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In this work, using a combination of a theoretical framework and atomistic calculations, we

highlight the concept of “surface piezoelectricity,” which can be used to interpret the

piezoelectricity of nanostructures. Focusing on three specific material systems (ZnO, SrTiO3, and

BaTiO3), we discuss the renormalization of apparent piezoelectric behavior at small scales. In a

rather interesting interplay of symmetry and surface effects, we show that nanostructures of certain

non-piezoelectric materials may also exhibit piezoelectric behavior. Finally, for the case of ZnO,

using a comparison with first principles calculations, we also comment on the fidelity of the widely

used core–shell interatomic potentials to capture non-bulk electro-mechanical response. VC 2011
American Institute of Physics. [doi:10.1063/1.3660431]

I. INTRODUCTION

Piezoelectric materials have, over time, attracted signifi-

cant interest because of applications in a broad range of tech-

nologies: energy harvesting, sensing, actuation, advanced

microscopy, artificial muscles, among others.42 More

recently, attention has focused on exploring the nature of this

electromechanical coupling at the nanoscale and the attend-

ant consequences. For example, Wang and co-workers pre-

sented seminal work illustrating how electrical energy can

be harvested from bent ZnO nanowires using an atomic force

microscope (AFM).33,38 Similar effects were also reported

for GaN nanowires.34 Through exploitation of nanoscale size

effects, researchers have also highlighted the notion of creat-

ing piezoelectric materials without using piezoelectric mate-

rials,10,11,31 “giant” piezoelectricity in inhomogeneously

deformed nanostructures,21,22 the origins of nanoindentation

size effects,12,13 and renormalized ferroelectric properties,8

among others.

The phenomenon of flexoelectricity is responsible for

some of the size effects discussed in the aforementioned

references—in particular, for high permittivity materials. On

the other hand, given the sizable fraction of atoms residing at

the surface in a typical nanostructure, it is now well appreci-

ated that surface effects play a tremendous role in both

renormalization of materials properties as well as lead to

(sometimes) fundamentally new phenomena. Especially for

low-permittivity dielectrics (e.g., ZnO), surface effects are

likely to dominate. Recent experiments44 and density func-

tional theory (DFT) calculations have found that ZnO nano-

structures exhibit apparent piezoelectric constants that can

be both larger and smaller than the expected bulk val-

ues.1,19,23,40 Indeed, this deviation of the piezoelectric prop-

erties of nanostructures from the bulk values is attributed to

surface effects. Atoms near the surfaces have fewer bonding

neighbors than atoms in the bulk; this directly impacts the

atomic polarization for surface atoms, which in turn should

have a direct effect on the piezoelectric properties. Second,

atoms at or near surfaces are subject to surface stresses,4

which can cause substantial deformation,20,29 and, thus,

changes in polarization of the surfaces, even in the absence

of any externally applied forces.1

In the present work, using a combination of a theoretical

framework and atomistic calculations, we highlight the con-

cept of “surface piezoelectricity,” which can be used to inter-

pret the piezoelectricity of nanostructures. We focus on three

specific materials as examples: ZnO, SrTiO3, and BaTiO3

(BTO3). In a rather interesting interplay of symmetry and

surface effects, we show that nanostructures of certain

non-piezoelectric materials may also exhibit piezoelectric

behavior. Through our atomistic calculations, we present the

so-called surface piezoelectric constants of the two example

materials. These can be then be used in the context of contin-

uum theoretical frameworks32 to solve boundary value prob-

lems of interest.

Another key outcome of the current work is the assess-

ment of the ability of classical core–shell interatomic poten-

tials to capture the non-bulk polarization, and thus the

piezoelectric properties of nanostructures. Ab initio methods

have been utilized for many years to calculate the bulk pie-

zoelectric properties of nanostructures (e.g., for ZnO, see

Refs. 2, 5, 6, 16, 24, and 25). However, computational expe-

diency motivates the use of empirical interatomic calcula-

tions in the intermediate size range (>5 nm), which is often

of interest to experimentalists. Furthermore, classical molec-

ular dynamics can easily handle temperature effects includ-

ing the phenomenon of pyroelectricity, which is difficult to

model using ab initio techniques. The previous work by Dai

et al.7 demonstrated that the widely used polarizable core–

shell potentials for ZnO, i.e., those of Binks and Grimes3 and

Nyberg et al.,27 are indeed (when contrasted with first princi-

ple calculations) able to reproduce the bulk piezoelectric

constants. One of their conclusions was that the presence of
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the polarizable shell is essential in capturing the clamped ion

contribution to the piezoelectric material constants. The

fidelity of these core–shell potentials to capture surface

effects is unknown, and such an assessment is also one of the

objectives of the current work.

