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On the scaling of thermal stresses in passivated nanointerconnects
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Much work has been done in the approximation of the stress state of microelectronic interconnects
on chips. The thermally induced stresses in passivated interconnects are of interest as they are used
as input in interconnect reliability failure models(stress-driven void  growth,
electromigration-driven void growih The classical continuum mechanics and physics typically
used is, however, intrinsically size independent. This is in contradiction to the physical fact that at
the size scale of a few nanometers, the elastic state is size dependent and a departure from classical
mechanics is expected. In this work, we address the various physical danskthe affiliated
mathematical modelingof the size dependency of mechanical stresses in nanointerconnects. In
essence, we present scaling laws for mechanical stresses valid for nanosized interconn2é ©
American Institute of Physics[DOI: 10.1063/1.163201]1

I. INTRODUCTION tional Technical Roadmap for Semiconductoty’ have
o _ __ forecast interconnect sizes of 20—30 nm by the year 2009.
The technological importance of assessing the re“ab'“tyConsidering the rapid advances being made in nanowire
of conventional microelectronic interconnects can hardly b?echnology for use in nanoelectronitsthe scaling of me-
overemphasized. One of the important failure modes in elecéhanical stresses in nanointerconneeisd hence their reli-

tronic systems and also a major impediment to the developsy;jiy s of crucial importance. The scaling of mechanical

ment of m|n|atur|z§d electron[cs Is the mecha[ncal failure ofgyregses as the interconnect dimensions shrink also has im-
interconnects during fabrication and operattohA sche-

portant implications for the continued validity of the so-

matic of a typlcal passivated Interconnect Is ;how_n in Fig. l.'called Moore’s lawt> Worth noting is that size effects in
The passivation process, whereby a dielectric oxide layer is .

. . : interconnects at less than 65 nm and the consequent impact
deposited on the interconnect structure, is necessary both f%rn reliability are considered to be one of the kev technolodi-
the proper functioning of several devices as well as for en- y y 9

0 13 H H :
vironmental protection. Passivation is typically accom-caI challgngeé. Kaloyeros et al.” provide an mtere;tmg
plished at high temperaturés-400 °C). Due to thermal ex- perspective on the use of nanotechnology for nanointercon-

pansion mismatch between the various constituents of thB€Cts- ,

electronic system, subsequent cooling to operational tem- Clearly, mechanical stresses are only one of the several
peratures(~25°C) leads to the development of residual ISSU€s that need to be addressed in regard to nanointercon-
stresses in interconnects. These mechanical stresses gerf#cts. Other aspects that may be as important as or even
ated during the fabrication proce&nd modified in the sub- More important than mechanical stresses are electromigra-
sequent operational electrical and thermal environjinare  tion, dimensional control of processing/fabricating intercon-
then responsible for the eventual nucleation, evolution, anfl€cts at the nanoscale, electrical design issues, suitablle low-
coalescence of voids. The final void coalescence, whe#lielectric materials, etc. For further information and discus-
spread across the thickness of the interconnect, causes cosion, see, for example, Parg al** This work is limited in

