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Note on the thermal stresses in passivated metal interconnects
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An analytical model to compute thermal stresses in passivated metal interconnects is proposed in
this article. Typical aspect ratio of passivated metal interconnects is 1 dfregsently between 0.5

and 1. Previous Eshelby-based analytical model by Nital. [J. Appl. Phys68, 328(1990] is

not very accurate as it fails to take into account the proximity of the interconnect to the free surface
of the passivation. A recently proposed model by Wikstret al. [J. Appl. Phys86, 6088(1999 ]
precisely does not work when the aspect ratid. The analytical model proposed in this letter can
predict stressegaverage and spatial variations passivated metal interconnects with superior
accuracy. The effect of free surface of passivation is fully taken into account and comparisons with
previous works are presented. @01 American Institute of Physic§DOI: 10.1063/1.1404124

Thermal expansion mismatch is probably the leadingwvhen the distance of the interconnect line is close to the free
cause of reliability issues in microelectronic deviéégher-  surface. In addition, the proposed model is superior to that of
mal stresses within metal interconnects lines etched on semiikstrom et al? for aspect ratios<1.
conductor surfaces can often cause reliability problems. An  The problem is sketched in Fig. 1. We seek to find the
accurate determination of both average as well as gradiengdress fields in the interconnect such that the effect of free
of internal stresses in metal interconnects is needed to makaurface of the passivation layer is also included. Like Niwa
reliability predictions. As pointed out by Wikstoet al.> et al®> we make use of Eshelby’s equivalent inclusion con-
the finite element{FE) method can provide accurate solu- cept. Eshelby’s formalism is briefly reviewed héreCon-
tions but is costly and time inefficient. Furthermore, it mustsider an infinite isotropic elastic matrix with an embedded
be repeated for each change in material property and changégiomogeneity. An inclusion is defined as a region contained
in geometrical parameters. Analytical models, which accomin a matrix with identical material properties but with a pre-
plish the same with reasonable accuracy, are therefore desperibed inelastic stress-free strailsommonly termed as
able. eigenstrain’ The eigenstrain has a finite value within the

An analytical model was presented by Niewal® based inclusion but is zero outside. Examples of some typical
on Eshelby’s equivalent inclusion concéptThe metal in-  eigenstrains include thermal strains, phase change strains,
terconnect lines were modeled as ellipsoidal cylindrical in-etc. Let a pre-existing inelastic straigigenstrain, &P, exist
clusion surrounded by an infinite amount of passivationin the inclusion. Then, the stress field within the interconnect
Clearly, their model is only likely to work if the distance of can be represented as:
the interconnect line to free surface of passivation is lésge int_ 0 . 0 « b
that they do not violate the implicit assumption in their i} = Cijalek T Samn(emnt €mn) ~ 1~ ekl @
model of an infinite amount of material surrounding the in-
terconnect This is generally not the case, as often the metal
interconnect is nearly touching the free surface of the pass

vation or is very close (o it. Recently, the work of Wikstro stiffness tensor for the inhomogeneity, asftlis the far-field

2 ) ;
et a.ll' caught th_e author’s attention who hav_e formulat(_ador overall strain. Conventional summation rules apply. Theo-
their own analytical model and compared their results with

detailed FE simulations and predictions from the Nivs-

,:or an arbitrarily shaped inhomogeneig/is an integral op-
erator on €*+¢P). C is the fourth-order elastic stiffness
fensor for the matrix whileC" is the fourth-order elastic

helby model. Their analytical model works very well in the Interconnect
limit when the aspect rati¢ratio of height to width of the Line .
X i . Passivation
interconnect is very large. On the other hand it performs _
poorly when aspect ratio is< 1. Since typically(due to c -
processing limitations aspect ratio of interconnect lines p
tend to be< 1; there is doubt about the use of Wikstro t >
et al’s? analytical model for most practical situations. Eshel-
by’s concept as used by Niwet al® and later also by Kor- < .
honenet al.® can only be accurate when the interconnect is h ——>S'l'c°n
buried very deep in the passivation. It will be shown that the
proposed analytical model is both qualitatively and quantita-
tively superior to that presented by Nived al,® especially <+
d
¥Electronic mail: sharma@crd.ge.com FIG. 1. Unit cell schematic of the problem.
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FIG. 2. Schematic of the solution. t/b

. , . FIG. 4. Comparison of proposed model with previous works,) for c/t
retically, Eshelby’s tensor can be derived for any shape, nu=g s; (3 wikstrom (Ref. 2 FEM results,b) proposed modelc) Wikstrom