The outline of this paper is as follows. In Sec. II, we

briefly summarize an existing theoretical framework of sur-

face piezoelectricity that can be used to connect continuum

approaches and atomistic calculations, whereas in Sec. III,

we present some general considerations of the surface-

piezoelectric tensor (especially as is relevant for the symme-

tries of interest in our example materials), as well as a

theoretical expression for the size-dependent piezoelectric

response of a thin film that can be linked with atomistic cal-

culations in a facile manner. In Sec. IV, we present detailed

atomistic calculations: both first principles as well as empiri-

cal molecular dynamics. Discussion of our results is in

Sec. V.

II. THEORETICAL FRAMEWORK FOR SURFACE
PIEZOELECTRICITY

In this section, we briefly summarize the work of Shen

and Hu,32 who recently presented a theoretical framework

for surface piezoelectricity. The surface internal energy den-

sity Us, as a function of surface strain, surface polarization,

and their first gradients may be expanded as follows:
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where es is the surface strain tensor and Ps is the surface

polarization. We can rewrite Us as:
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where Us0, xa, Cab, as
ab, cs

abcj, and ~ds
abc are the surface mate-

rial constants. In particular, eds
abc represents the surface-

piezoelectric third-order tensor.

The linear surface constitutive equations can then be

expressed as:

rs ¼
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:

Then
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where rs and Es are the surface stress and the surface effec-

tive local electric field, respectively. Similarly, the bulk con-

stitutive equations can be written as:32
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III. SURFACE-PIEZOELECTRIC TENSOR AND
RENORMALIZATION OF PIEZOELECTRIC TENSOR
FOR THIN FILMS

For a 3D nanostructure, the bulk piezoelectric tensor, in

its most general form, can be represented as a 3� 6 matrix

in some suitable basis. Analogously, the surface piezoelec-

tric tensor can be represented as a 2� 3 matrix. Using the

symmetry of the surface stress tensor, we obtain ds
ijk ¼ ds

jik.

Therefore, the nonzero components of the piezoelectric sur-

face constants are ds
11, ds

12, ds
21, ds

22, ds
16, and ds

26. The matrix

expressing the surface-piezoelectric constants in 2D may be

extended in 3D where only these aforementioned compo-

nents remain nonzero. In particular, for the case of hexagonal

ZnO (6-mm symmetry) and tetragonal BaTiO3 (4-mm sym-

metry), where the 3-direction is considered perpendicular to

the isotropic surface, all the bulk piezoelectric components

are zeros except for dB
15, dB

31, and dB
33. The components of the

surface piezoelectric tensor for the 0001ð Þ (or 000�1ð Þ) surfa-

ces are zero. For 01�10ð Þ (or 0�110ð Þ) surfaces only three com-

ponents are nonzero (dS
15, dS

31, and dS
33). Similarly for 10�10ð Þ

and �1010ð Þ, only dS
24, dS

32, and dS
33 are nonzero. For the latter,

we have the following relations: dS
24 ¼ ds

15 and dS
32 ¼ dS

31.

The internal energy density (incorporating surface contribu-

tions) for a rectangular medium of thickness h can be

expressed as follows:

W ¼ Us

h
þ Ub; (5)

where Us is the surface internal energy density function and

Ub is the bulk internal energy density function. Then,

according to Shen and Hu,32 the total energy density function

can be written in the following form:

w ¼ :::þ edb
ijke

b
ijP

b
k þ

eds
ijk

h
es

ijP
s
k

¼ :::þ eijPk
edb

ijk þ
eds

ijk

h

 !
;

(6)

where Eq. (6) is a direct consequence of the following:

es
ij ¼ eb

ij ¼ eij and Ps
k ¼ Pb

k ¼ Pk:

Therefore, the effective piezoelectric coefficient resulting

from the surface and bulk contributions can be calculated as:

edeff
ijk ¼

@2W=v

@eij@Pk
¼ edb

ijk þ
eds

ijk

h
: (7)

For an applied strain, the ith polarization component has the

following expression:

Pi ¼ Psp
i þ PB

i þ PS
i ¼ Psp

i þ dB
ijkejk þ

dS
ijk

h
ejk;
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where Psp
i is the spontaneous polarization in the ith direction

(in case of ferroelectrics), PB
i and PS

i are, respectively, the

bulk and the surface polarizations contributions, dB
ijk and dS

ijk

are, respectively, the bulk and the surface-piezoelectric stress

tensor, e represents the applied strain, and h is the thickness

of structure in the z direction. We can then write that

DPi ¼ Pi � Psp
i ¼ dB

ijkejk þ
dS

ijk

h
ejk ¼ deff

ijk ejk: (8)

We note that the relationship between the surface-

piezoelectric constants dS
ijk, which we will calculate in this

work, and those ( ~ds
ijk) of the Shen formulation in Eq. (3) are

eni � dnið Þ~ds
ijk ¼ �e0ds

njk, where eni is the dielectric tensor.

Thus, Eq. (7) provides an expression for the apparent

piezoelectric constant of a thin film duly incorporating sur-

face piezoelectricity. Table I summarizes the polarization

vector components expressions for applied uniform strain in

different directions, where the numbers 2 and 4 represent the

number of contributing surfaces.

The overall recipe to determine all the bulk (dB
31, dB

33,

and dB
15) and surface (ds

31, ds
33, and ds

15) piezoelectric

unknowns is clear: we can use Eqs. 9(a)–9(b) and evaluate

the polarizations with the same applied strain for two thick-

nesses h1 and h2. Solving six equations with six unknowns

(Eqs. 9(a) and 9(b) can be combined together by applying

the same strain in both directions simultaneously), we can

determine all the bulk and the surface-piezoelectric coeffi-

cients. Also, to improve accuracy, we can calculate the effec-

tive piezoelectric constant, for each case, for different

thicknesses and fit the results with the appropriate equation.

IV. ATOMISTIC CALCULATIONS

A. First-principles calculations for bulk ZnO and its
(0001) polar surfaces

The first-principles calculations performed in this study

are based on density-functional theory implemented in the

Quantum Espresso software.14 For bulk calculations, a

k-point sampling of 6� 6� 1ð Þ grid is implemented. How-

ever, for slabs with different thicknesses, ranging from 2S (two

Zn–O double layers) to 10S (ten Zn–O double layers), a sam-

pling of 6� 6� 2ð Þ was chosen. The structural parameters for

the ZnO unit cell have been specified in many research papers;

for our study, we used the same parameters employed by Dal

Corso et al.6 and Li et al.19: a ¼ 3:2595 Å, c=a ¼ 1:5974, and

u ¼ 0:382, where a and c denote the lattice constants and the

dimensionless parameter, and u is the length of the Zn–O bond

parallel to the c axis, in units of c. A schematic of wurtzite

ZnO with the polar surfaces is shown in Fig. 1.

For both the bulk and surface calculations, the plane-wave

cutoff of 30 Ry was used. To compute the polarization, we first

carried out self-consistent total-energy calculations. Then,

the polarization was estimated through the Berry-phase

approach.17,30,36 For the bulk model (infinite periodic crystal),

different strains were applied in the z direction to compute d33,

and different biaxial strains were applied simultaneously in the

x and y directions to compute d31. For the surface case, we

simulated thin films where the thicknesses ranged between

2S–10S. To deal with the energy convergence problem induced

by polar terminated surfaces 0001ð Þ and 000�1ð Þ because of dan-

gling bonds, we followed the same method as Li et al.19 Specif-

ically, we replaced the Zn and O atoms lying, respectively, in

the 0001ð Þ and 000�1ð Þ surfaces, with artificially created atoms

characterized by new valences numbers (6.5 for O and 11.5 for

Zn). The method is well studied and justified by Kresse et al.18

Finally, the slabs were modeled by different supercells, where a

vacuum region of about 10 Å was employed. The vacuum

region was chosen carefully to avoid wavefunction overlaps

and interactions between neighboring supercells. Our calcula-

tions show that dB
33 ¼ 1:22 C=m

2
and that dB

31 ¼ �0:59 C=m
2
.

