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The relaxed state of a type of topological defect (screw dislocation) located in a
dispersive (non-local) elastic solid is discussed from a viewpoint of gauge field theory.
The starting point of this work is the non-local elastic Lagrangian, that is, like its classic
elastic counterpart, globally gauge invariant under the Euclidean group of transfor-
mations SO(3)"T(3). When compared with gauge solutions of the same problem
predicated on the classical elastic Lagrangian, the present solution sheds some
interesting insights into the nature of non-locality-gauge field interactions. Both the
T(3) gauge theory of dislocations (predicated on breaking of the translational symmetry)
and the phenomenological non-local elasticity introduce their own respective character-
istic length-scale parameters in the elastic equilibrium of dislocations while removing
unphysical singularities. In the present work we show that, surprisingly, attempts to
elucidate gauge interactions in a dispersive or non-local medium lead to functionally the
same solution as in the gauge theory based on local elasticity, albeit, the gauge length-
scale must be replaced by an effective length-scale measure. In particular, the non-local
and the gauge length-scale combine in a nonlinear fashion to yield the aforementioned
effective length-scale. Our results allow one to immediately write the solution of most
screw dislocation problems in the gauge non-local theory of defects, provided the
counterpart gauge solution based on classical elasticity is known.

Keywords: gauge field theory; non-local elasticity; strain gradient elasticity;
dislocations; defects

1. Introduction

While the application of gauge theories to explain fundamental interactions in
much of physics (e.g. quantum field theory, relativity, particle physics) is well
known (Moriyasu 1983; O’Raifeartaigh 1997), their application in the study of
defects in crystalline solids is relatively recent (Kadić & Edelen 1983) and, with
the exception of a comparatively sparse literature, it is largely unexplored. As
motivated by Valsakumar & Sahoo (1988), in classical continuum mechanics of
crystalline solids, topological defects are typically introduced in an ad hoc fashion
(see as an example the seminal paper by Eshelby (1956)). The stresses are found
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to be unphysically singular at the eye of defects such as dislocations. In the gauge
theory of defects in crystalline solids, topological defects can be seen to arise
naturally based on group theoretic symmetry arguments (Kadić & Edelen 1983;
Valsakumar & Sahoo 1988; Edelen & Lagoudas 1988). Unphysical singularities
are removed in the gauge analysis of defects while the mathematical framework
appears to provide a natural and aesthetic formalism to account for various field
interactions.

In this work, we present a gauge field theoretic solution of a screw dislocation
located in a non-local or dispersive media. Both non-local elasticity and the
gauge theory of defects independently introduce a characteristic length-scale,
rendering the continuum field description of defects size-dependent as opposed to
the well-known size-independency of classical continuum mechanics or elasticity.
As shall be discussed in the next section, currently, gauge solutions for a screw
dislocation have been found only for a classically elastic medium (Valsakumar &
Sahoo 1988; Edelen 1996). The question of how the gauge fields of defects
interact in a dispersive media has not yet been addressed. In particular it is of
interest to see how the two length-scales in each respective theory combine; the
answer to this forms one of the major outcomes of the present work.

In the following section (§ 2), we will first briefly review the relevant literature
on this topic. Our motivation for the present study is also clarified. Subsequently,
in § 3, the general gauge formalism for defects in solids is discussed. Our point of
departure from existing works arises in this section, where we adopt a non-local
material behaviour as a starting point before applying the gauge theory. The new
field equations are derived. In § 4, the field equations are solved in closed-form for
the specific case of a screw dislocation. The results and implications of the
present work are discussed in § 5. In particular, the gauge solution to the force
between two screw dislocations in an infinite non-local medium is also addressed.
Closing remarks are provided in § 6.
2. Background and motivation

