between the interconnect
and passivation elastic constants. Among some recent work,
Wikstromet al.1 presented a simple approach to approximate
volume-averaged stresses. Their model is applicable only for
a certain range of interconnect aspect ratios. Sharmaet al.6

made an improvement to the Niwaet al. model5 by relaxing
the restriction that the interconnect is surrounded by an infi-
nite amount of passivation. In reality, the free surface of the
passivation is often in close proximity to the interconnect,
which can alter some aspects of the stress distribution. The
work of Sharmaet al.6 employs the solution of an inclusion
in half space~using an ‘‘image force’’ type analysis! to take
this feature into account. More recently, a shear-lag type ap-
proach was adopted by Hsueh,7 who presents a fairly com-
prehensive model of the stress state in rectangular passivated
interconnects.

In the present work, we systematically track the two
main physical causes of the size dependency of elasticity at
the nanoscale. Based upon the postulated physical mecha-
nisms of the elastic-state size dependency, we present~ap-
proximate! closed-form models for the stress state of
nanointerconnects. In Sec. II, the two main physical causes
of the size dependency of the elastic state are discussed.
Based on the proposed physical mechanisms, an appropriate
mathematical framework is developed for the analysis of a
passivated metal interconnect. Numerical results and discus-
sion are relegated to Sec. III. Of considerable importance are
the limitations of this work. Those are also discussed in Sec.
III. Closure is provided in Sec. IV.

II. SCALING LAWS FOR MECHANICAL STRESSES
VALID FOR NANOSIZED INTERCONNECTS

Within the framework of formulating a size-dependent
field theoretic modification of continuum theory valid at the
nanoscale, we postulate two main causes of size dependency
in elasticity.

(a) Interface/surface effects. For structures with sizes
greater than 50 nm, typically, the surface-to-volume ratio is
negligible and the deformation behavior is governed by clas-
sical bulk strain energy. However, at submicrometer inclu-
sion ~interconnect! length scales, the properties of the inclu-
sion surface/interface are expected to play a role in the
determination of the nanoinclusion~nanointerconnect! elastic
state. This increasing role of surface or interface elasticity at
smaller length scales induces a size effect in the otherwise
classical size-independent elastic solutions.

(b) Nonlocal interactions. Classical elasticity is essen-
tially a local theory and thus is considered to be valid only in
the ‘‘long’’ wavelength limit. Each material point in the con-
tinuum theory represents the smeared or coarse-grained de-
formation behavior of its micro-~or more appropriately
nano!constituents. This coarse-grained behavior of a suitably
large, statistically representative number of atoms and grains
is represented by the usual bulk elastic constants of the ma-
terial. At length scales where the discrete nature of matter

FIG. 1. Schematic of a passivated interconnect on chip.
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becomes apparent, additional physical phenomena not
readily included in the classical continuum mechanics frame-
work become important. The typical coarse-graining implicit
in the use of classic elastic constants becomes inadequate.
Thus, on physical grounds, one can conceive that, at the size
scale of a few nanometers, molecular interactions are in-
creasingly nonlocal, thus violating the coarse-grained classic
elastic assumption of locality. Simply put, stress-strain at a
point at the nanoscale should depend on the elastic state of
all surrounding neighborhood points rather than the state just
at that point~as assumed by classical elasticity!.

A. Derivation of stresses at the nanoscale:
Interface effects

It should be pointed out that the physical mechanisms
discussed in the preceding section hardly operate indepen-
dently. It is convenient, however, to first address the two
mechanisms separately and combine them later. This will
facilitate qualitative understanding of each physical mecha-
nism.

A generic and mathematical exposition on surface/
interface elasticity has been presented by Gurtin and
co-workers.17–19The interface/surface stress tensorsS is re-
lated to the deformation-dependent surface energyG(«ab)
by

sS5t0d1
]G

]«
. ~1!