Both are in good agreement with previous DFT calculations for

the bulk piezoelectric constants of ZnO.6

B. Empirical core–shell-potential-based atomistic
modeling of bulk ZnO and its (0001) polar surfaces

We utilized the Binks and Grimes3 polarizable core–

shell potential for ZnO, for which the potential takes a

Buckingham-type form, i.e.,

TABLE I. Induced polarization expressions due to applied uniform strain.

DP1 DP2 DP3 Eq. no.

e ¼ e1e1 � e1 0 0 dB
31 þ 2

dS
31

h

� �
e1 9(a)

e ¼ e1e2 � e2 0 0
dB

31 þ 2
dS

31

h

� �
e1 9(b)

e ¼ e1e3 � e3 0 0 dB
33 þ 4

dS
33

h

� �
e1 9(c)

e ¼ e1e1 � e3 dB
15 þ 2

dS
15

h

� �
e1 0 0 9(d)

e ¼ e1e2 � e3 0 dB
15 þ 2

dS
15

h

� �
e1 0 9(e)

e ¼ e1e1 � e2 0 0 0 9(f) FIG. 1. (Color online) Wurtzite structure of ZnO with polar ð0001Þ Zn- and

ð000�1Þ O-terminated surfaces.
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U rij

� �
¼ qiqj

rij
þ A exp

�rij

q

� �
� C

r6
ij

: (10)

The first term on the right-hand side of Eq. (10) is the long-

ranged Coulombic energy, and the second and third terms

represent short-ranged repulsion and attraction, respectively.

The bulk piezoelectric constants were previously calculated

using both potentials in recent work by Dai et al.,7 giving

values of dB
33¼ 1:25! 1:29 C/m2 and dB

31¼�0:48!�0:54

C/m2, which are in good agreement with the current and pre-

vious DFT results for ZnO.6,23,24

There are two important points that deserve separate

mention with regard to using classical polarizable core–shell

potentials to calculate the piezoelectric constants of ZnO

surfaces. First, because we are interested in the surface prop-

erties of ZnO, special care must be taken in calculating the

long-ranged Coulombic interactions in Eq. (10), where the

Ewald summation technique, which relies upon lattice perio-

dicity, becomes invalid at surfaces. To account for this, we

utilized the approach developed by Fennell and Gezelter,9

who improved the short-ranged charge-neutralization

method originally proposed by Wolf et al.39 to provide con-

tinuous forces at the potential cut-off distance. For the ZnO

crystal, we utilized the Fennell potential parameters of

a¼ 3.0 nm�1 and the cut-off distance Rc ¼ 1:0 nm, as these

values led to converged values for the bulk Madelung energy

for ZnO, while considering a relatively small interaction ra-

dius Rc for computational efficiency.

Second, it is well known that the polar (0001) surfaces

of ZnO are unstable, and lead to a non-convergent electro-

static potential with increasing nanofilm size.18,26,35 Correc-

tions to this non-convergent potential issue have typically

relied on surface reconstructions, or charge reduction, where

the surface Zn and O atoms take on a reduced charge of

þ1.5 and �1.5, respectively. The charge reduction can also

be understood in terms of the tetrahedral bonding, where,

because of the fact that the surface Zn and O atoms have

three neighbors instead of four, their charge is reduced pro-

portionally. In the present work, we avoid the non-

convergent electrostatic potential by modifying the charges

of the surface Zn and O atoms to be 75% of their bulk val-

ues, as recently suggested by various authors for classical

potentials.18,26,35

To calculate the surface-piezoelectric constants using

the classical polarizable core–shell potentials, we created

thin films of ZnO that were periodic in the plane, with free

(0001) surfaces normal to the plane. The surface-

piezoelectric constants were calculated in the same manner

as the DFT calculations. Specifically, to calculate dS
33, we

first allowed the film to relax, then applied strain normal to

the plane in the [0001] direction while calculating the corre-

sponding change in polarization with each increment in

strain. To calculate dS
31, we first relaxed the film and then

biaxially strained the film. The film thickness was kept con-

stant after the initial relaxation to not only ensure conver-

gence to the bulk piezoelectric constant at large film

thicknesses, but also to eliminate any strain in the direction

normal to the (0001) surface.

