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We investigate quantum confinement induced strain in quantum dots. While the impact of mechanical strain
on the electronic structure of quantum dots is well studied, the “reverse” effect remains relatively unexplored.
Even in the complete absence of external stress, for very small sizes �1–3 nm range�, the electronic structure
change due to quantum confinement may induce a strain in the quantum dot, which in turn will further alter the
electronic structure. Despite the limitations of an envelope function approach for small sizes, a multiband
analytical model is developed to make explicit the qualitative features of this phenomenon with physical
interpretation in terms of acoustic polarons. We quantitatively predict the induced strain due to quantum
confinement and the polaron binding energy for the example cases of Si and GaAs. The Si polaron binding
energy calculated from the developed model compares favorably with both our density-functional and semi-
empirical atomistic calculations.
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I. INTRODUCTION

Quantum dots �QDs� promise to be of significant techno-
logical importance and, while several barriers remain, are
often considered as a basis for various revolutionary nano-
electronic devices and applications ranging from biological
labels to quantum computing �see e.g., Refs. 1–3 and refer-
ences therein�. On the scientific side, QDs are a model sys-
tem to test fundamental quantum-mechanical effects and as-
sociated theories. QDs are frequently embedded in or grown
on other materials with different elastic constants and lattice
parameters. In such a case, due to the lattice mismatch, the
consequent elastic strain within the QDs is known to impact
their electronic structure and hence optoelectronic properties
�see, e.g., Refs. 4–10�. Strain can shift the valence and con-
duction bands, change band gap, cause trapping of carriers
and excitons, shift the oscillator strength of indirect-band-
gap clusters,4 and in some piezoelectric materials �e.g., group
III-V materials� even cause electrical fields.5 Although the
major effect is due to dilatational strain, axial and shear com-
ponents can break the cubic symmetry �of most semiconduc-
tors� and lead to splitting of the light- and heavy-hole bands.
In short, strain mediated control of electronic properties is an
intensely researched subject11–13 of considerable technologi-
cal importance in the context of both bulk systems and nano-
structures. See also a recent review article on this subject.6

A wide range of approaches to assess the effect of me-
chanical strain on band structure is available, ranging from
all-electron methods to approximate ab initio approaches
�self-consistent density-functional theory �DFT�� empirical
pseudopotential method, tight-binding method, and envelope
function method �EFM�. Within each category, there are sub-
methods of varying sophistication. The reader is referred to
Refs. 14–21 which provide overviews. For example, EFM,
as it is most frequently used, involves taking into account the
influence of three valence bands and one conduction band,
leading to a set of 8�8 Schrödinger-type coupled equations
that must be solved numerically for the energy

eigenvalues.11–14,22 In principle, any number of bands may be
included in this approach—the choice of which is dictated by
desired accuracy and computational expediency. In this
multiband EF model, spin-orbital coupling, light-hole–
heavy-hole band mixing, as well as nonparabolicity of carrier
dispersion are included. This model has been frequently ap-
plied to quantum dots �see, e.g., Refs. 23 and 24�. More
microscopic approaches which directly involve the electronic
degrees of freedom have also been used to investigate strain–
electronic-structure coupling for empirical pseudopotential
method �see, e.g., Refs. 7, 20, and 21� and �Ref. 25� for
tight-binding approach.

In this work we analyze the phenomenon of induced me-
chanical strain through changes in the quantum confinement
�and by extension electronic structure� even in the absence of
an externally applied stress. This effect is the converse to the
well-studied mechanical strain effect on electronic properties
and related to acoustic-type polarons. We modify the stan-
dard multiband EFM model to include quantum confinement
induced strain and present numerical results for Si and GaAs
quantum dots. Band-edge shifts, induced strain field due to
quantum confinement, and polaron binding energy are calcu-
lated. To verify our model and obtain additional physical
insights, we also perform �for smaller size quantum dots�
ab initio calculations based on parameter-free self-consistent
DFT in both local-density and generalized gradient approxi-
mations for the polaron binding energy. Larger quantum dots
beyond the computational capability of DFT are handled via
semiempirical atomistic methods. The conventional EFM,
unlike our modified EFM model or atomistic calculations,
predicts zero polaron binding energy for all QD sizes.