Here, « is the 232 strain tensor for surfaces,d repre-
sents the Kronecker delta for surfaces, whilet0 is the
deformation-independent surface/interfacial tension. Both
boldfaced and index notation will be used as convenient.
Note that the concepts of surface tension, surface stress, and
surface energy are often confused and used interchangeably.
Only for liquids are all three the same. For solids, they are
vastly different and must be carefully distinguished. See, for
example, the excellent review article by Ibach.20 Isotropic
behavior is assumed throughout. In the bulk of the material
~i.e., within both the interconnect and the host passivation
material but not on the interface!, the equilibrium and con-
stitutive equations of infinitesimal classical elastostatics
without body forces are satisfied:

div sB50, ~2a!

sB5lI3Tr~«!12m«, ~2b!

Where applicable, superscriptsB and S indicate bulk and
surface, respectively. At the interface, the concept of surface
or interface elasticity17–19 is introduced, which is missing
from the classical elasticity formulation:

@sB
•n#1divs sS50, ~3a!

sB:~n^ n!5sS:k, ~3b!

sS5t0I212~mS2t0!«S1~lS1t0!Tr~«S!I2. ~3c!

Here,l andm are the Lame´ constants for the isotropic bulk
material. Isotropic interfaces or surfaces can be characterized
by surface Lame´ constantslS, mS. Square brackets indicate
a jump across the interface. Here,k represents the second-

rank curvature tensor of the surface/interface, andn is the
normal vector on the interface. It is to be noted that only
certain strain components appear within the constitutive law
for surfaces due to the 232 nature of the surface stress
tensor~i.e., strains normal to the surface are excluded!. Thus,
I2 represents the 232 identity tensor whileI3 represents the
same for the bulk second-rank tensor. Tr indicates the trace
operation. In the absence of surface terms, Eqs.~3! reduce to
the usual normal traction continuity equations of classical
elasticity. divs indicates the surface divergence.17

For simplicity and to avoid confounding the nanoscale
physics with second-order effects, we shall assume that the
interconnect is located in an infinite amount of passivation.
This assumption is similar to that used in previous analytical
work.4,5 Unlike the former and like the latter work, we will
take into account the differing elastic constants of the passi-
vation and interconnect. Consider now a cylindrical intercon-
nect of radiusR0 , located in a passivation matrix and under-
going a dilatation eigenstrain, i.e., thermal expansion
mismatch strain«11* 5«22* 5«33* 5«* 5DaDT, where Da is
the difference in the thermal expansion coefficients of the
passivation and interconnect whileT indicates temperature.
The idealized geometry of a cylindrical interconnect is
shown in Fig. 2. Note, however, that if one is to assume
future application of nanowires as interconnects, the cylin-
drical structure~adopted for computational simplification in
the current work! is exactly representative.

Recently, Sharma and Ganti21 derived the general size-
dependent Eshelby tensor for inclusions in the context of
coupled bulk-surface elasticity. Some salient features of that
derivation ~adapted for our geometry! are reproduced here.
Consider for the moment that the passivation and intercon-
nect have the same elastic modulus although a thermal mis-
match strain is prescribed in the region of the interconnect.
The constraint on the elastic modulus will be removed later.
We can write the constitutive equation in the interconnect-
passivation systems as follows:

s5C:$«2«* H~x!%. ~4!

Here H is the Heaviside function andC is the stiffness
tensor. Taking the divergence of Eq.~4!, we obtain

“"s5“•~C:«!2“•$C:«* H~x!%1@s"n#50, ~5!

wheren is the normal vector on the interconnect-passivation
interface and the square brackets indicate the jump across the

FIG. 2. Idealized schematic of the interconnect structure.
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interface. It can be readily seen that the thermal mismatch
strain term in Eq.~5! appears as a body force. Note that in
classical elasticity the last expression in Eq.~5! is typically
omitted since the jump in the normal tractions is zero. How-
ever, taking cognizance of Eq.~3a!, i.e., coupling interface
elasticity with bulk elasticity, we must rewrite Eq.~5! as

~6!