plete mechanical failuréand often catastrophic electrical its scope; only scaling of mechanical stresses for nanointer-
failure) (e.g., Refs. 8 and 9 and references thereirhis  connects is addressed. With the current lack of such a scaling
problem is exacerbated by technology-driven reduction irmodel, one can only speculate about the nature of stresses in
interconnect and chip feature sizes. It is worth recalling thahanointerconnects. Will they increase dramatically so as to
the various electronic industry roadma(esg., the “Interna-  override and cause the early demise of Moore’s law or de-
crease sufficiently to exclude mechanical stresses from the
dAuthor to whom correspondence should be addressed; electronic mai"St of reliability concerns? Perhaps the change in mechanical
psharma@uh.edu stresses in the nanointerconnects would be insignificant so
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Interconnect assumption allowed them an almost direct use of Eshelby’s
solution of an embedded inclusion containing a stress-free
eigenstrain located in an infinite elastic medium. Subse-
quently, their model was improved by various researchers,
e.g., Korhoneret al? distinguished between the interconnect
and passivation elastic constants. Among some recent work,
Wikstromet al! presented a simple approach to approximate
volume-averaged stresses. Their model is applicable only for
a certain range of interconnect aspect ratios. Sharna®
made an improvement to the Nivea al. modef by relaxing
FIG. 1. Schematic of a passivated interconnect on chip. the restriction that the interconnect is surrounded by an infi-
nite amount of passivation. In reality, the free surface of the
passivation is often in close proximity to the interconnect,
that classical mechanics may continue to be used at sudihich can alter somée aspects of the st_ress distrilbutior}. The
small length scales, and attention to the scaling of otheWOrk of Sharmaet al” employs the solution of an inclusion
(aforementionednanointerconnect related issues must ther half spacelusing an “image force” type analysiso take
be intensified. The present work, based on theoretical corfliS feature into account. More recently, a shear-lag type ap-
siderations, attempts to provide answers to such questiof¥0ach was adopted by Hsuéhwho presents a fairly com-
and speculations. prehenswe model of the stress state in rectangular passivated
While a tremendous amount of wowithin the context ~ Ntérconnects. _
of classical continuum mechanjdsas been done on assess- N the present work, we systematically track the two
ing the mechanical stress state as well as the reliability of?@in Physical causes of the size dependency of elasticity at
on-chip interconnects in the past two decades, the scaling f€ nanoscale. Based upon the postulated physical mecha-
stresses in nanointerconnedtghich requires incorporation NiSMS of the elastic-state size dependency, we pre(sgat
of size effectshas not been addressed yet. This limitation ofPfoXimate closed-form models for the stress state of
existing literature pertains to both detailed numericmnanmnte_rconnects. In Sec. Il, the two_ main phyS|ca_I causes
simulationd=3 as well as to approximate analytical of the size dependency of t_he elastic s_tate are dlscuss_ed.
models*~7 In short, all existing models will predict the same Baséd on the proposed physical mechanisms, an appropriate
stress state regardless of the absolute size of the interconndggthematical framework is developed for the analysis of a
(as long as it is scaled larger or smaller in a self-similarP@ssivated metal interconnect. Numerical results and discus-

fashion. The size independence of classical mechafdosl sion are relegated to Sec. Ill. Of considerable importance are
by extension all previous woykis in contradiction to the the limitations of this work. Those are also discussed in Sec.
physical fact that, at the size scale of a few nanometerd!!- Closure is provided in Sec. V.

deformations and elastic states are size dependent, and a

qualitative departure from classical mechanics is expecteH' SCALING LAWS FOR MECHANICAL STRESSES

(of course, the relevant question then is how great is thiélALID FOR NANOSIZED INTERCONNECTS

departure for interconnects of the size of, say, 20-30)nm?  Within the framework of formulating a size-dependent
While it is clearly possible that once all necessary scalindield theoretic modification of continuum theory valid at the
laws have been established classical mechanics may turn onénoscale, we postulate two main causes of size dependency
to be not so bad an approximation, such a conclugworthe in elasticity.
lack of it) cannot be reached via classical continuum me- (a) Interface/surface effectdor structures with sizes
chanics models. greater than 50 nm, typically, the surface-to-volume ratio is
Even though all existing work on interconnect stress andegligible and the deformation behavior is governed by clas-
reliability estimation is size independent and hence inapprosical bulk strain energy. However, at submicrometer inclu-
priate for extension to nanointerconnects, to establish the agion (interconnedtlength scales, the properties of the inclu-
propriate context, a brief review of the representative existsion surface/interface are expected to play a role in the
ing work on the estimation of stresses in microinterconnectsletermination of the nanoinclusignanointerconnegelastic
is provided below. state. This increasing role of surface or interface elasticity at
Some of the earliest work on stress determination in passmaller length scales induces a size effect in the otherwise
sivated electronic interconnects is due to Nietal,® Kato  classical size-independent elastic solutions.
et al,'® and Korhoneret al? While the last work was impor- (b) Nonlocal interactions Classical elasticity is essen-
tant in its discussion of various stress generation and relaxially a local theory and thus is considered to be valid only in
ation mechanisms, the first two are often cited for their anathe “long” wavelength limit. Each material point in the con-
lytical model. References 5 and 15 employed Eshelby'sinuum theory represents the smeared or coarse-grained de-
treatment® of an embedded inclusion in an infinite elastic formation behavior of its micro{or more appropriately
matrix to formulate their closed-form model. In their model, nangconstituents. This coarse-grained behavior of a suitably
the interconnect is a circular/elliptical cylindrical inclusion large, statistically representative number of atoms and grains
embedded in an “infinite amount” of passivation material is represented by the usual bulk elastic constants of the ma-
while subjected to a thermal mismatch eigenstrain. The laderial. At length scales where the discrete nature of matter