II. FORMULATION

In a discrete setting, strain–band-structure coupling �as
well as the converse� is related to electron-phonon interac-
tion. The reader is referred to Mahan26 for a comprehensive
review. Electron-phonon interactions can be subdivided into
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interactions between electron and optical phonons, electron
and piezoelectric phonons, and electron and acoustic
phonons. The former two are ignored in the present work.27

A polaron, in our context, is a charge carrier that carries a
localized lattice deformation field with it. Thus, changes in
the electronic motion can cause changes in the attached dis-
tortion around the charge carrier. For sufficiently small quan-
tum dots, based on this simple physical picture, one may
anticipate the possibility of inducing a mechanical strain via
changes in the quantum fields. Additionally, if the quantum
dot is embedded �or otherwise mechanically constrained�, a
mechanical stress may also result due to this quantum con-
finement induced strain.

Based on a discrete model of polarons, an EFM model
may be constructed following Emin.29 Alternatively, in this
work, we construct a long-wavelength model in a manner
that �if quantum confinement induced strain is ignored� sim-
plifies to the standard multiband k ·p approach.

When a carrier �electron or hole� moves in a band, the
total energy of the coupled carrier-phonon pair, apart from
the unperturbed cohesive energy of the whole system, is the
summation of contributions from carrier, elastic field, and the
interactions between them.30 The total Lagrangian in one
electron approximation is then

Ltot = Lelastic + Lelectron + Linteraction, �1�

where

Lelastic = �
V
�−

1

2
�ij�ij�dV ,

Lelectron = �
V
� i�

2
��†�t� − ��t�

†��� −
�2

2m
�i�

†�i�

− �†V�x��	dV ,

Linteraction = �
V

�†�x,t��− Wstrain���x,t�dV�x� . �2�

Einstein summation convention is used and the tensor ba-
sis is Cartesian. �ij and �ij are components of the stress and
strain tensors, respectively, while Wstrain is the deformation
potential. ��x , t� is the time-dependent wave function. Using
standard variational arguments—that is, application of the
Euler-Lagrange equations to the functional in Eq. �1�—and
separating the time-dependent part ���x , t�=��x�e−iEt/��
yields the following governing equations:

−
�2

2m
�2��x� + V�x���x� + Wstrain��x� = E��x� , �3�

−
�

�xj
��ij + ��x�†�Wstrain

��ij
��x�� = 0. �4�

Here, E is the eigenenergy. Equation �3� is the starting point
for the derivation of the strain-modified standard multiband
EFM model. In Eq. �4�, the strain can be decomposed into a
part that is induced through the quantum coupling and one

that is present in the uncoupled case �ij
0 �i.e., externally ap-

plied, or strain resulting from solution of standard elasticity
boundary-value problem�. Hence, Eq. �4� can be rewritten as

�5�

where Sijkl is the elastic compliance tensor. Here, the total
strain �ij consists of two parts. The bracketed portion is that
due to the carrier’s quantum field. Usually, the carrier in-
duced strain �i.e., the quantum confinement induced strain
term in Eq. �4� or �5�� is ignored, thus decoupling elasticity
from the quantum fields. Neglecting the bracketed term,
while strain can and does impact band structure through the
deformation-potential term Wstrain, the elasticity equations
�Eq. �4�� are solved in an uncoupled approximation suppress-
ing the “reverse” coupling. Retaining this term allows for
quantum confinement induced strain and, as can be shown
from a discrete viewpoint, polaron states. Even without ex-
plicitly specifying the form of deformation potential �which
is usually taken to be a linear function of strain�, some ob-
servations can be made. The extra part that provides a two
way coupling in Eqs. �3�–�5� is ��r�†��Wstrain /��ij���r�,
which inversely scales with the QD volume. A simple order
of magnitude calculation involving typical magnitudes of de-
formation potentials reveals that quantum confinement in-
duced strain coupling is small except for very small quantum
dots. This will be made more precise when we present our
EFM and ab initio results.