The underlined term represents the body force from which
the modified Eshelby tensor can be derived via the elastic
Green’s function after some algebra and integration.20 The
modified Eshelby tensor is then given implicitly by~for cy-
lindrical geometry!

«5S:«* 2
t0

R0K8
S:I2

KS

R0K9
~S:I !Tr~PS«PS!,

PS512n^ n. ~7!

Here S is the classicalEshelby tensor16 for cylindrical
geometry.« is the actual strain developed in the interconnect
due to the prescribed thermal mismatch. The tensorPS is
merely a projection tensor introduced by Gurtin and
Murdoch.18 HereKS is a combination of surface elastic con-
stants (KS52mS1lS) while K8 is 2m12l and K9 is 4m
12l. Due to the fact that the modified size-dependent Es-
helby tensor is also uniform for the cylindrical geometry
~like the classical one!, one can then easily employ the Es-
helby equivalent inclusion method16 to take into account the
difference in the elastic stiffness tensors of interconnect and
passivation material~see also Korhonenet al.4!. Finally, after
employing Eq.~7!, and the equivalent inclusion principle,
size-dependent stresses within the interconnect can be writ-
ten simply as

s rr 52~m I1l I !
22mP«* 2KS«* /R02t0 /R0

2~mP1m I1l I !1KS /R0
~8!

Here, the subscriptP refers to passivation andI to intercon-
nect. Note that the interfacial elasticity effects enter the equa-
tions viaKS andt0 weighted appropriately by the curvature
(1/R0) of the inhomogeneity. This makes the stress depen-
dent upon the absolute size of the interconnect. Clearly, for
‘‘large’’ interconnect size~i.e., micrometer size!, the impact
of surface energies will disappear, degenerating to classical
stresses~see, e.g., Niwaet al.5 for this idealized structure!.
The evaluation of these interface energy and elasticity con-
stants is discussed in Appendix A.

B. Derivation of stresses at the nanoscale:
Nonlocal interactions

The various nonlocal interactions prevalent at the nanos-
cale may be mimicked phenomenologically via the nonlocal
theory of elasticity. In fact the early attempts at formulating
nonlocal constitutive laws were based on lattice
dynamics.23,24 Subsequently, rigorous theories of nonlocal
continuum mechanics theories were proposed in several
works.24–26Most of the literature in nonlocal interactions has
been well summarized recently by Eringen.27 The work of

Reid and Gooding28 should also be cited, they discuss a non-
local inclusion~where the matrix and inclusion have same
material properties!. The latter ~with minor modifications!
will be useful in this work as it can be suitably combined
with our derivation in the preceding section to address the
nanointerconnect problem. The inclusion problem within the
three-dimensional context has also been recently addressed
in the work of Sharma and Ganti.29

In the nonlocal theory, the constitutive relations of clas-
sical elasticity are replaced by integral equations that are a
function of all neighborhood points. A weaker form of the
nonlocal representation can also be formulated whereby the
stress tensor depends upon the gradients of the strains~ac-
complished through suitable series expansion of the nonlocal
integral kernel in the Fourier domain; see Eringen27!. The
latter form, being analytically more tractable, is adopted in
this work. In particular, we adopt the formalism of Reid and
Gooding,28 who correct the classical elasticity Lagrangian by
adding suitable gradient terms. Thus, in the presence of gra-
dient terms~for our cylindrically symmetric problem!, the
part of the Lagrangian that contributes to the field equations
can be written as

CL
gradient5

1

2
lL@Tr~«!#21mL«:«1dj:j

22~lL1mL!«* Tr~«!], ~9a!

j i jk5~« i j ,k1« ik, j2«k j ,i !. ~9b!

Here d is a phenomenological elastic parameter that repre-
sents the strength of the nonlocal interactions. It can be de-
termined either byab initio simulations or through suitable
interpretation of phonon-dispersion curves~see Appendix B!.