merically, if not analytically. For some common shagesg., (Ref. 2 analytical model(d) Niwa (Ref. 3 Eshelby model.
ellipsoidg, explicit analytical expressions can be derived
based on the harmonic and biharmonic potentials of the intipon, we calculate it at the center of the interconnect. The
clusions(see, for example, Ref.)7We will attempt to use results are compared with the volume average stresses by the
Eshelby’s concept for an inclusion locatedhalf-spacein  Ref. 3. Eshelby model. For their case, volume average stress
contrast to previous works which have used an infinite is the same as stress at the center since their results are uni-
space solution. Some mathematical details of Eshelby’s teffprm within the inclusion. We also compare our results with
sor are summarized later. the Ref. 2 analytical model and FE results. Figures 3—5 com-
We mOdel the current problem by a Cy|indl‘ica| inCIUSion pare the diagona' stress ComponentS, respecti\@i\i"
in half-space located an arbitrary distance from the free edgey,, o.,. Note that the FE results and analytical model re-
A schematic is shown in Fig. 2. For this problem, Eshelby’ssyits of Ref. 2 were extracted from the plots as actual num-
interior tensor becomes nonuniform. bers were not available, however, the Ref. 3 Eshelby based
As shown by Seo and Mufastresses in the inclusion model was implemented independently by the present au-
located close to the free surface can be computed using Cofngrs.
tributions from the mirror imagel) (with x; axis as the As seen from Fig. 3, our model qualitatively behaves
mirror) and the actual inclusiofR). Thus, the harmonic and very similar to the finite element result and is superior to
biharmonic potentials are evaluated using both the infige poth previous worké:2 Figures 3—5 clearly indicate that both
and real(R) inclusion at the desired point. The harmonic andthe qualitative and quantitative behavior of our solution is
biharmonic potentials for this problefnecessary to evaluate petter than the Refs. 2 and 3 analytical model. Our results are
Eshelby’s tensor for half-spacean be derived using Green’s cjoser to the FE solution. The results are presented for the
function for semi-infinite elastic space. For the dilational casec/t=0.5,b= 15Mm (Same as in Ref. )2The material
eigenstrain problem, only the sum of the diagonal elementgroperties used are the same. For cases otheratan0.5,
of Eshelby’s tensor are needed and they are extracted frofe, ¢/t=0 (when interconnect is touching the free surfiace
Seo and Murdand recorded at the end of the letter. Thea direct comparison with the results of Wiksticet al? is
stresses can still be found by E@L) although Eshelby's not possible as they have couched their results in ratios and
tensor is calculated from expressions given for half-space. are not in a convenient form for comparison. However, our
Numerical results are presented for the three diagongesults for the case/t=0 are compared with the Ref. 3
stress components. Since we have a spatially variable solgshelby based model. For the casectf=0, all stress com-

0 01t 02 03 04 05 06 07 08 09 1

0 0.2 0.4 0.6 0.8 1
195 . L L . . . . . L - - - X
0
-200 4 20
(@ 201
= -205 (b) - (b)
©
o o -40 -
O -2104 (L /
= ~ -60 4 (a)
© -215 1 g: (d)
) - .80 -
& 220 (c) g 80
] g 100
0 2254 A
(@ @
-230 -120 4 (C)
-235 -140
tb tb
FIG. 3. Comparison of proposed model with previous works) for c/t FIG. 5. Comparison of proposed model with previous wosksf for c/t
=0.5; (a) (Ref. 2 FEM results,(b) proposed modelc) (Ref. 2 analytical =0.5; (a) Wikstrom (Ref. 2 FEM results(b) proposed modelc) Wikstrom
model, (d) Niwa (Ref. 1) Eshelby model. (Ref. 2 analytical model(d) Niwa (Ref. 3 Eshelby model.
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0 02 04 06 08 1 Here, S;j is called Eshelby’s tensofand is uniform for
ellipsoidg and can be evaluated explicitly by integrating the
harmonic and biharmonic potentials. The components of this
tensor are available in closed form and have been recorded

=50 -

= by Eshelby® and Mura! Eshelby’s exteriorS;y, is given
8 00 ] by
&", —a— Niwa et al.’s model y:
g —Proposed model  O22
% 7150 Sijk|:m[q’,knj_2V5k|q’,ij_(1_7/)(q),kj5i|

2001 +@ i 651 + P i i+ P )i 0j) 1, 5

250 where Eshelby’s tensor for full space is obtained by using

b Eq. (5).
_ o The necessary Eshelby’s tensor components for dilata-

FIG. 6. Comparison with NiwaRef. 3 Eshelby model foc/t=0. tional eigenstrain for half-space problem: The following no-

tation is used: Superscript | represents the image wRile

ponents are plotted together and are shown in Fig. 6. This igepresents the real inclusion. The harmonic potentials and the
the case where the model of Ref. 3 is likely to performderivatives are the same as used previously but the form of
poorly due to the implicit assumption in the model of infinite Eshelby’s tensor is different than E¢p). Only dilatational
material surrounding the interconnect. We have verified theigenstrain is considered here. For the dilatational problem,
validity of our numerical results for half-space by comparingonly the following sums of the Eshelby’s tensors are needed
with numerical results of Seo and Muta. and can be easily extracted from Seo and Nura

In summary, an improved analytical model to compute —(1+7v)
the thermal stresses and their gradients in passivated metal S,;;1;+S;155+ 51133=—_[<1)’F§1+(3—4y)¢>fu
interconnects was presented. Results compare well with ex- 4m(1-v)

isting work. In particular, this model is superior for aspect + 2%, N
. . X 3% 311l

ratios less than on@s is typical and for the case when the

top surface of interconnect is very close to the free surface of —(1+v)

— R _ |
the passivation layefas also typical Furthermore, unlike So211t Sp20t 82233_477(1—1/) [P 2+ (3=41)P 2

previous analytical models, ours can provide stress gradients

|
and as shown previousiyinclusion of plastic relaxation is +2x3P 325, (6)
also straightforward when using Eshelby’s approach. —(1+7)
Mathematical details of Eshelby’s tensor: Eshéfby Saz11t Sazat 83333=m[cl>§3—(3—4v)¢>f33
showed that the disturbed strain field due to the eigenstrain is m(1-v
given by +2X3 D555+ 2054,
_ 1 Support from General Electric Corporate Research and
8ij(x) = 8m(1—v) (Wi = 20 Py~ 2(1 = v) Development is gratefully acknowledged. Helpful discus-
sions with Professor Abhijit Dasgupta are also acknowl-
X(Pig j T P ki) s 2

edged.
where, y and ® are biharmonic and harmonic potentials of
the ellipsoid. They are given as
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