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Note on the thermal stresses in passivated metal interconnects
P. Sharma,a) H. Ardebili, and J. Loman
KWC1521, General Electric Corporate Research and Development, Niskayuna, New York 12309

~Received 29 May 2001; accepted for publication 27 July 2001!

An analytical model to compute thermal stresses in passivated metal interconnects is proposed in
this article. Typical aspect ratio of passivated metal interconnects is 1 or less~frequently between 0.5
and 1!. Previous Eshelby-based analytical model by Niwaet al. @J. Appl. Phys.68, 328 ~1990!# is
not very accurate as it fails to take into account the proximity of the interconnect to the free surface
of the passivation. A recently proposed model by Wikstro¨m et al. @J. Appl. Phys.86, 6088~1999!#
precisely does not work when the aspect ratio, 1. The analytical model proposed in this letter can
predict stresses~average and spatial variations! in passivated metal interconnects with superior
accuracy. The effect of free surface of passivation is fully taken into account and comparisons with
previous works are presented. ©2001 American Institute of Physics.@DOI: 10.1063/1.1404124#
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Thermal expansion mismatch is probably the lead
cause of reliability issues in microelectronic devices.1 Ther-
mal stresses within metal interconnects lines etched on s
conductor surfaces can often cause reliability problems.
accurate determination of both average as well as gradi
of internal stresses in metal interconnects is needed to m
reliability predictions. As pointed out by Wikstro¨m et al.,2

the finite element~FE! method can provide accurate sol
tions but is costly and time inefficient. Furthermore, it mu
be repeated for each change in material property and cha
in geometrical parameters. Analytical models, which acco
plish the same with reasonable accuracy, are therefore d
able.

An analytical model was presented by Niwaet al.3 based
on Eshelby’s equivalent inclusion concept.4,5 The metal in-
terconnect lines were modeled as ellipsoidal cylindrical
clusion surrounded by an infinite amount of passivati
Clearly, their model is only likely to work if the distance o
the interconnect line to free surface of passivation is large~so
that they do not violate the implicit assumption in the
model of an infinite amount of material surrounding the
terconnect!. This is generally not the case, as often the me
interconnect is nearly touching the free surface of the pa
vation or is very close to it. Recently, the work of Wikstro¨m
et al.2 caught the author’s attention who have formulat
their own analytical model and compared their results w
detailed FE simulations and predictions from the Niwa3 Es-
helby model. Their analytical model works very well in th
limit when the aspect ratio~ratio of height to width! of the
interconnect is very large. On the other hand it perfor
poorly when aspect ratio is, 1. Since typically~due to
processing limitations!, aspect ratio of interconnect line
tend to be, 1; there is doubt about the use of Wikstro¨m
et al.’s2 analytical model for most practical situations. Esh
by’s concept as used by Niwaet al.3 and later also by Kor-
honenet al.,6 can only be accurate when the interconnec
buried very deep in the passivation. It will be shown that
proposed analytical model is both qualitatively and quant
tively superior to that presented by Niwaet al.,3 especially
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when the distance of the interconnect line is close to the
surface. In addition, the proposed model is superior to tha
Wikström et al.2 for aspect ratios,1.

The problem is sketched in Fig. 1. We seek to find t
stress fields in the interconnect such that the effect of f
surface of the passivation layer is also included. Like Ni
et al.3 we make use of Eshelby’s equivalent inclusion co
cept. Eshelby’s formalism is briefly reviewed here.4,5 Con-
sider an infinite isotropic elastic matrix with an embedd
inhomogeneity. An inclusion is defined as a region contain
in a matrix with identical material properties but with a pr
scribed inelastic stress-free strain~commonly termed as
eigenstrain!.7 The eigenstrain has a finite value within th
inclusion but is zero outside. Examples of some typi
eigenstrains include thermal strains, phase change str
etc. Let a pre-existing inelastic strain~eigenstrain!, «p, exist
in the inclusion. Then, the stress field within the interconn
can be represented as:4,5

s i j
int5Ci jkl @«kl

0 1Sklmn~«mn* 1«mn
p !2«kl* 2«kl

p #. ~1!

For an arbitrarily shaped inhomogeneity,S is an integral op-
erator on («* 1«p). C is the fourth-order elastic stiffnes
tensor for the matrix whileCh is the fourth-order elastic
stiffness tensor for the inhomogeneity, and«o is the far-field
or overall strain. Conventional summation rules apply. Th

FIG. 1. Unit cell schematic of the problem.
6 © 2001 American Institute of Physics
 license or copyright, see http://ojps.aip.org/aplo/aplcr.jsp
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retically, Eshelby’s tensor can be derived for any shape,
merically, if not analytically. For some common shapes~e.g.,
ellipsoids!, explicit analytical expressions can be deriv
based on the harmonic and biharmonic potentials of the
clusions~see, for example, Ref. 7!. We will attempt to use
Eshelby’s concept for an inclusion located inhalf-space, in
contrast to previous works2,3 which have used an infinite
space solution. Some mathematical details of Eshelby’s
sor are summarized later.

We model the current problem by a cylindrical inclusio
in half-space located an arbitrary distance from the free ed
A schematic is shown in Fig. 2. For this problem, Eshelb
interior tensor becomes nonuniform.