The cylindrically symmetric problem admits a displace-
ment field that is radially symmetric, i.e.,u5u(r ). The cor-
responding infinitesimal strain components in cylindrical po-
lar basis are

« rr 5
]u

]r
, «uu5

u

r
, «zz50, «uu

S 5
u

R0
, « rr

S 5«zz
S 50.

~10!

Substituting Eq.~10! in Eq. ~9!, using the constitutive Eqs.
~2! and~3!, and taking the variation of the total energy with
respect to the displacement fields, we obtain the governing
field equation for gradient elasticity28

]4u

]r 4 1
2

r

]3u

]r 32Fq21
3

r 2G ]2u

]r 2 2Fq2

r
2

3

r 3G ]u

]r

1Fq2

r 22
3

r 4Gu50,

q5Al12m

2d
~11!

The general solution can then be written as

u~r !5H a~qr !1b~qr !211cI1~qr !1dK1~qr !, r<R0 ,

e~qr !1 f ~qr !211gI1~qr !1hK1~qr !, r .R0 ,
~12!
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HereI 1 andK1 are the modified Bessel functions of the first
and second kind of order 1. The termsa–h are constants to
be determined from the boundary conditions~see the next
section, where these constants will be determined after ap-
propriate coupling with interface effects from Sec. II A!.

C. Scaling of mechanical stresses: Combination
of interfacial and nonlocal effects

Clearly, both the physical mechanisms in Secs. II A and
II B must be suitably combined. A careful examination of the
main equations in both formulations indicates that the sim-
plest approach would be to adopt the nonlocal solution@Eq.
~12!# albeit with one modification at the interconnect-
passivation interface: instead of satisfying the normal trac-
tion continuity condition, the boundary condition embodied
in Eqs. ~3! must be satisfied. Although closed-form expres-
sions can be derived for this problem, they are fairly tedious.
From a computational point of view, the most efficient pro-
cedure is to simply solve for the constantsa–h numerically
using the boundary conditions given in matrix form in Ap-
pendix C. The matrix formulation for the evaluation of the
necessary constants, in Appendix C, correctly incorporates
the surface elasticity effect derived in Sec. II A. The stress
state, as embodied by Eq.~12! and the necessary constants
~evaluated in Appendix C! is size dependent due to both
interfacial energy effects as well as nonlocal interactions.
Thus the scaling of stresses valid for nanointerconnects has
been achieved.

III. NUMERICAL RESULTS, DISCUSSION,
AND LIMITATIONS

As in several previous works, for the purposes of nu-
merical simulations we assume a copper interconnect embed-
ded within a SiO2 passivation. All material properties used in
the numerical simulations are listed in Table I. We need to
determine three surface elastic constants as well as the strain
gradient length parameter. The procedure for the former is
discussed in Appendix A while the latter is covered in Ap-
pendix B. A fairly typical temperature excursion of2375 °C
is adopted from the stress-free state.

The ~radial! stress in the interconnect, as obtained from
the classical formulation4,5 and the present work, is plotted as
a function of the interconnect size in Fig. 3. To separate out
the two size effects in our model, the nonlocal effect alone
and the interface effect alone are also plotted in Fig. 3.

As expected, the classical stresses do not change as in-
terconnect size is reduced. The nonlocal solution, while in-

deed showing a size effect, is relatively small. For example,
for an interconnect size of 20 nm, the nonlocal effect results
in only a 5.7% decrease in the stress. In contrast, the inter-
face effects are substantial, leading to a 32% reduction at 20
nm interconnect size~and 62% if the current technology is
ever advanced to 10 nm!. Since the interfacial effects appear
to be more important, in Fig. 4 we attempt to distinguish
between the interfacial tension (t0) and the surface elasticity
effect (KS). This is necessary since we have more confi-
dence in the numerical value oft0 ~known from
experiments30! while our determination ofKS is highly ap-
proximate. Thus in Fig. 4 we plot our solution with surface
effects only~ignoring the gradient part! with separate curves
representing the interfacial tension effect and the interfacial
elasticity effect.