The first paper on the use of gauge theory in the study of defects in crystalline solids
appears to be Golebiewska-Lasota (1979). Although other contributions appeared
around the same time (e.g. Gairola 1981; Edelen 1982; Golebiewska-Lasota &
Edelen 1979), the work of Kadić & Edelen (1983) can be credited for setting the
gauge theory of defects on a rigorous footing. Subsequently, their work was
enhanced in numerous articles (Lagoudas&Edelen 1989; Edelen 1989a,b; Edelen&
Lagoudas 1999), and a monograph by Edelen & Lagoudas (1988) that is seen to
cover most of the formal foundation concepts of this theory. We will largely follow
the gauge theory of defects as established by Edelen, Kadić and Lagoudas, and in
recognition of their pioneering work will refer to it as simply the EKL theory.
Several other works have appeared in the literature on the gauge theory of defects,
but these are of limited interest in the present context. They are not mentioned for
the sake of brevity. Further literature that is appropriate to the problem at hand
will be discussed contextually.

Continuum elasticity is subject to invariance under the three-dimensional
Euclidean group,SO(3)"T(3), that is, the semi-direct product of the non-Abelian
Proc. R. Soc. A



3Gauge field theory of screw dislocations
special rotation group, SO(3), and the Abelian group of translations, T(3). In the
EKL theory, breaking of either the translational or rotational symmetry leads to
defects in the material continuum. The EKL gauge theory of defects essentially
consists of the following ingredients (some formal aspects of which will become
apparent in the next section in the course of our derivations): (i) adopting an
admissible Lagrangian which is invariant under a global gauge group, that is, the
Euclidean group in the elasticity; (ii) making the gauge group inhomogeneous in
space-time spoils the invariance of the Lagrangian; (iii) using a Yang–Mills type
construct (minimal coupling) the standard derivative is replaced by a ‘gauge
covariant’ derivative and ‘compensating gauge fields’ are introduced to restore the
‘spoiled invariance’ of the Lagrangian; and (iv) the original Lagrangian is now
modified by an additional contribution from the compensating gauge fields. The
new field equations are obtained as customary, via appeal to the Euler–Lagrange
equations, and are supplemented by an appropriate choice of gauge to render a
unique solution. There are both deeper and wider implications, often philosophi-
cal, of the EKL gauge theory of defects. Brevity considerations preclude a
discussion of some finer points of their theory, as is evident from the brief
preceding paragraph, which purports to summarize it. The reader is, of course,
encouraged to consult the original reference (Edelen & Lagoudas 1988) for a
complete understanding of this theory.

Kadić & Edelen (1983), based on the classical elastic Lagrangian, presented a
solution to the EKL field equations that was claimed to represent the gauge field
solution of a screw dislocation. This was subsequently criticized (Valsakumar &
Sahoo 1988), since, in the far field, the Kadić–Edelen screw dislocation solution
did not asymptotically match the classical one (as it should). This was
independently corrected by Valsakumar & Sahoo (1988) and Edelen himself
(1996). The work of Valsakumar & Sahoo (1988) is worth noting, since, in
addition to presenting the correct gauge solution of screw dislocation, they also
derived a solution of a disclination arising out of the breaking of the translational
invariance – in contrast to the belief until then that local symmetry breaking of
the group leads to disclinations (see Edelen & Lagoudas 1988). This notion that
the t(3) group, as for dislocations, is also the correct gauge group for disclinations
persists in the modern literature (see, for example, Lazar 2003a,b), and indeed it
has been a misconception with the present authors also. Recently, in a private
communication (2004), D. G. B. Edelen clarified this matter to the first author.
He conclusively shows that the existing disclination solutions based on the t(3)
theory (Valsakumar & Sahoo 1988; Lazar 2003a,b) are incorrect, and in fact,
disclinations arising in such theories can be ‘gauged’ away! Not withstanding this
confusion and controversy regarding disclinations, we note that Lazar (2003c), in
a recent work, has provided the first (correct) gauge solution for an edge
dislocation.