C. Comparison between first principles and empirical
molecular dynamics results

Our results are based on theoretical formulas introduced

in Table I, and computational calculations performed using

first-principles code Quantum Espresso and classical molec-

ular statics using the publicly available code GROMACS.15

The quantum code was validated through calculation of

surface energy and comparison with results published by Li

et al.19 The surface energy is defined as the difference

between the total energies of the film model and the bulk

model with the same number of primitive cells divided by

the number of the Zn–O double layers. Our calculations

show that the surface energies are 2.53 eV (for 2S) and 1.56

eV (for 4S) compared to 2.48 eV and 1.52 eV reported by Li

et al.19 In the following, we present Fig. 2 for the effective

piezoelectric coefficients d33.

To estimate the bulk constant dB
33 and the surface constant

dS
33, we fit both the DFT and MD results (the same results

are plotted in Fig. 2) to the theoretical model

(deff
33 ¼ dB

33 þ 4ðdS
33=hÞ) introduced by Eq. 9(c) in Table I. The

present study shows that the DFT results give dB
33 ¼ 1:22 C=m

2

and dS
33 ¼ �0:15� 10�9 C=m compared, respectively, to

dB
33 ¼ 1:24 C=m

2
and dS

33 ¼ �0:125� 10�9 C=m calculated

using Li et al.’s19 results. In contrast, the MD results give a

surface-piezoelectric constant of ds
33 ¼ �0:32� 10�9 C=m.

The same fitting technique is used to determine the bulk

constant dB
31 and the surface constant ds

31. Our DFT and MD

results shown in Fig. 2 are fitted to the theoretical model

(deff
31 ¼ dB

31 þ 2ðdS
31=hÞ) described by Eqs. 9(a) and 9(b) from

Table I. The fitting shows that for DFT dB
31 ¼ �0:59 C=m

2

and ds
31 ¼ 0:1� 10�9 C=m. In contrast, using classical MD,

we obtain ds
31 ¼ 0:29� 10�9 C=m. As was the case for the

surface piezoelectric constant ds
33, we find that the MD result

is larger than the DFT result.

Figure 2 summarizes the effective piezoelectric con-

stants d33 for different film thicknesses. It is clear that the

MD results are qualitatively similar to the DFT results,

FIG. 2. (Color online) Effective piezoelectric constant d33 and effective pie-

zoelectric constant d31 vs the number of Zn–O double layers as calculated

using both DFT and MD.
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though the effective piezoelectric constant is always smaller

for the same film thickness. This leads to the surface-

piezoelectric constant from MD being larger and more nega-

tive than the DFT results. Physically, this implies that the

piezoelectric properties as obtained using MD are less bulk-

like than those obtained using DFT. We also note that both

the MD and DFT results, as expected, converge to the bulk

value of d33 with increasing film thickness. The MD results,

however, converge more slowly. One interesting point is that

Fig. 2 demonstrates that in both the present DFT results for

ds
33 and the previous DFT results of Li et al.,19 the value

approaches and appears to increase to a value greater than

the bulk value for dB
33, where in contrast the MD results do

not overshoot the bulk value at any point.

Figure 2 also shows different effective piezoelectric

constants d31 for different thickness ZnO nanofilms. The

DFT results are seen again to converge much more quickly

to the bulk value of dB
31 ¼ �0:59 C=m

2
with increasing

nanofilm thickness as compared to the MD results, which

again show the same qualitative trend as the DFT results.

The surface-piezoelectric values physically represent

the difference in piezoelectric behavior as compared to the

reference bulk system, similar to how surface energy is cal-

culated thermodynamically as an excess value with the per-

fect infinite crystal energy as the reference value.24

Interpreted in this way, it is clear that the piezoelectric prop-

erties of ZnO nanostructures with polar (0001)-type surfaces

are (for the cases we studied) always less than the corre-

sponding bulk values. Furthermore, because the MD values

are larger than the DFT values for both surface-piezoelectric

constants, future MD studies of surface effects on piezoelec-

tricity can be interpreted as exhibiting a stronger deviation

from the expected bulk piezoelectric properties than would

otherwise be expected based on the present DFT results.