Interestingly, the residual tension is the dominant effect
~although the impact ofKS is not small either!. Even if the
termKS is ignored altogether, the reduction in stresses for an
interconnect size of 20 nm is significant~;39%!. Another
interesting feature is thatKS acts in an opposite sense tot0

as far as stresses are concerned. This is not the case with the
strain~where both act in tandem!. This is due to the fact that
for stress calculation one subtracts the eigenstrain from the
actual strain before employing the elastic constitutive law,
thus causingKS to increase the stress~for an eigenstrain that
is negative!.

FIG. 3. Stress in the interconnect as a function of interconnect diameter.

FIG. 4. Separation ofKS andt0 effects.

TABLE I. Estimation of material properties.

Parameter SiO2 Cu Cu-SiO2 interface

l ~MPa! 14.48 63.46 —
m ~MPa! 30.77 42.3 —
t0 ~N/m! — — 1.5 ~Cui et al. Ref. 29!
lS ~N/m! — — 18.9 ~Appendix A!
mS ~N/m! — — 18.3 ~Appendix A!
1/q ~nm! 0 0.18~Appendix B! —

CTE (1026/K) 0.5 17 —
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The crucial aspect of these results though is that the
reduction of interconnect size to the nanoscale appears to be
beneficialinsofar as mechanical stresses are concerned. The
reader should be cautioned against extrapolating this obser-
vation to thereliability of nanointerconnects. While we can
certainly conclude from this study that mechanical stresses
are reduced at small length scale, other aspects that govern
interconnect reliability must be coaddressed to make stronger
claims regarding the reliability of nanointerconnects. Further,
needless to say, these results are valid only for the material
system we have chosen. Changes in the materials will most
likely alter the numerical values although we expect similar
qualitative behavior for other systems as well.

IV. SUMMARY

In closure, we have presented scaling laws for mechani-
cal stresses that are applicable to nanointerconnects. Al-
though a simple representative geometry for the interconnect
was employed, our conclusions are fairly general. It appears
that interfacial effects are fairly appreciable for the nanoint-
erconnect sizes projected by various semiconductor technol-
ogy roadmaps. In contrast, nonlocal size effects are negli-
gible. The main outcome of the work~apart from the formal
development of the associated models! is that stresses appear
to be reduced significantly at small length scales as com-
pared to interconnects in the greater than 65 nm regime.
Although this reduction is likely to have an important~ben-
eficial! impact on nanointerconnect reliability, more defini-
tive conclusions can be drawn only after establishment of
appropriate scaling laws for electromigration, void growth
and coalescence, and~of course! incorporation of the present
work.
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APPENDIX A: DETERMINATION OF CONSTANTS
FOR SURFACE ELASTICITY

The experimental determination of the surface/interface
constants is nontrivial~even the residual tensiont0). Most
experimental measurements typically report onlyt0 and the
surface/interface elasticity parameters are mostly unknown
experimentally. Ibach20 provides a good overview of this
subject. A few authors have determined these values using
molecular dynamics simulations~see, for example, Ganti
et al.31 or Miller and Shenoy32!. While t0 for our material
system (Cu-SiO2) is known from experimental measure-
ments of Cuiet al.,30 we determine~approximately! the in-
terfacial elasticity constants using Gurtin and Murdoch’s19

analogy to the membrane theory of Tiersten.33 A transition
from bulk constants to interface/surface properties can be
made by the following transformation:

$mS ,lS%→$mh,2lmh/~l1m!%. ~A1!

Here,h is the thickness over which surface/interface elastic-
ity behavior differs from the bulk. Our molecular dynamics
simulations indicate31 that such behavior is typically con-
fined to about 1–2 lattice spacings. For the interface, we
have assumed this value to be 5 Å. The transformation in Eq.
~A1! for the Cu-SiO2 interface is based on their averaged
properties.