Before discussing the more complicated multiband model
that describes quantum confinement induced strain, it is use-
ful to consider the simpler effective mass single-band version
in which Wstrain=adTr��ij� and �Ec/v−�2 /2m��2+V�r�
=−��2 /2m*��2. Equation �5� then becomes �ij =�ij

0

− �ad /3K�
��r�
2�ij. Therefore, we obtain a single nonlinear
cubic Schrödinger equation for both the conduction and va-
lence bands, given by

�Ec/v −
�2

2m*�2���r� + ad · Tr��ij
0 ���r� −

ad
2

K

��r�
2��r�

= E��r� , �6�

where m* is the effective mass, ad is the deformation poten-
tial for conduction band or valence band, K is bulk modulus,
and Ec/v is the ground-state band-edge energy of the conduc-
tion band or valence band in bulk materials. The quantum
confinement induced strain can be obtained by first solving
for the wave function through the nonlinear equation �6� and
then substituting into Eq. �5�. This single-band model ne-
glects the interband interactions and the nonparabolic behav-
ior of energy bands with respect to wave vectors. The single-
band model in Eq. �6� is useful for interpreting the numerical
multiband and DFT results presented in the next section. The
induced strain estimated numerically from Eq. �6� is around
0.024% for a cubic quantum dot of the size around 3 nm
�with the choice of ad as 6.4 eV and K as 98 GPa, corre-
sponding to silicon�.
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To improve on the single-band approach, we expand the
wave function in terms of envelope functions, ��r�
=n=1

Nb �kbn�k�eik·r�	n,k=0�r�, where Nb is the number of
bands, kbn�k�eik·r is the envelope function, and 	n,k=0�r� is
the atomic basis at k=0. Then, Eqs. �3� and �5� become �see
the Appendix for a detailed derivation�


m

�Hnm�r� + Wnm�r��Fm�r� = EFn, �7�

�ij + 
m=1

Nb


n=1

Nb

�Fn
†�x�Dij

nmFm�x�� = �ij
0 , �8�

where Dij =�Wstrain /��ij is the deformation-potential tensor.
We retain only one band for the conduction band due to its
s-type symmetry, while for the valence band a four band
scheme22 is chosen to take care of the large interaction be-
tween heavy-hole and light-hole states. More bands may be
included, in principle, although the nonlinear nature of the
equations makes computation difficult. The resulting
deformation-potential matrix is

Dij
mn = �

− av�ij + qij − sij
* rij 0

− sij − av�ij − qij 0 rij

rij
* 0 − av�ij − qij sij

*

0 rij
* sij − av�ij + qij

� , �9�

where the operator matrix is defined as

qij = �−
b

2
0 0

0 −
b

2
0

0 0 b
�, rij = �

�3b

2
− id 0

− id −
�3b

2
0

0 0 0
�,

sij = � 0 0 − d

0 0 id

− d id 0
� . �10�

III. MODEL RESULTS, ATOMISTIC CALCULATIONS,
AND DISCUSSION

We perform numerical calculations of our nonlinear
model on cuboidal Si and GaAs quantum dots. The coupled
equations �Eqs. �3� and �5�, Eqs. �7� and �8�� are solved by
using finite difference method with zero Dirichlet boundary
conditions. The resulting large-scale eigenvalue problem is
resolved by using the Jacobi-Davidson method.31 All the re-
quired material parameters are obtained from Ref. 32. Our
results, shown in Fig. 1, are obtained by solving Eqs. �6�–�8�
in a self-consistent iterative manner. To elaborate, the strain
components in Eq. �7� are initially set to zero. The solution
of the eigenvalue problem in Eq. �7� provides initial esti-
mates of the relative envelope functions Fn for the ground
conduction or valence bands. Equation �8� is then used to
obtain modified strains which are inserted into Eq. �7� for
further iteration. This self-consistent scheme is carried out
until the difference between the successive ground-state band
energies is less than 0.1 meV. The difference between the
band energy with and without quantum confinement induced

strain is plotted as Ec/v�cl�−Ec/v�qs�, where the subscripts c and
v indicate conduction and valence bands, respectively, and cl
and qs stand for classical and quantum confinement induced
strain, respectively. Ec/v�cl�−Ec/v�qs� is asymptotically equal to
−�ad