Table II summarizes the comparison between DFT and

MD results for both the bulk and surface-piezoelectric con-

stants. Whereas the MD results are equally accurate for the

bulk piezoelectric constants, their fidelity suffers when dealing

with surfaces, although the established trends are qualitatively

correct. Furthermore, it is interesting to note that inclusion of

the polarizable shell for the core–shell potentials has an insig-

nificant effect on the surface-piezoelectric properties; this is

similar to what was observed previously by Dai et al.7 for the

bulk piezoelectric constants, where the shell did enable a non-

zero clamped ion term, but did not change the values of the

piezoelectric constants appreciably. In this sense, an analogy

can be drawn to MD calculations of surface energy or surface

stress, where it also is well known that the MD results are

qualitatively, and not quantitatively correct when compared to

benchmark DFT results.37 Still, the results are promising as

they do suggest that the core–shell interatomic potentials are

sufficiently accurate as to be utilized to study size and surface

effects on the piezoelectric properties of ZnO nanostructures

with polar (0001)-type surfaces.

D. Bulk and surface first-principles calculations
for piezoelectric BaTiO3

Following the same procedure previously described in

Sec. IV A, the effective piezoelectric constants of tetrago-

nal BaTiO3 nanostructures with different thicknesses have

been calculated. We used the same DFT tool based on

Quantum Espresso algorithms. The bulk calculations are

conducted using a k-point sampling of (6� 6� 1) grid.

However the slabs with different thicknesses were per-

formed using a sampling of (6� 6� 2) grid. The BTO cell

parameters used in our calculations are a¼ 3.938 Å and

c¼ 3.993 Å.28 The plane wave cutoff used for our calcula-

tion is 30 Ry. Similar to the ZnO case, we performed both

self-consistent total-energy and polarization calculations

(based on Berry-phase approach). Also, the slabs were

constructed such that a vacuum region of 10 Å was consid-

ered. It is shown in Fig. 3 that dB
33 ¼ 6:70 C=m

2
and that

dB
31 ¼ �4:10 C=m

2
. Using results from Table I and

results plotted in Fig. 3, the surface-piezoelectric constants

for tetragonal BaTiO3 are obtained. We found that

dS
33 ¼ �0:9� 10�9 C=m and dS

31 ¼ 0:7� 10�9 C=m. The

bulk piezoelectric constant dB
33 is in good agreement with

results published by Zgonik et al.43 Also, the bulk piezo-

electric constant dB
31 is in good agreement with the constant

used by Gharbi et al.13

E. First-principles calculations for cubic BaTiO3 and
SrTiO3: Interplay of symmetry and surface effects in
non-piezoelectric materials

The previous results were for a ZnO, which, due to its

non-centrosymmetric wurtzite crystal structure, exhibits

TABLE II. Comparison between DFT and MD calculations for bulk and

surface ZnO piezoelectric constants (d33 and d31).

Bulk values (in C=m2) Surface values (in C=m)

MD MD

DFT Shell No shell DFT Shell No shell

d33 1.22 1.33 1.34 �0.15� 10�9 �0.32� 10�9 �0.32� 10�9

d31 �0.59 �0.51 �0.51 0.10� 10�9 0.29� 10�9 0.29� 10�9

FIG. 3. (Color online) Effective piezoelectric constant d33 and effective pie-

zoelectric constant d31 vs the number of tetragonal BaTiO3 unit cells as cal-

culated using DFT.
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piezoelectric behavior in bulk form. In contrast, there exist

other materials, such as BaTiO3 that show piezoelectricity

only in certain temperature ranges (corresponding to appro-

priate crystal structures). For example, in its cubic form,

BTO does not exhibit piezoelectricity. Here, we demonstrate,

using DFT calculations, that lattice contraction because of

surface stresses can overcome these crystallographic limita-

tions to induce piezoelectric behavior in nanostructures of

otherwise non-piezoelectric cubic BaTiO3.

The polarizations are calculated through Berry-phase

calculations for cubic relaxed perovskite structures BaTiO3

and SrTiO3 (only one surface is relaxed).41 We used three

different thicknesses 7, 9, and 11 Ba(Sr)–O and Ti–O2

layers. The surfaces are Ba(Sr)–O terminated surfaces. The

relaxation results and the effective piezoelectric constants

induced are presented and surface constants are determined

and compared to previous results for piezoelectric ZnO and

BaTiO3 structures.