The aforementioned works are all predicated on the classical elastic
Lagrangian. As is well known, the classical elastic media is non-dispersive in
contrast to real crystals, which are essentially non-local (to a lesser or greater
degree). By now extensive literature has appeared on non-local elasticity, a
review of which is beyond the scope of this paper. Recently, Eringen (2002)
reviewed most of the literature in this area to which the reader is referred.
Briefly, in non-local elasticity, the algebraic constitutive equations are replaced
Proc. R. Soc. A
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by integral equations whereby the stress or strain at a point depends not only on
the strain or stress at that point but also on all neighbouring points in the
material. Under certain conditions, an approximation to the true non-local
material behaviour can be made by the so-called strain gradient elasticity where
strain gradients with suitable coupling constants are added to the classical elastic
Lagrangian. The reader is referred to the extensive reviews by Gutkin (2000) and
Aifantis (2003) in this area. Non-local strain gradient elastic solutions to
dislocations problems (and other defects) have been addressed exhaustively by
Aifantis and co-workers, for example, in Gutkin & Aifantis (1996).

The interest of the present authors in combining gauge theory, and the strain
gradient elasticity, arose because of the following observation. The gauge
solution of a screw dislocation (based on the classical local Lagrangian) is
functionally identical to that obtained via both the integral formulation of non-
local elasticity as well as the strain gradient elasticity. This is a fact noted and
remarked with considerable interest by several researchers (e.g. Edelen 1996).
Obviously, in a natural manner the gauge theory induces some non-local effects
owing to the presence of defects. In hindsight, this even appears intuitive.
However, the correct gauge solution of the screw dislocation was constructed
based on classical local elasticity. That itself is an approximation. A true crystal
is dispersive or non-local even without defects. That is, a characteristic length-
scale exists in an elastic solid even without defects, while on the other hand,
correct accounting for gauge interactions leads to an introduction of another
length-scale (owing to the defects). Thus, one may ask what the interactions
between gauge fields and non-local elastic fields are. More pertinently, one can
ask how the two length-scales combine.

Further interest in this problem was generated by the recent work of
Valsakumar & Sahoo (1996), who attempted to evaluate the interactions
between two screw dislocations. They compared gauge results of screw
dislocation interactions with classical elasticity and a particular non-local theory
(Vörös & Kovács 1993). The classical elastic stress solution is (as is well known)
singular when dislocations approach infinitesimally close to each other. Both the
Vörös & Kovács (1993) solution and that of Valsakumar & Sahoo (1996)
removed such singularities, although their respective solutions differed in other
aspects. Valsakumar & Sahoo’s (1996) speculation in closure of their work, on
how the non-local-gauge fields might interact in the ‘two-screw dislocation
interaction problem’, forms the second motivation for the present work.
3. TT(3) gauge formalism for non-local elasticity and field equations

Cartesian tensors are employed throughout unless otherwise noted. Isotropic
material behaviour is assumed. Let L be an admissible Lagrangian in the static
limit. For now, u can be considered to be any field, although we will later identify
it with the displacement vector of a material point. The Lagrangian is assumed
to be invariant under a continuous global gauge group of transformations (G ):

LZLðu;V5u;V5V5u;.Þ; (3.1a)
Proc. R. Soc. A



5Gauge field theory of screw dislocations
u 0/Gu; (3.1b)

L0/L: (3.1c)

Making the gauge group local (i.e. dependent on space-time) spoils this
invariance:

u 0/GðxÞu0L0/L: (3.2)

Equation (3.3) shows as an illustration that if the translations (t), which are a
sub-group of the Euclidean group, are inhomogeneous, then the invariance of the
elastic Lagrangian is generally lost. In this paper, we shall exclusively deal with
the Abelian gauge group of translations,

u 0/uCtðxÞ0L0/L: (3.3)

The Lagrangian can be made invariant again by introducing compensating fields
(gauge fields,

~
4) and defining the so-called gauge covariant derivative (super-

script G ),

V
G
5 u/V5uC

~
4; (3.4a)

