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Recent developments in flexoelectricity, especially in nanostructures, have lead to several
interesting notions such as piezoelectric materials without using piezoelectric materials
and enhanced energy harvesting at the nanoscale, among others. In the biological context
also, membrane flexoelectricity has been hypothesized to play an important role, e.g.,
biological mechanotransduction and hearing mechanisms, among others. In this paper,
we consider a heterogeneous flexoelectric membrane and derive the homogenized
or renormalized flexoelectric, dielectric, and elastic response, therefore, relating the
corresponding effective electromechanical properties to its microstructural details. Our
work allows design of a microstructure to tailor flexoelectric response, and an illustrative
example is given for biological membranes. [DOI: 10.1115/1.4023978]

1 Introduction

Piezoelectricity is perhaps the most widely known and
exploited forms of electromechanical coupling. In a piezoelectric
material, a uniform mechanical strain induces an electric field
and vice versa. Piezoelectricity is preferentially used where pre-
cise control of mechanical motion is required, e.g., in scanning
probe microscopes, and has now found wide applications: next-
generation energy harvesters [1], artificial muscles [2], and
sensors and actuators [3], among others. Crystallographic con-
siderations restrict this technologically important property to
noncentrosymmetric crystal systems [4] and indeed the latter is a
necessary condition for a material to display piezoelectricity.
However, a nonuniform strain field or presence of strain gradients
can locally break inversion symmetry and induce polarization
even in centrosymmetric crystals. This phenomenon is termed
flexoelectrictiy [5–8], inspired by a similar effect in liquid crystals
[9–11]. The reader is encouraged to refer to some recent review
articles on flexoelectricity by Cross [12], Sharma et al. [13], and
Tagantsev et al. [14].

Recently, flexoelectricity has attracted a fair amount of atten-
tion from both fundamental and applications points of view, lead-
ing to intensive experimental [12,15–22] and theoretical
[13,23–31] activity in this topic. Lack of symmetry at surfaces and
the capability to support large strain gradient in nanoscale struc-
tures enable unusual forms of piezoelectricity and flexoelectricity.
For example: creating piezoelectric metamaterial from a nonpie-
zoelectric material has been investigated experimentally and com-
putationally [28,32]. In fact, Chandratre and Sharma [33] recently
showed that predicated on the phenomenon of flexoelectricity,
graphene can be “coaxed” to behave like a piezoelectric material
merely by creating holes of certain symmetry. The artificial piezo-
electricity thus produced was found to be almost as strong as that
of well-known piezoelectric substances such as quartz.

Several other works have appeared on elucidating flexoelectric-
ity in two-dimensional structures [34]. Dumitrica et al. [31] and
Kalinin and Meunier [30] showed that low dimensional systems
such as graphene tend to exhibit electronic flexoelectricity, e.g.,

bending of nonpolar quantum systems leading to emergence of
net dipole moments. Upon bending, redistribution of the electron
gas in the normal direction results in the formation of a net dipole
moment and, hence, flexoelectric coupling (Fig. 1). For large radii
of curvatures and in the extreme case of closed seamless cylinder,
the dipoles (formed) cancel out each other and the net polarization
vanishes—which is why nonchiral (dielectric) carbon nanotubes
have no dipole moment.

It is worthwhile to mention that investigating flexoelectricity
effect in curved structures is also common in soft condensed
materials such as liquid crystals and cellular membranes [35–40]
pioneered by Meyer [9]. Synthetic and biological flexoelectric
membranes are actuators that bend under the action of external
electric fields, a phenomenon of interest to the development of
emerging adaptive materials as well as biological mechanotrans-
duction. Several works have explored biological implications of
membrane flexoelectricity, e.g., mechanosensitivity, electromotil-
ity, and hearing systems [41–47].

Flexoelectricity in membranes is fundamentally different from
three-dimensional materials (crystalline or otherwise). In this
paper, we consider an important emerging problem that is unad-
dressed so far: What is the renormalized or effective flexoelectric,
response of a heterogeneous two-dimensional structure? How do

Fig. 1 Mechanism of flexoelectricity in 2D crystalline mem-
branes such as graphene (adapted from Dumitrica et al. [31])
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the elastic and dielectric responses alter due to flexoelectricity?
The answer to these questions may help interpret the behavior of
complex biological membranes, in tailoring membranes such as
graphene and boron-nitride sheets for various technological appli-
cations, and energy harvesting for stretchable electronics, among
others. In Sec. 2, we present a simplified and linearized theory of
flexoelectricity of two-dimensional deformable membranes. The
homogenization problem is quite difficult even in the linear
setting and, hence, we defer to future work the more complex case
of nonlinear elastic membranes (see Ref. [48]). In Sec. 3, we pres-
ent our homogenization approach and present specific results for
heterogeneous membranes with circular holes. An illustrative
example of our work is presented by considering a lipid bilayer
membrane containing rigid protein inclusions.

Notation. In this paper we employ direct notation for brevity if
possible. Tensors and vectors are denoted by bold symbols such
as L, n, M, etc., while scalars are denoted by lower case letters.
When index notations are in use, the convention of summation
over repeated index is followed. The inner (or dot) product
between matrices A and B of the same size m! n is defined
as A " B :¼ TrðATBÞ ¼ ðAÞijðBÞij, and the tensor product A& B
is the fourth-order tensor such that for any C 2 Rm!n, ðA& BÞC
¼ ðB " CÞA. For a second-order tensor field M : R2 ! R2!2, in
index form the operator rr "M is equivalent to ðMÞij;ij.