We first summarize the surface stress-induced lattice

contractions for BaTiO3 in Table III (results for BaTiO3 for

seven-layer relaxation), and for SrTiO3 in Table IV (results

for SrTiO3 for seven-layer relaxation). As shown in these

tables, there is no change in the x and y coordinates for the

atoms in the (xy) planes, i.e., there is no relaxation parallel

to the free (0001) surface. Therefore, the induced dipole

moment for the Ba(Sr)O termination is perpendicular to the

surface.

Then

DP3 ¼ deff
33 e33 ¼ 4

dS
33

h
e33:

The polarization calculation and the effective surface con-

stants for e33 ¼ 1%ð Þ are shown in Table V for different

thickness nanofilms.

The results are fitted to the theoretical equation

deff
33 ¼ 4ðdS

33=hÞ and the surface constants are determined for

both cases, with the fitted results summarized for both

BaTiO3 and SrTiO3 in Table VI compared to the surface-

piezoelectric constants previously reported for the ZnO

(0001) surface, and the bulk piezoelectric constant for

BaTiO3. For cubic BaTiO3, it is shown that the surface relax-

ation that is summarized in Table III induces an apparent

surface-piezoelectric constant in Table VI that is 6% com-

pared to the piezoelectric BaTiO3 surface constant, and is

also 33% compared to the piezoelectric ZnO surface con-

stant. The apparent surface-piezoelectric constant given in

Table VI for the cubic SrTiO3, due to the surface relaxation

that is summarized in Table IV, presents 28% of the value

computed for the cubic BaTiO3.

V. DISCUSSION AND SUMMARY

Surfaces in nanostructures play an important role in

deciding the nature of electromechanical coupling. We

have used a modification of the well-established Gibbsian

surface energy theoretical framework to interpret the atom-

istic results of surface piezoelectricity. Documentation of

the surface-piezoelectric constants through atomistics

allows a fairly simple calculation of the size-dependent pie-

zoelectric properties for nanostructures. Depending on the

material and surface orientation, surfaces can renormalize

the piezoelectric constants to be both less than or greater

than the corresponding bulk values. In particular, one of

our key results is that even non-piezoelectric materials may

act as piezoelectric at the nanoscale because of surface

effects.

TABLE III. Atomic relaxations (in percent of bulk lattice constant) for

BaTiO3 (0001) surface. Positive sign corresponds to outward atomic

displacement.

Displacements

dx dy dz

Layer Ion Ref. 1 Present study Ref. 1 Present study Ref. 1 Present study

1 Ba2þ 0 0 0 0 �0.066 �0.022

O2� 0 0 0 0 �0.038 �0.012

2 Ti4þ 0 0 0 0 �0.005 0.008

O2� 0 0 0 0 �0.016 0.004

O2� 0 0 0 0 �0.016 0.004

3 Ba2þ 0 0 0 0 �0.022 �0.003

O2� 0 0 0 0 �0.016 �0.002

TABLE IV. Atomic relaxations (in percent of bulk lattice constant) for

SrTiO3 (0001) surface. Positive sign corresponds to outward atomic

displacement.

Displacements

dx dy dz

Layer Ion Present study Present study Present study

1 Sr2þ 0 0 �0.010

O2� 0 0 0.005

2 Ti4þ 0 0 0.008

O2� 0 0 0

O2� 0 0 0

3 Sr2þ 0 0 �0.002

O2� 0 0 0

TABLE V. Effective piezoelectric constants deff
33 (in C=m2) of the Cubic

perovskite nanofilms.

BaTiO3 SrTiO3

7S 9S 11S 7S 9S 11S

DP 10�2 C=m
2

� �
0.22 0.18 0.13 0.07 0.05 0.02

deff
33 C=m

2
� �

0.22 0.18 0.13 0.07 0.05 0.02

TABLE VI. Comparison with surface constants for piezoelectric and non-

piezoelectric structures.

Piezoelectric

ZnO

Piezoelectric

BaTiO3

Cubic

BaTiO3 Cubic SrTiO3

Surface

constant

dS
33 C=mð Þ

�0.15� 10�9 �0.9� 10�9 0.050� 10�9 0.014� 10�9
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