Passivation

Substrate
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becomes apparent, additional physical phenomena not
readily included in the classical continuum mechanics frame-
work become important. The typical coarse-graining implicit
in the use of classic elastic constants becomes inadequate.
Thus, on physical grounds, one can conceive that, at the size
scale of a few nanometers, molecular interactions are in-
creasingly nonlocal, thus violating the coarse-grained classic
elastic assumption of locality. Simply put, stress-strain at a
point at the nanoscale should depend on the elastic state of
all surrounding neighborhood points rather than the state just
at that point(as assumed by classical elastigity

Passivation y

A. Derivation of stresses at the nanoscale: FIG. 2. Idealized schematic of the interconnect structure.

Interface effects

It should be pointed out that the physical mechanismgank curvature tensor of the surface/interface, and the
discussed in the preceding section hardly operate indepeformal vector on the interface. It is to be noted that only
dently. It is convenient, however, to first address the twocertain strain components appear within the constitutive law
mechanisms separately and combine them later. This wilior surfaces due to the 22 nature of the surface stress
facilitate qualitative understanding of each physical mechatensor(i.e., strains normal to the surface are excludétius,
nism. 12 represents the22 identity tensor whild® represents the

A generic and mathematical exposition on surface/same for the bulk second-rank tensor. Tr indicates the trace
interface elasticity has been presented by Gurtin an@peration. In the absence of surface terms, E)sieduce to
co-workerst”1®The interface/surface stress tensoris re-  the usual normal traction continuity equations of classical
lated to the deformation-dependent surface endt@y,;)  elasticity. diy indicates the surface divergente.

by For simplicity and to avoid confounding the nanoscale
physics with second-order effects, we shall assume that the

5= 1,8+ £_ (1)  interconnect is located in an infinite amount of passivation.

23 This assumption is similar to that used in previous analytical

Here, ¢ is the 22 strain tensor for surfaces, repre-  Work.*® Unlike the former and like the latter work, we will
sents the Kronecker delta for surfaces, whitg is the take into account the differing elastic constants of the passi-

deformation-independent surface/interfacial tension. Bottyation and interconnect. Consider now a cylindrical intercon-
boldfaced and index notation will be used as convenientN€ct of radiusR,, located in a passivation matrix and under-
Note that the concepts of surface tension, surface stress, ad8ng 2 dllatgtmn eigenstrain, i.e., thermal expansion
surface energy are often confused and used interchangeab!'g.'sm?‘t(:h straine;=e5,=e3;=c* =AaAT, whereAa is
Only for liquids are all three the same. For solids, they ardhe difference in the thermal expansion coefficients of the
vastly different and must be carefully distinguished. See, foPassivation and interconnect whileindicates temperature.
example, the excellent review article by Ib&Chisotropic ~ The idealized geometry of a cylindrical interconnect is
behavior is assumed throughout. In the bulk of the materiafhown in Fig. 2. Note, however, that if one is to assume
(i.e., within both the interconnect and the host passivatiofuture application of nanowires as interconnects, the cylin-
material but not on the interfagethe equilibrium and con- drical structure(adopted for computational simplification in

stitutive equations of infinitesimal classical elastostatics$he current workis exactly representative. _
without body forces are satisfied: Recently, Sharma and Gafttiderived the general size-

] dependent Eshelby tensor for inclusions in the context of
divo®=0, (29 coupled bulk-surface elasticity. Some salient features of that
B=\13Tr(e) + 2pe, (2b) deriv:?\tion (adapted for our geometr;are_reproduced. here.