~
40/

~
4KV5tðxÞ: (3.4b)

In this fashion a new Lagrangian is formed that also includes the compensating
gauge fields together with a coupling constant, s:

L ¼ Lðu 0;V
G
5u 0;V

G
5V

G
5u 0;.Þ þ sLGð

~
f;V5

~
f;V5V5

~
f;.Þ

fLGjGðxÞLG/LGg:
(3.5)

Consider now an admissible isotropic non-local elastic Lagrangian that
includes strain gradient terms and thus a natural length-scale parameter, lN:

LZK
1

2

n
lðTr

~
3Þ2 C2mð

~
3 :

~
3ÞC l2N½lðV5Tr

~
3Þ$ðV5Tr

~
3Þ

C2mðV5
~
3Þ : ðV5

~
3Þ�
o
; (3.6a)

~
3Z 1

2
½V5uCðV5uÞT�; (3.6b)

where l and m are the usual Lame constants, while
~
3 is the infinitesimal strain

tensor. Here we have chosen a particular non-local Lagrangian proposed by
Atlan & Aifantis (1992; see also Aifantis 2003). Not much importance should be
attached to this particular choice of non-local Lagrangian (among other
variations). Non-local elastic theories that are based on gradients of strains are
typically characterized by the presence of a modified Helmholtz operator, and as
such, adoption of any of them should mathematically lead to similar results with
Proc. R. Soc. A
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greater or less difficulty. The Lagrangian embodied in equation (3.6a) has some
simple appealing features. As discussed by Aifantis (2003), the Lagrangian in
equation (3.6a) implies (under typical boundary conditions of the kind
considered in this work) that the gradient stress definition is the same as
classical stress. This results in considerable simplification of both our equations,
as well as purely strain gradient problems. In particular, results for dislocations
in this particular theory are readily available for comparison (Gutkin 2000;
Aifantis 2003).

Obviously, the Lagrangian in equation (3.6a) is invariant under both three-
dimensional homogeneous rotations and translations, as it should be. The
Lagrangian in equation (3.6a) implies the following constitutive law:

~
sZ lðTr

~
3ÞI C2m

~
3K l2NV

2½lðTr
~
3ÞC2m

~
3�: (3.7)

Here,
~
s is the stress tensor. As mentioned earlier, breaking the translational

internal symmetry leads to the formation of dislocations. Implementing
equations (3.4a,b) and (3.6a,b) we obtain

~
E Z

1

2

h
V5uCðV5uÞTC

~
4C

~
4T
i
; (3.8a)

Ltotal ZK
1

2

n
lðTr

~
EÞ2 C2mð

~
E :

~
EÞC l2N½lðV5Tr

~
EÞ$ðV5Tr

~
EÞ

C2mðV5
~
EÞ : ðV5

~
EÞ�
o
CsLG;

(3.8b)

where the gauge Lagrangian, LG; is formed by a suitable contraction of the gauge
fields:

LG ZK
1

2

h
fðV5

~
4Þaji KðV5

~
4Þaijg : fðV5

~
4Þaji KðV5

~
4Þaijg

i
: (3.9)

The original Lagrangian is now modified in two ways. Firstly, the redefinition of

~
3/

~
E leads to the presence of gauge fields in the classical scalar. Secondly, the

new gauge fields introduce their own addition to the total Lagrangian, LG: Note
that one of the conditions for forming the gauge Lagrangian is that it must also
be invariant under the inhomogeneous gauge transformation. This condition, for
example, excludes the possibility of the gauge fields themselves appearing in
equation (3.9), and thus, only its gradients are employed to construct the gauge
scalar (Moriyasu 1983). A key point to note here is that when we implement the
minimal replacement construct and introduce the translational gauge field, the
only effect on the non-local Lagrangian is through