2 /K�
��r�
2. This energy difference is size dependent, and
as demonstrated by the simpler single-band model, quadratic
in deformation-potential constant. Thus, as evident in Fig. 1,
we expect the GaAs QD to have larger quantum confinement
induced strain coupling than Si, as the conduction-band de-
formation potential of GaAs is nearly 1.5 times larger than
that of Si. In Fig. 1�b�, the silicon QD valence-band energy
exhibits a larger shift than GaAs due to its higher valence-
band deformation potential. We note that quantum confine-
ment induced strain is negligible for quantum dots with size
larger than 2 nm.

The induced strain distributions for conduction and va-
lence bands due to quantum confinement are plotted in Figs.
2�a� and 2�b�. The dilation induced by the conduction band is
much larger than that by the valence band due to a corre-
sponding difference in their deformation-potential constants.
The induced strain field as a function of quantum dot size
�and hence quantum confinement� is analyzed in Fig. 3. Ac-
cording to Eq. �4�, the strain field is generated even though
there is no applied stress. The maximum value of the strain
in x-y plane of the quantum dot is plotted in Fig. 3 for both
conduction and valence bands. The spatial distribution of the
induced strain is quite nonuniform, and interestingly, for QD
sizes larger than 1 nm, the volume average of the dilation
induced by the hole polarons is nearly zero. This is explained
by noting that the strain contributions from the heavy-hole
band and the light-hole band are offsetting.

We now present ab initio calculations to verify our model
and obtain additional insights. A straightforward way to rec-
oncile the concept of quantum confinement induced strain
and/or polarons and validate our modified EFM model is to
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contrast the computed electron polaron binding energy with
ab initio calculations.

The comparison is done solely for Si clusters. The various
sized clusters for this study are constructed via truncation of
the bulk crystalline Si structure. The dangling surface bonds
of the constructed QDs are passivated with hydrogen atoms.4

The resulting neutral QDs are geometrically optimized with
direct inversion iterative subspace method. After appropriate
configurational optimization, an electron or hole is doped
into the QD and relaxed further from the optimized state of
the neutral QD. The change of the total energy from nonre-
laxed to relaxed doped quantum dot is the polaron binding
energy.33 For small clusters �
1 nm�, the relaxation criterion
is set so that the maximum force of the atoms is less than
0.02 eV/A.4 For larger clusters ��1 nm�, the relaxation cri-
terion is chosen as 0.005 eV/A. Both these criteria ensure
convergence of the total energy to within 0.5 meV. The ato-
mistic calculations are done in two parts: we use parameter-
free self-consistent DFT for smaller QDs and a semiempir-
ical method for QDs with more than 500 atoms. The ab initio

calculation is carried out using the O�N� DFT package
OPENMX,34 with both local-density approximation with
Ceperley-Alder functional and generalized gradient approxi-
mation �GGA� of Perdew-Burke-Ernzerhof functional with-
out spin-orbital coupling. The semiempirical simulation is
performed using PM3 geometric optimization in the GAMESS

package.35 As is well known, DFT is suitable for ground-
state total-energy calculations and, for example, underesti-
mates energy gaps. Remedies exist to correct this.36–39 In any
event, detailed calculations examining the accuracy of DFT
for strain–electronic-structure coupling were done in Ref. 4,
where the supercell DFT results are compared with a more
accurate configuration interaction singles calculation as well
as an all-electron basis method calculation. Reasonable
qualitative and quantitative agreement is found.