. ] o Consider for the moment that the passivation and intercon-
Where applicable, superscripts and S indicate bulk and  pect have the same elastic modulus although a thermal mis-
surface, respectively. At the interface, the concept of surfacgatch strain is prescribed in the region of the interconnect.
or interface elasticity/ ~* is introduced, which is missing The constraint on the elastic modulus will be removed later.

from the classical elasticity formulation: We can write the constitutive equation in the interconnect-
[0®-n]+divs 6°=0, (3a passivation systems as follows:
o%:(n®n)=o0"k, (3b) o=C:{e—e"H(x)}. (4)

5= 10124 2( uS— 19) 5+ (\S+ 19) Tr(£9)12. 30 HereH is the Heaviside function an@ is the stiffness

tensor. Taking the divergence of E¢), we obtain
Here,\ and u are the Lameconstants for the isotropic bulk _ _ o _
material. Isotropic interfaces or surfaces can be characterized V0=V (Cie)=V-{Cie"H(X)} +[o-n]=0, (5)
by surface Lameonstants\S, uS. Square brackets indicate wheren is the normal vector on the interconnect-passivation
a jump across the interface. Heme represents the second- interface and the square brackets indicate the jump across the
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interface. It can be readily seen that the thermal mismatclReid and Goodin should also be cited, they discuss a non-
strain term in Eq(5) appears as a body force. Note that inlocal inclusion(where the matrix and inclusion have same
classical elasticity the last expression in Eg). is typically = material propertigs The latter (with minor modification$
omitted since the jump in the normal tractions is zero. How-will be useful in this work as it can be suitably combined
ever, taking cognizance of E@3a), i.e., coupling interface with our derivation in the preceding section to address the
elasticity with bulk elasticity, we must rewrite E(p) as nanointerconnect problem. The inclusion problem within the
three-dimensional context has also been recently addressed
in the work of Sharma and Garffl.

In the nonlocal theory, the constitutive relations of clas-
sical elasticity are replaced by integral equations that are a
The underlined term represents the body force from whictunction of all neighborhood points. A weaker form of the
the modified Eshelby tensor can be derived via the elastionlocal representation can also be formulated whereby the
Green’s function after some algebra and integratfoihe  stress tensor depends upon the gradients of the stfains
modified Eshelby tensor is then given implicitly ifor cy-  complished through suitable series expansion of the nonlocal

V-0=V-(C:£)—V-{C:e*H(x)}+divg 6°=0. (6)

lindrical geometry integral kernel in the Fourier domain; see ErintfenThe
0 s latter form, being analytically more tractable, is adopted in
e=Se*— -Sil— —— (S Tr(PSePS), this work. In particular, we adopt the formalism of Reid and
RoK RoK Gooding?® who correct the classical elasticity Lagrangian by
PS=1—n®n. (7)  adding suitable gradient terms. Thus, in the presence of gra-

dient terms(for our cylindrically symmetric problem the

Here S is the classical Eshelby tende_ for cylindrical  ha1t of the Lagrangian that contributes to the field equations
geometrye is the actual strain developed in the interconnect.,, pe written as

due to the prescribed thermal mismatch. The ter®ois
merely a projection tensor introduced by Gurtin and
Murdoch!® HereK S is a combination of surface elastic con-
stants K5=2u5+\5 while K’ is 2u+2\ andK” is 4u
+2X\. Due to the fact that the modified size-dependent Es- —2(Npy+pp)e*Tr(e)], (93
helby tensor is also uniform for the cylindrical geometry
(like the classical ong one can then easily employ the Es- ijke= (&ij T Bikej ~ 8k.i)- (9b)
helby equivalent inclusion methdtto take into account the Hered is a phenomenological elastic parameter that repre-
difference in the elastic stiffness tensors of interconnect andents the strength of the nonlocal interactions. It can be de-
passivation materidbee also Korhoneet al’). Finally, after  termined either byab initio simulations or through suitable
employing Eq.(7), and the equivalent inclusion principle, interpretation of phonon-dispersion cursse Appendix B
size-dependent stresses within the interconnect can be writ-  The cylindrically symmetric problem admits a displace-
ten simply as ment field that is radially symmetric, i.ea=u(r). The cor-
—2upe* —KSe*IRy— 70/Ry responding infinitesimal strain components in cylindrical po-

2(p+ 1+ 0) + KSR, (8  lar basis are

Here, the subscrig® refers to passivation arnidto intercon- =
nect. Note that the interfacial elasticity effects enter the equa-""  or’
tions viaK® and 7, weighted appropriately by the curvature (10

(1/Ry) of the inhomogeneity. This makes the stress depenSubstituting Eq(10) in Eq. (9), using the constitutive Egs.