~
3/

~
E. For example, we do not

construct a replacement of the derivative of the strain by a gauge covariant type
of derivative, similar to that which has been done to the displacement gradient.
The rationale for this is that it is the displacement field that is being gauged
(leading to, of course, defects) and not strain (which does not immediately
present any known defect configuration, even if it is gauged).2
2 Nevertheless, this point deserves further investigation. The first author thanks Professor Dimitris
Lagoudas for pointing out this interesting possibility.
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7Gauge field theory of screw dislocations
The modified EKL field equations for gauge theory predicated on a non-local
Lagrangian can be generated via an appeal to the Euler–Lagrange equations,

vLT

vj
KVk

vLT

vðVk5jÞCVk5Vl :
vLT

vðVk5Vl5jÞK/;

jZu or
~
4:

(3.10)

In the present case, these are a set of 12 field equations in terms of
displacement and gauge fields.
4. Gauge solution of a screw dislocation in a non-local media

The challenge of obtaining a general solution to the coupled gauge-non-local
elasticity field equations as represented by equations (3.10), while possible, is
tedious at best. The symmetries of the screw dislocation problem, however, make
a closed-form solution tractable. The displacement and gauge fields must satisfy
the following symmetry requirements:

uZ uðrÞe3; (4.1a)

~
4Z41e35e1 C42e35e2: (4.1b)

As per Kröner (1981), the dislocation density tensor, which we will have occasion
to use, is simply

~
aZ curl

~
4Z ð42K41Þe35e3: (4.2)

Note that the use of the Pseudo-Lorentz gauge is implicit. From the 12 general
field equations in the previous section (equation (3.10)), we need retain only
three for our particular problem,

v2u

vx21
C

v2u

vx22
ZK

v41

vx1
C

v42

vx2

� �

C l2N
v4u

vx41
C

v4u

vx42
C2

v4u

vx21vx
2
2

C
v341

vx31
C

v342

vx32
C

v341

vx1vx
2
2

C
v342

vx2vx
2
1

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

;

(4.3a)

k2
vu

vx1
ZKk241 Ck2l2N

v3u

vx31
C

v3u

vx22vx1
C

v241

vx21
C

v241

vx22

� �
C

v242

vx1vx2
K

v241

vx22|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
; (4.3b)

k2
vu

vx2
ZKk242 Ck2l2N

v3u

vx32
C

v3u

vx2vx
2
1

C
v242

vx21
C

v242

vx22

� �
C

v241

vx1vx2
K

v242

vx21|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
; (4.3c)
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where k2 is 2m/s and has units of inverse length square. The underbracketed
terms are the additional terms induced by non-local interactions absent from
previous works based on the classical elastic Lagrangian. It is worth noting that,
as is customary in theories of such complexity, linearized equations have been
considered. Full nonlinear equations can of course be setup, however, for the
moment that would be but a digression. For a detailed discussion of scaling and
approximation issues to the nonlinear EKL field equations, see Edelen &
Lagoudas (1988).

Differentiating equation (4.3b) with respect to x2 and equation (4.3c) with
respect to x1 (and subtracting) we obtain the following:

ð1Kk2l2NÞ
v2a

vx21
C

v2a

vx22

� �
Kk2aZ 0: (4.4)

The cylindrically symmetric solution to this equation is well known. We must
distinguish between two scenarios depending upon the relative magnitude of k2l2N
as compared with unity. Accordingly,

Case I ðk2l2N!1Þ : aZC1K0

krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2l2N

p
 !

ZC1K0

r

lG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KðlN=lGÞ2

q
0
B@

1
CA; (4.5a)

Case II ðk2l2NO1Þ : aZC1K0

krffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2l2NK1

p
 !