In Fig. 4, we compare the polaron binding energy pre-
dicted from our modified EFM model, the conventional k ·p
method �the dotted horizontal line�, and our ab initio simu-

FIG. 1. �Color online� Ground-state band energy shift for �a� the
conduction band and �b� the valence band due to quantum confine-
ment induced strain in a cuboidal QD.

FIG. 2. �Color online� Distribution of strain dilation for cuboidal
Si QD �a=7 Å� on the z=0 plane �blue plane, gray in print� viewed
from top. �a� Conduction band. �b� Valence band. No external strain
is applied and the strain depicted is entirely due to quantum
confinement.
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lations. As evident, the polaron binding energy from our
EFM model �which is identically equal to half of the band
energy shift shown in Fig. 1 �Ref. 30�� matches very well
with the atomistic results. The conventional EFM approach
breaks down for electronic structure calculations around
4 nm or higher. In contrast, the polaron binding energy is in
good agreement with atomistic results down to nearly 0.6 nm
even though our model is based on an envelope function
approach.

For both Figs. 4�a� and 4�b�, as expected, the GGA results
are better than the LD approximation. As physically intuitive
and already expected from the general form of the single-
band model, the binding energy increases as the QD size
decreases.

While exciton binding energies are not explicitly consid-
ered here, they are much larger than the polaron binding
energy. The exciton energy for a spherical silicon quantum
dot is 3.65 eV �2.30 eV� calculated by using quantum Monte
Carlo method for the radius of 25 Å �55 Å�.40 By compari-
son, the polaron binding energy is 0.15 eV �0.14 eV� at cor-
responding sizes.

Molecular orbital �MO� or the wave-function plots are
shown in Figs. 5�a� and 5�b� for an electron doped QD.41 The

MOs are real value functions in this case since spin-orbital
coupling is ignored. In the case of lowest unoccupied mo-
lecular orbital �LUMO�, an isosurface of 25% of the maxi-
mum value of the wave function is plotted, while 50% is
chosen to illustrate the highest occupied molecular orbital
�HOMO�. Red corresponds to positive sign and blue to nega-
tive. To illustrate the quantum-mechanical effect of polaron
formation, the HOMO-LUMO plots compare the cluster both
with and without the inclusion of the effect of polaronic
state. The bonding character, which corresponds to increased
electron density in the shared regions between Si is, as ex-
pected, prominent for HOMO, while the charge density is
more localized around the Si atoms in the LUMO plot—
consistent with an antibonding character. Comparison of
Figs. 5�a� and 5�b� shows that accounting for polaron forma-
tion reduces the span of the LUMO isosurface and signifi-
cantly increases the maximum MO value ��100% �. This
implies an increase of quantum confinement for the electron.
No significant change is seen in the corresponding HOMO
plots �Figs. 5�c� and 5�d��. This feature is also correctly pre-
dicted by our modified EFM model that incorporates quan-
tum confinement induced strain �see Fig. 6�.

In Fig. 6�a� �which is based on our modified EFM model�,
we depict the difference of square of the magnitude of par-

FIG. 3. Variation of the maximum strain with size a for cuboidal
QDs. �a� �max=max�
�11
�=max�
�22
�=max�
�33
�. Results for both
Si and GaAs are shown. �b� �max=max�
�ij
�. Only GaAs results are
plotted.

FIG. 4. Comparison of the polaron binding energy calculated
from k ·p with quantum confinement induced strain �qs in the fig-
ure� and from atomistic simulations. �a� Cuboidal Si QD. �b�
Spherical QD.
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ticle wave function: 
��r�
qs
2 − 
��r�
cl

2 . ��r�qs incorporates
quantum confinement induced strain, while polaronic state is
not accounted for in ��r�cl. Consistent with the MO plots
shown in Fig. 5, our EFM results indicate increased confine-
ment for the conduction band in the electron doped QD in
contrast to negligible qualitative change in the valence band
of the hole doped QD. This result is expected based on
the analytical form of the single-band model �Eq. �6��. The
polaron binding energy varies as the square of the
deformation-potential constant. For bulk silicon, the conduc-
tion deformation-potential constant is roughly three times
larger than the corresponding valence-band parameter
and thus provides justification to the results shown in Figs. 5
and 6.