9ent upon the absolute size of the interconnect. Clearly, fofy) and (3), and taking the variation of the total energy with
large” interconnect size(i.e., micrometer siZe the impact  agnect to the displacement fields, we obtain the governing
of surface energies will disappear, degenerating to classicglq equation for gradient elasticiy/

stressegsee, e.g., Niwat al® for this idealized structuje

o1
\I’?\radlentzi)\A[Tr(s)]2+ pureet+dé &

o =2(u+X\))

au u u s

_ _ S _ _ .S _
Soﬁ_F- £,7=0, SHH_R_! er=e,7~0.
0

The evaluation of these interface energy and elasticity con- d*u 2 ¢°u 3]1%u [g®> 3]au
stants is discussed in Appendix A. Frararr B L B 1 ey R
q2
B. Derivation of stresses at the nanoscale: +[ — —lu=0
. . 7 4 ’
Nonlocal interactions rr

cale may be mimicked phenomenologically via the nonlocal (11
theory of elasticity. In fact the early attempts at formulating

nonlocal constitutive laws were based on latticeThe general solution can then be written as
dynamics®>2* Subsequently, rigorous theories of nonlocal

continuum mechanics theories were proposed in several, . [ &(ar)+b(ar)~*+cli(ar)+dKy(ar), r<Ry,
works2*-25Most of the literature in nonlocal interactions has "™ = e(qr)+f(qr)~t+gli(gqr)+hKy(gr), r>Ry,

been well summarized recently by EringérThe work of

The various nonlocal interactions prevalent at the nanos- N +2u
q= /
2d
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TABLE I. Estimation of material properties. 350 | ;
] ]
Parameter Sio Cu Cu-SiQ interface 300 - ! ! Classical
[}
N (MPa) 14.48 63.46 — /:"r Gradient
©n (MPa) 30.77 42.3 — ° 250 1 : 1
7o (N/m) — — 1.5 (Cui et al. Ref. 29 S i S Overall Size Effect
Ns (N/m) — — 18.9 (Appendix A § 200 4 !
s (N/m) — — 18.3 (Appendix A ‘% f '
1/ (nm) 0 0.18(Appendix B — 150 ! !
CTE (10 9/K) 0.5 17 — ! !
100 1 ' i
] ]
] ]

. . . 50 T T v g g v
Herel, andK; are the modified Bessel functions of the first 10 20 3 4 50 60 70 8 9 100
and second kind of order 1. The termsh are constants to Diameter in Nanometers
be qetermmed from the boundary_ Condltlo@me_ the next FIG. 3. Stress in the interconnect as a function of interconnect diameter.
section, where these constants will be determined after ap-
propriate coupling with interface effects from Sec. LA

deed showing a size effect, is relatively small. For example,
C. .Scaling_ of mechanical stresses: Combination for an interconnect size of 20 nm, the nonlocal effect results
of interfacial and nonlocal effects in only a 5.7% decrease in the stress. In contrast, the inter-

Clearly, both the physical mechanisms in Secs. Il A and‘ace_ effects are su_bstantial, Iea_ding to a 32% reduction at 20
Il B must be suitably combined. A careful examination of the "M interconnect sizeand 62% if the current technology is
main equations in both formulations indicates that the sim&Ver advanced to 10 nmSince the interfacial effects appear
plest approach would be to adopt the nonlocal soluf®a. to be more |.mporta|_’|t, in E|g. 4 we attempt to d|st|ngg|sh
(12)] albeit with one modification at the interconnect- Petween the mt_erfgmal tensiomy) gnd the surface elasticity .
passivation interface: instead of satisfying the normal trac&ffect «S)- This is necessary since we have more confi-
tion continuity condition, the boundary condition embodieddence in the numerical value ofr, (known from
in Egs. (3) must be satisfied. Although closed-form expres-eXp?”me”tg)) wh!le our determination OKS.'S hlghly ap-
sions can be derived for this problem, they are fairly tediousProximate. Thus in Fig. 4 we plot our solution with surface
From a computational point of view, the most efficient pro- &ffects only(ignoring the gradient parwith separate curves
cedure is to simply solve for the constaatsh numerically ~ "éPresenting the interfacial tension effect and the interfacial
using the boundary conditions given in matrix form in Ap- €lasticity effect. . o .
pendix C. The matrix formulation for the evaluation of the ~ Interestingly, the residual tension is the dominant effect
necessary constants, in Appendix C, correctly incorporate§ithough the impact ok® is not small either Even if the
the surface elasticity effect derived in Sec. IIA. The stresg€/MK® is ignored altogether, the reduction in stresses for an
state, as embodied by E(12) and the necessary constants interconnect size of 20 nm is significatt-39%). Another
(evaluated in Appendix Cis size dependent due to both interesting feature is that® acts in an opposite sense g
interfacial energy effects as well as nonlocal interactions@S far as stresses are concermned. This is not the case with the
Thus the scaling of stresses valid for nanointerconnects hadrain(where both act in tandemThis is due to the fact that
been achieved. for stress calculation one subtracts the eigenstrain from the