ZC1K0

r

lG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlN=lGÞ2K1

q
0
B@

1
CA: (4.5b)

Here, we have identified the gauge length-scale parameter, lGZ1/k. K0 is the
modified Bessel function of order zero, while r represents the radial distance in
cylindrical polar coordinates (i.e. rZOðx21Cx22Þ). Based on our results, we can
now easily define an effective length to be:

Case I ðk2l2n!1Þ : leff Z lG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1KðlN=lGÞ2

q
; (4.6a)

Case II ðk2l2nO1Þ : leff Z lG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlN=lGÞ2K1

q
: (4.6b)

The constant, C1, is evaluated based on the asymptotic far-field value of Burger’s
vector that must coincide with the classical solution, that is, we must set

lim
r/N

bgaugeðrÞZ lim
r/N

Ð
aðrÞdrZb (4.7a)

0C1Z
b

2pl2eff
: (4.7b)

To solve the remaining equations, we take a cue from Valsakumar & Sahoo
(1988) and make the following definitions:

4̂1Z
vu

vx1
C41; 4̂2Z

vu

vx2
C42; (4.8a)
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9Gauge field theory of screw dislocations
4̂1Z
vg

vx1
K

vh

vx2
; 4̂2Z

vg

vx2
C

vh

vx1

����divðV5gÞZ0; curlðV5hÞZ0

� �
: (4.8b)

Here, the newly defined 4̂ variables have been written in terms of divergence free
and curl free vectors (g and h) to decouple the remaining field equations.

The two uncoupled equations in terms of the variables g and h are

v2h

vx21
C

v2h

vx22
ZC1K0

r

leff

� �
; (4.9a)

v2g

vx21
C

v2g

vx22
Z l2N

v4g

vx41
C

v4g

vx42
C2

v4g

vx21vx
2
2

� �
: (4.9b)

The first equation, equation (4.9a), is easy to solve and is precisely the same
equation that occurs in previous works (Valsakumar & Sahoo 1988), save for the
important difference that lG is replaced with leff:

vh

vxi
Z

xi
r2

C2 KC1rleffK1

r

leff

� �� �
; (4.10)

where a new constant C2 is introduced. The second equation, equation (4.9b), is
simplified by making the substitution

z Z
v2g

vx21
C

v2g

vx22
Z l2N

v4g

vx41
C

v4g

vx42
C2

v4g

vx21vx
2
2

� �
(4.11a)

0
v2z

vx21
C

v2z

vx22
Z

z

l2N
: (4.11b)

One then easily obtains

v2g

vx21
C

v2g

vx22
ZC3K0

r

lN

� �
: (4.12)

Analogous to the solution of h we have

vg

vxi
Z

xi
r2

C4 KC3rlNK1

r

lN

� �� �
: (4.13)

To compute the stresses we need only derivatives of g and h. For example,

s31 Zm4̂1 ZK
mx2
r2

C2KC1rleffK1

r

leff

� �� �
C

mx1
r2

C4 KC3rlNK1

r

lN

� �� �
:

(4.14)

At this point the various unknown constants C2 to C4 need to be determined.
Their evaluation turns out to be rather trivial, however. Consider equation
(4.14). The far-field of the s31 component of the stress field in the classical theory
(which has been confirmed innumerably via experiments) is well known to be
independent of the x1 coordinate. Thus, we must set C3 and C4 to zero. Further,
requiring the solution to behave regularly (vanish) at origin determines C2.
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In cylindrical coordinates we can then finally write

srz Z
mb

2pr
1K

r

leff
K1

r

leff

� �� �
: (4.15)

The solution in equation (4.15) is functionally identical to that obtained by
Valsakumar & Sahoo (1988) and Edelen (1996) for a screw dislocation via gauge
theory predicated on the classical elasticity Lagrangian. The important
distinction, of course, is that in their solution, instead of l eff the term lG appears.

Thus, the gauge solution to screw dislocation problem based on non-local
elasticity can be obtained by the mere substitution: lG/leff, where l eff is defined
by equation (4.6a,b). This answers the two questions raised in the motivating
sections. We now know that, insofar as the screw dislocation is concerned, non-
local elastic-gauge interactions result in no functional change, however, the
characteristic length-scale does alter. Further, it is clear that the non-local and
gauge length-scales combine in a nonlinear fashion. Related results and
implications are discussed in the next section.
5. Further results, implications and discussion

The variation of the effective length-scale as a function of the two non-local and
gauge length-scales is graphically represented in figure 1.