IV. SUMMARY

In summary, we have developed a multiband envelope
function approach that incorporates the typically ignored
quantum confinement induced strain. This exercise allows us
to explicitly interpret this phenomenon in light of all-
numerical ab initio calculations. Further, due comparison
with ab initio atomistic calculations reveals that the devel-
oped model is capable of capturing the polaron binding en-
ergy and can predict induced strain even in the complete
absence of external stress provided quantum confinement is
appreciable. Future investigation is likely to focus on explor-
ing the role of quantum confinement induced strain �and con-
sequently that of polarons� in the behavior of quantum dots
and consequent impact on optoelectronic properties.
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APPENDIX

The self-consistent polaronic effect in the multiband en-
velope method can be derived in the following ways. First,
the wave function is expanded as

��r� = 
n=1

Nb �
k

bn�k�eik·r�	n,k=0�r� . �A1�

Equation �7� may then be obtained following the conven-
tional approach in the multiband k ·p method. Here, we fo-
cus on the term ��r�†� �Wstrain

��ij
���r�, which can be written as

�†Dij� = ��
x��x
D̂ij
�� , �A2�

where Dij =
�Wstrain

��ij
is a differential operator, while D̂ij is the

corresponding quantum operator. They are related as

�x 
 D̂ij 
x��=Dij�x����x−x��. The wave function is the posi-
tion operating on a specific quantum state, hence, ��r�
= �x 
��.

Equation �A2� may be expanded on position operator x�
as

FIG. 5. �Color online� Isosur-
face plot for the molecular orbitals
�wave function� of a=7 Å cuboi-
dal QD, lowest unoccupied mo-
lecular orbital �LUMO�, and high-
est occupied molecular orbital
�HOMO�. Red �lighter gray in
print� stands for positive value
isosurface and blue �darker gray
in print� stands for negative value
isosurface. �a� The electron doped
LUMO at the value of 
0.015
 not
incorporating polaron formation.
�b� The electron doped LUMO at
the value of 
0.015
 accounting for
polaron formation. �c� The hole
doped HOMO at the value of

0.02
 not incorporating polaron
formation. �d� The hole doped
HOMO at the value of 
0.02
 ac-
counting for polaron formation.
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�†Dij� = �
x�

��
x��x
D̂ij
x���x�
�� . �A3�

Using Eq. �A1�, Eq. �A3� can be rewritten as

�†Dij� = �
x�


n=1

Nb �
k

bn�k�e−ik·x�	n,k=0
† �x�

��x
D̂ij
x��
m=1

Nb �
k�

bm�k��eik�·x��	m,k=0�x�� .

�A4�

This can be further simplified to

�†Dij� = 
m=1

Nb


n=1

Nb �
k

bn�k��
x�

�	n,k=0
† �x�

��x
D̂ij
x��	m,k=0�x��ei�k−k��·x��dx�
k�

bm�k��� ,

�A5�

while

�
x�

�	n,k=0
† �x��x
D̂ij
x��	m,k=0�x��ei�k−k��·x��dx� = Dij

nm�k,k�,

�A6�

where Dij
nm are the components of Dij in a Hilbert space

consisting of atomic basis m and n. Therefore, we can further
simplify Eq. �A4� into

�†Dij� = 
m=1

Nb


n=1

Nb �
k

bn�k�Dij
nm�k,k�

k�

bm�k���
= 

m=1

Nb


n=1

Nb �
k

�bn�k�Dij
nmbm�k���

= 
m=1

Nb


n=1

Nb �
k

�bn�k�e−ik·xDij
nmbm�k�eik·x��

= 
m=1

Nb


n=1

Nb

�Fn
†�x�Dij

nmFm�x�� . �A7�

Equation �A7� may be substituted into Eq. �5� to finally yield
Eq. �8�.
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