actual strain before employing the elastic constitutive law,

IIl. NUMERICAL RESULTS, DISCUSSION, thus causind S to increase the stregor an eigenstrain that

AND LIMITATIONS is negative.

As in several previous works, for the purposes of nu-
merical simulations we assume a copper interconnect embed 3so .
ded within a SiQ passivation. All material properties used in \:\'L,ﬁem.m
the numerical simulations are listed in Table . We need to 3001 T
determine three surface elastic constants as well as the strai
gradient length parameter. The procedure for the former is
discussed in Appendix A while the latter is covered in Ap-
pendix B. A fairly typical temperature excursion ef375°C
is adopted from the stress-free state.

The (radia) stress in the interconnect, as obtained from
the classical formulatidt? and the present work, is plotted as 1904
a function of the interconnect size in Fig. 3. To separate out
the two size effects in our model, the nonlocal effect alone so
and the interface effect alone are also plotted in Fig. 3.

As expected, the classical stresses do not change as in-
terconnect size is reduced. The nonlocal solution, while in- FIG. 4. Separation ok® and r, effects.

250 4

Pa

1, effect alone

cI#ssicaI

200 1

Stress in M

150 4

10 20 30 40 50 60 70 80 90 100
Diameter in Nanometers
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The crucial aspect of these results though is that thédere,h is the thickness over which surface/interface elastic-
reduction of interconnect size to the nanoscale appears to higy behavior differs from the bulk. Our molecular dynamics
beneficialinsofar as mechanical stresses are concerned. Thr@mulations indicat& that such behavior is typically con-
reader should be cautioned against extrapolating this obsefined to about 1-2 lattice spacings. For the interface, we
vation to thereliability of nanointerconnects. While we can have assumed this value to be 5 A. The transformation in Eq.
certainly conclude from this study that mechanical stresse6Al) for the Cu-SiQ interface is based on their averaged
are reduced at small length scale, other aspects that govepnoperties.
interconnect reliability must be coaddressed to make stronger
claims regarding the reliability of nanointerconnects. Further,
needless to say, these results are valid only for the materiglP PENDIX B: DETERMINATION OF NONLOCAL
system we have chosen. Changes in the materials will moStONSTANT

likely alter the numerical values although we expect similar  Nonlocal material constants represent spatial dispersion

qualitative behavior for other systems as well. that is typically observed in phonon dispersion curves. The
classical theory of elasticity predicts no dispersioe., the
IV. SUMMARY relation between acoustic frequency and wave number is lin-

early proportional In the nonlocal theory framework, how-

In closure, we have presented scaling laws for mechanipyer, the acoustic frequendgnd hence velocilybecomes
cal stresses that are applicable to nanointerconnects. Alyavelength dependent and measures the nonlinear departure
though a simple representative geometry for the interconnegj the phonon dispersion curve from the linear prediction of
was employed, our conclusions are fairly general. It appearg|assical elasticity. This allows one to determine the material
that interfacial effects are fairly appreciable for the nanoint-constantd in Eq. (12). See, for example, Krumharfél Reid
erconnect sizes projected by various semiconductor technofng Gooding® and Eringerf® When w?= a;k2+a,k* is fit-
ogy roadmaps. In contrast, nonlocal size effects are neglid to the phonon dispersion curve of a solidj?lis given
gible. The main outcome of the wofkpart from the formal by a,/a;. Here w is the acoustic frequency while is the
development of the associated modiédsthat stresses appear wave number. Note that, characterizes the classical con-
to be reduced significantly at small length scales as comgtants(i.e., linear frequency/wave number relatiavhile the
pared to interconnects in the greater than 65 nm regimeyispersion or nonlinearity is measured &y. This polyno-
Although this reduction is likely to have an importalden-  mia| form is chosen solely for convenience. For example,
eficial) impact on nanointerconnect reliability, more defini- from a physical point of viewin the case of a simple linear
tive conclusions can be drawn only after establishment oftomic chaip, the relation is transcended in nature. Another
appropriate scaling laws for electromigration, void growthmethod(also by fitting to phonon dispersion curyés that
and coalescence, arfdf course incorporation of the present que to Eringerf® The phonon dispersion curves for Cu were