As is obvious from both equation (4.6a,b) and figure 1, in the limit when
lG/0, the effective length reverts to l eff/lN, and conversely, when lN/0, one
obtains l eff/lG. As depicted in figure 1, in the intermediate range of
length-scales, the interactions are more complex. Interestingly, when these two
length-scales coincide, we obtain a zero effective length signifying that classical
elasticity is a special case where gauge effects and non-local effects are exactly
equal. While this is intuitively and mathematically true for the case when both
lG/0 lN/0, the implications of why this ‘cancellation’ of effects should
persist even at finite non-local and gauge length-scales (provided they are equal)
is somewhat puzzling. Nevertheless, we provide below a brief discussion of our
interpretation of these results.

While both gauge field theory and non-local elasticity end up removing
divergence of field quantities representing the defects (stresses, energies) in a
mathematically similar manner, they seem to do so in completely different
directions and through different means. In non-local elasticity formalism, the
(phenomenological) gradient terms act as penalty functions to smoothen the
singularity; in gauge theory, the smoothening occurs through compensating fields
that force local translational invariance of the total Lagrangian (which,
incidentally, arise naturally rather than being postulated phenomenologically).
The non-local effect and the gauge effect seem to act in opposite directions as
shown by the character of the effective length (equation (4.6a,b), figure 1). This
unexpected smoothening effect in two completely different directions gives rise to
the non-trivial solution where the fields owing to gauge and non-local effects
cancel each other, as is given by the current formulation at lNZlG. Here, one
must keep in mind that although, coincidentally, each theory alone gives similar
mathematical results, the physical cause or nature of the length-scale appearing
Proc. R. Soc. A
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in each theory is different. Their physical origins are completely different. As a
consequence, the length-scale that appears in each formulation is also different
(i.e. lNslG). In reality, there is no physical situation where lNZ0. All solids are
non-local to a greater or lesser extent. The length-scale, lN, is finite even in the
complete absence of defects, while lG strictly arises owing to the presence of the
defects. Since the effective length is a combination of the two length sales,
numerically, our results will always lie between the gauge solution and the
gradient solution. Given that (in reality) the case, lNZ0 does not exist, what is
the definition of classical elasticity in the context of defects? According to our
work, a natural definition of classical elasticity for defects is consequently when
lNZlG, that is, when non-local effects persist only up to the core radius of the
dislocation. This appears to be both reasonable and intuitive. Despite this simple
interpretation, there appear to be philosophical implications of this work (which
must await further work) that are yet to be fully clarified.

In any case, a major consequence of our results is that by merely replacing the
gauge length with the effective length, most known gauge solutions (based on
classical elasticity) involving screw dislocations can be converted to gauge
solutions based on non-local elasticity. Thus, we can now address Valsakumar &
Sahoo’s (1996) speculation on how the force between two screw dislocations
might change if non-local elasticity is combined with the gauge theory. Based on
their work, we can now directly write the force between two parallel screw
dislocations (extending along the x3 direction) in the gauge-non-local theory as

FðRÞZ mb1b2
2pR

1K
R

leff
K1

R

leff

� �� �
êr : (5.1)