APPENDIX B: DETERMINATION OF NONLOCAL
CONSTANT

Nonlocal material constants represent spatial dispersion
that is typically observed in phonon dispersion curves. The
classical theory of elasticity predicts no dispersion~i.e., the
relation between acoustic frequency and wave number is lin-
early proportional!. In the nonlocal theory framework, how-
ever, the acoustic frequency~and hence velocity! becomes
wavelength dependent and measures the nonlinear departure
of the phonon dispersion curve from the linear prediction of
classical elasticity. This allows one to determine the material
constantd in Eq. ~12!. See, for example, Krumhansl,22 Reid
and Gooding,28 and Eringen.26 Whenv25a1k21a2k4 is fit-
ted to the phonon dispersion curve of a solid, 1/q2 is given
by a2 /a1 . Here v is the acoustic frequency whilek is the
wave number. Note thata1 characterizes the classical con-
stants~i.e., linear frequency/wave number relation! while the
dispersion or nonlinearity is measured bya2 . This polyno-
mial form is chosen solely for convenience. For example,
from a physical point of view~in the case of a simple linear
atomic chain!, the relation is transcended in nature. Another
method~also by fitting to phonon dispersion curves! is that
due to Eringen.26 The phonon dispersion curves for Cu were
taken from Vyaset al.34 while the nonlocal parameter of
SiO2 was assumed to be close to zero~due to its amorphous
nature!. The gradient length scale (1/q) can often~for most
metals! be well approximated bya0/2 ~wherea0 is the lattice
parameter!.

APPENDIX C: DETERMINATION OF BOUNDARY
CONDITIONS FOR COMBINED SURFACE ELASTICITY
AND NONLOCAL INTERACTIONS

If one were to consider nonlocal interactions alone, Reid
and Gooding28 have discussed the appropriate boundary con-
ditions for a gradient formulation. They discuss the boundary
conditions from a variational point of view. Here we discuss
them from the point of view of physics while incorporating
the effect of surface energies~Sec. II A! also. ~1! Displace-
ments must be bounded at the origin.~2! Displacements must
be continuous at the interface.~3! Displacements must be
zero far away from the interconnect~assuming, like Niwa
et al.,5 that the amount of passivation is ‘‘large’’ compared to
the interconnect!. ~4! The jump in normal tractions must be
balanced by the interfacial stress~consisting of the interfacial
tension and the interfacial elasticity term weighted appropri-
ately by the interconnect size!. ~5! The gradients of the strain
must be continuous across the interface.~6! There must be
higher-order gradient continuity. Based on conditions 1 and
3, the constantsb, d, e, and g must be set to zero. The
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remaining four constants~a, c, f, andh! are determined based
on conditions 2, 4, 5, and 6. In matrix form, we can write
them as follows:

3
qIR0 I 1~qIR0! 2

1

qPR0
2K1~qPR0!

qI qI I 18~qIR0!
1

qPR0
2 2qPK18~qPR0!

0 dIqI
2I 19~qIR0!

22dP

qPR0
3 2dPqP

2K19~qPR0!

a1 a2 b1 b2

4
3F a

c
f
h
G5F 0

0
0

2~l I1m I !«* R02t0

G , ~C1!

where

a15~l I12m I !qIR01S l I2
6dI

R0
2 DqIR01

6dI

R0
qI

1S 2mS1lS

R0
DqIR0 ,

a25S l I2
6dI

R0
2 D I 1~qIR0!1~l I12m I !qIR0I 18~qIR0!

1
6dI

R0
qII 18~qIR0!22dIqI

2I 19~qIR0!

22dIR0qI
3I 1-~qIR0!1S 2mS1lS

R0
D I 1~qIR0!,

b15
~lP12mP!

qPR0
2

~lP26dP /R0
2!

qPR0
2

2dP

qPR0
3 ,

b252~lP12mP!qPR0K182S lP2
6dP

R0
2 DK1

2
6dP

R0
qPK1812dPqP

2K1912dPR0qP
3K1- .
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