work. taken from Waset al3* while the nonlocal parameter of
SiO, was assumed to be close to zédoe to its amorphous
ACKNOWLEDGMENTS naturg. The gradient length scale ¢/ can often(for most

] ‘metalg be well approximated bg,/2 (wherea, is the lattice
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CONDITIONS FOR COMBINED SURFACE ELASTICITY

AND NONLOCAL INTERACTIONS
APPENDIX A: DETERMINATION OF CONSTANTS

FOR SURFACE ELASTICITY If one were to consider nonlocal interactions alone, Reid

The experimental determination of the surface/interfaceand Gooding’ have discussed the appropriate boundary con-

. o . : ditions for a gradient formulation. They discuss the boundary
constants is nontrivialeven the residual tensior,). Most o L . . .
: : conditions from a variational point of view. Here we discuss
experimental measurements typically report onjyand the

. . them from the point of view of physics while incorporating
surface/interface elasticity parameters are mostly unknow . .
. ! . . e effect of surface energi€Sec. Il A) also. (1) Displace-
experimentally. Ibacl provides a good overview of this

. . . ments must be bounded at the origi®). Displacements must
subject. A few au.thors. have.determlned these values USINSe continuous at the interfac€3) Displacements must be
molesclular d.ynamlcs S|mulat|0n§5e'e, for example, G‘.”mtl zero far away from the interconne¢ssuming, like Niwa
gt satlémoz Cl\iljl-llseir@anig igg&%ﬁko\xh'; Teor:r%;grarl mmagggslre_ et al.® that the amount of passivation is “large” compared to
rr)llents of Cuiet al,® we determine(a proximately the in- the interconnegt (4) The jump in normal tractions must be

: N neappro .. balanced by the interfacial stre@®nsisting of the interfacial
terfacial elasticity constants using Gurtin and Murdoth’s

analogy to the membrane theory of Tierstar transition tension and the interfacial elasticity term weighted appropri-

. . ately by the interconnect sigzg5) The gradients of the strain
from bulk constants to interface/surface properties can be . .
! o must be continuous across the interfa@. There must be
made by the following transformation: . . oo .
higher-order gradient continuity. Based on conditions 1 and

{pms,Agt—{uh, 2  uh/(N+ p)}. (A1) 3, the constantd, d, e, and g must be set to zero. The
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remaining four constants, c, f, andh) are determined based
on conditions 2, 4, 5, and 6. In matrix form, we can write
them as follows:

aiRo 11(qiRo) - 4eR0 —K1(gpRo)
a al1(aRo) qu(Z) —0pK1(dpRy)
2\ _2dP 2N
0 dgili(qRe) ——=3z —dpdsKi(dpRo)
arRo
| o ay B1 B2 ]
a 0
cl| 0
X 1= 0 , (Cy
h 2()\|+ILL|)8*RO_TO
where
6d, 6d,
a;=(N+2u)qRo+ )\I_EZ_ Q|R0+R_Q|
0 0
2ust s
+ -~ 1
( Ro a1 Ro
6d, ,
ar= )\I_? I1(aRo) + (N +2u1)0iRol 1(aRo)
0
6d| ’ 2y n
+R_OQI|1(Q|R0)_2d|Q||1(Q|Ro)
” 2pust s
_2d|ROQ|3|1(Q|R0)+(R—O)|1(Q|Ro).
_()\P+2/‘LP)_()\P_6dP/Rg) 2dp
! dpRo apRo 9pRy’
, 6dp
B2=—(Ap+2up)qpRoK;— )\P_? K1
0

dP ’ 2y 3pm
- R_OqPK1+2quPK1+2dPROqPK1 :
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