As shown by Seo and Mura,8 stresses in the inclusio
located close to the free surface can be computed using
tributions from the mirror image~I! ~with x1 axis as the
mirror! and the actual inclusion~R!. Thus, the harmonic and
biharmonic potentials are evaluated using both the image~I!
and real~R! inclusion at the desired point. The harmonic a
biharmonic potentials for this problem~necessary to evaluat
Eshelby’s tensor for half-space! can be derived using Green
function for semi-infinite elastic space. For the dilation
eigenstrain problem, only the sum of the diagonal eleme
of Eshelby’s tensor are needed and they are extracted
Seo and Mura8 and recorded at the end of the letter. T
stresses can still be found by Eq.~1! although Eshelby’s
tensor is calculated from expressions given for half-spac

Numerical results are presented for the three diago
stress components. Since we have a spatially variable s

FIG. 2. Schematic of the solution.

FIG. 3. Comparison of proposed model with previous works (s11) for c/t
50.5; ~a! ~Ref. 2! FEM results,~b! proposed model,~c! ~Ref. 2! analytical
model,~d! Niwa ~Ref. 1! Eshelby model.
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tion, we calculate it at the center of the interconnect. T
results are compared with the volume average stresses b
Ref. 3. Eshelby model. For their case, volume average st
is the same as stress at the center since their results are
form within the inclusion. We also compare our results w
the Ref. 2 analytical model and FE results. Figures 3–5 co
pare the diagonal stress components, respectively,s11,
s22, s33. Note that the FE results and analytical model
sults of Ref. 2 were extracted from the plots as actual nu
bers were not available, however, the Ref. 3 Eshelby ba
model was implemented independently by the present
thors.

As seen from Fig. 3, our model qualitatively behav
very similar to the finite element result and is superior
both previous works.2,3 Figures 3–5 clearly indicate that bot
the qualitative and quantitative behavior of our solution
better than the Refs. 2 and 3 analytical model. Our results
closer to the FE solution. The results are presented for
casec/t50.5, b51.5mm ~same as in Ref. 2!. The material
properties used are the same. For cases other thanc/t50.5,
i.e., c/t50 ~when interconnect is touching the free surfac!,
a direct comparison with the results of Wikstro¨m et al.2 is
not possible as they have couched their results in ratios
are not in a convenient form for comparison. However, o
results for the casec/t50 are compared with the Ref.
Eshelby based model. For the case ofc/t50, all stress com-

FIG. 4. Comparison of proposed model with previous works (s22) for c/t
50.5; ~a! Wikström ~Ref. 2! FEM results,~b! proposed model,~c! Wikström
~Ref. 2! analytical model,~d! Niwa ~Ref. 3! Eshelby model.

FIG. 5. Comparison of proposed model with previous work (s33) for c/t
50.5; ~a! Wikström ~Ref. 2! FEM results,~b! proposed model,~c! Wikström
~Ref. 2! analytical model,~d! Niwa ~Ref. 3! Eshelby model.
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ponents are plotted together and are shown in Fig. 6. Th
the case where the model of Ref. 3 is likely to perfo
poorly due to the implicit assumption in the model of infini
material surrounding the interconnect. We have verified
validity of our numerical results for half-space by compari
with numerical results of Seo and Mura.8

In summary, an improved analytical model to compu
the thermal stresses and their gradients in passivated m
interconnects was presented. Results compare well with
isting work. In particular, this model is superior for aspe
ratios less than one~as is typical! and for the case when th
top surface of interconnect is very close to the free surfac
the passivation layer~as also typical!. Furthermore, unlike
previous analytical models, ours can provide stress gradi
and as shown previously3 inclusion of plastic relaxation is
also straightforward when using Eshelby’s approach.

Mathematical details of Eshelby’s tensor: Eshelby4,5,7

showed that the disturbed strain field due to the eigenstra
given by

« i j ~x!5
1

8p~12n!
@Ckl,kli j 22nFkk,i j 22~12n!

3~F ik,k j1F jk,ki!#, ~2!

where,c and F are biharmonic and harmonic potentials
the ellipsoid. They are given as

C i j ~x!5E
V

ux2x8u« i j* ~x8!dx8,

F i j ~x!5E
V

1

ux2x8u
« i j* ~x8!dx8. ~3!

Eshelby4 showed that for ellipsoids with uniform eigen
strains, Eq.~2! can be reduced to~in the interior of the in-
clusion!:

« i j 5Si jkl «kl* . ~4!

FIG. 6. Comparison with Niwa~Ref. 3! Eshelby model forc/t50.
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Here, Si jkl is called Eshelby’s tensor~and is uniform for
ellipsoids! and can be evaluated explicitly by integrating t
harmonic and biharmonic potentials. The components of
tensor are available in closed form and have been reco
by Eshelby4,5 and Mura.7 Eshelby’s exteriorSi jkl is given
by:5

Si jkl 5
1

8p~12n!
@C ,kli j 22ndklF ,i j 2~12n!~F ,k jd i l

1F ,kid j l 1F ,l j d ik1F ,l i d jk!#, ~5!

where Eshelby’s tensor for full space is obtained by us
Eq. ~5!.

The necessary Eshelby’s tensor components for dil
tional eigenstrain for half-space problem: The following n
tation is used: Superscript I represents the image whilR
represents the real inclusion. The harmonic potentials and
derivatives are the same as used previously but the form
Eshelby’s tensor is different than Eq.~5!. Only dilatational
eigenstrain is considered here. For the dilatational probl
only the following sums of the Eshelby’s tensors are nee
and can be easily extracted from Seo and Mura8

S11111S11221S11335
2~11n!

4p~12n!
@F ,11

R 1~324n!F ,11
I

12x3F ,311
I #,

S22111S22221S22335
2~11n!

4p~12n!
@F ,22

R 1~324n!F ,22
I

12x3F ,322
I #, ~6!

S33111S33221S33335
2~11n!

4p~12n!
@F ,33

R 2~324n!F ,33
I

12x3F ,333
I 12F ,33

I #.
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