Here, R is the separation distance between the dislocations. While the results can
be plotted parametrically, some simple estimates of the various length-scales can
Proc. R. Soc. A
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be used to provide a more concrete picture. The gauge length-scale can be
identified with the dislocation core radius. A typical dislocation core radius can
be taken to be approximately equal to b (Hirth & Lothe 1982), while b itself is
a=O2 (for an ideal face-centred cubic (FCC) material), where a is the lattice
parameter. Thus, we set lGwa=O2. The non-local length-scale is a measure of the
materials dispersivity and is highly dependent upon the material under
consideration. Experimentally, it can be determined by measuring the phonon
spectra. For example, in the case of lanthanum, this value is as small as 0.1 nm,
but is as large as 3.4 nm for graphite (Reid & Gooding 1992). Of course,
experimental values will invariably reflect effects of existing dislocation and other
defects. A theoretical estimate (via the simple Born–Karman model) is that
lNwa/2 (Eringen 2002). The results for the force between two parallel screw
dislocations are plotted in figure 2. For comparison, the classical elastic and the
gauge theory solution based on classical elasticity are also shown. For the given
length-scale ratio adopted, a peak force difference of as much as 100% is
predicted. The location of the peak force is also weakly shifted.

Clearly, the peak force between dislocations is highly sensitive to the gauge
length–non-local length ratio. In the limit when the length-scale ratio approaches
one (i.e. the classical elasticity case), the peak force location is shifted towards
the origin while exhibiting a singularity. This high sensitivity in the peak force
could be possibly used to experimentally verify the presence of gauge-non-local
interactions. Unfortunately, however, experimental distinction between the
length-scale effects is fraught with challenges. It would be crucial to first obtain
the non-local length-scale without interference from other effects such as defects
Proc. R. Soc. A
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and surface energies (see, for example, Sharma et al. 2003; Sharma & Ganti 2004
for a discussion on surface effects). The gauge length-scale must also be then
separated out and determined precisely. Perhaps, a combination of experimental
and numerical work may be more appropriate.
6. Closing remarks

In the present work, the relaxed elastic state of a screw dislocation in a non-local
medium was investigated from the viewpoint of gauge field theory of defects in
solids. We find that, while the elastic state description is functionally the same
across the gauge theory based on classical elasticity and the present non-local
elasticity based gauge solution, a new effective length measure needs to be
introduced. In particular, the material parameters of non-local elasticity and the
gauge theory combine in a nonlinear fashion to yield an effective length-scale.
One of the implications of this result, is that several known (or easily obtained)
gauge theory solutions, for screw dislocation problems based on classical elastic
medium, can now be converted over to a non-local medium with a mere change in
the characteristic length-scale. As an example, the force between two screw
dislocations located in a non-local medium was evaluated. Using typical length-
scale parameters, the authors find a significant difference in the peak force
estimation, depending upon whether the gauge theory is predicated on a classical
medium or a non-local one. This observation could be used for experimental
verification of the predicted interactions.

There are several limitations of the present work which need to be
highlighted. Firstly, a linearized version of the Edelen–Kadić–Lagoudas theory
was employed. It would be instructive to see, whether, a nonlinear theory
engenders any significant qualitative shift. Second, couple stresses were
ignored. While granted that the dual of the dislocation density is a moment
stress, such a term should be inserted a priori in the elastic Lagrangian also.
The present strain gradient Lagrangian suffers from the advantage (or
disadvantage, depending upon one’s perspective) that the resulting stress
definition is the same as that of classical elasticity, and higher order stresses
(such as moments stresses) do not appear (Ru & Aifantis 1993). For that
purpose, perhaps, a mixture of Eringen’s micropolar constitutive law (Eringen
2002) together with the present gradient Lagrangian can be used. The latter
can be of importance in certain lattices which allow for easy rotational
accommodation (e.g. KNO3). Finally, while we suspect that our results are
general, and might hold true for defects other than just the screw dislocation,
we can by no means pretend to make such a strong statement. Further
investigation is clearly required to verify the universal character (or the lack
thereof) of the present results.

Helpful comments and suggestions from Professor Dimitris Lagoudas (Texas A&M University) and

Rajdeep Sharma (Massachusetts Institute of Technology) are gratefully acknowledged. In

particular, Professor Lagoudas alerted the first author to the possibility of higher order minimal

replacement for the derivative of strain, which we expect to pursue in future works.
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