2 A Theory for Flexoelectric Membranes

Let U ' R2 be an open bounded domain in xy-plane. Consider
a thin dielectric membrane occupying U! ð(h=2; h=2Þ ' R3,
where h is the thickness of the membrane. If the thickness h) 1
the thin membrane may be idealized as a two-dimensional body;
the thermodynamic state is described by the out-of-plane displace-
ment w : U! R and the out-of-plane polarization P : U! R.
The (linearized) curvature tensor of the membrane is defined as

n ¼ (rrw (2.1)

The elasticity of the membrane will be modeled by the Helfrich–
Canham curvature elasticity, which is in turn identical to the
Kirchhoff–Love plate theory; the elastic contribution to the inter-
nal energy is given by

Ue½w+ ¼
1

2

ð

U

rrw " Lrrw (2.2)

where L : R2!2
sym ! R2!2

sym is referred to as the “bending stiffness
tensor.” In particular, for isotropic materials,

ðLÞpiqj ¼ lbðdpqdij þ dpjdiqÞ þ kbdpqdij; i:e:;

1

2
rrw " Lrrw ¼ lbjrrwj2 þ kb

2
ðDwÞ2

(2.3)

where lb; kb are the analogous Lamé constants for bending. In the
biophysics community, the bending energy of a membrane is
often written as

Ue½w+ ¼
ð

U

jb

2
ðDwÞ2 þ jg detðrrwÞ

" #

Comparing the above equation with Eq. (2.2) we find

lb ¼ (
jg

2
;

kb ¼ jb þ jg;

(
,

jb ¼ 2lb þ kb;

jg ¼ (2lb

$
(2.4)

To model the flexoelectric effect, we postulate that the total
internal energy of the isotropic membrane is given by

U½w;P+ ¼
ð

U

Wðrrw;PÞ (2.5)

where W : R2!2
sym !R! R is the total internal energy density

function and given by a quadratic function

Wðn;PÞ ¼ 1

2
n " Lnþ fPtrnþ 1

2
aP2 (2.6)

Here, the tensor L and the constants f, a are material properties of
the flexoelectric membrane and may in general depend on in-
plane positions. In particular, the second term gives rise to the
coupling between polarization and curvature (flexoelectric
effects). We remark that the postulated internal energy density
(2.6) may be validated from a well-grounded three-dimensional
theory of flexoelectricity. Alternatively, we may regard the postu-
lated form of internal energy density (2.6) for membranes as the
linearized version of some more complete theory of flexoelectric
membranes, including only the leading order terms for small
bending and polarization. Such a postulation is equivalent to a
constitutive law and necessary for completing a continuum theory.
In this paper we do not attempt to rigorously justify either of the
above viewpoints and merely take postulate (2.6) as our starting
point. We note that the proposed energy functional has the basic
ingredients of the flexoelectricity theory in three-dimensional
materials: strain gradient (which in the present case is represented
by curvature) leads to development of polarization and inhomoge-
neous electric fields will result in changes in curvature.

Let C1 and C2 be a disjoint subdivision of the boundary @U and
C1 66¼ ;. The following homogeneous boundary conditions may be
applied on @U:

(1) Clamped boundary conditions on C1

w ¼ 0; rw ¼ 0 on C1 (2.7)

(2) Natural boundary conditions on C2, i.e., there is no force or
bending moment applied on C2.

More general boundary conditions may also be considered,
which will not be discussed below. Then under the application of
an external electric field Ez : U! R and a mechanical body force
bz : U! R, the total free energy of the membrane is given by

F½w;P+ ¼
ð

U

Wðrrw;PÞ (
ð

U

ðPEz þ wbzÞ (2.8)

where the first integral is the internal energy of the flexoelectric
membrane, and the second one is the potential energy arising
from the interaction between the membrane and the external elec-
tric field and mechanical loading device. We remark that in the
above formulation of free energy, we have neglected the nonlocal
self-field energy associated with the electric field induced by
polarization

Eself ½w;P+ ¼ !0

2

ð

R3
jrnj2; div½(!0rnþ PezvB+ ¼ 0 in R3

where !0 is the electric permittivity of free space, B ¼ U
!ð(h=2; h=2Þ is the three-dimensional membrane body, and
vB¼ 1 in B (¼ 0 otherwise). The above self-field energy
Eself ½w;P+ depends on the detailed geometry of U, favors depolari-
zation state, and is difficult to handle. Nevertheless, we anticipate
that the free energy (2.8) is sufficient for our purpose of modeling
flexoelectric effects of membranes. One may also regard this non-
local self-field energy is approximately included in the last term
of Eq. (2.6) since both of them are quadratic, positive, and penal-
izing polarization.
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In the equilibrium state, by the principle of minimum free energy
the pair of (w, P) shall minimize the total free energy (2.8)

min
ðw;PÞ2S

F½w;P+ (2.9)

where the admissible space for (w, P) is given by

S :¼ ðw;PÞ :

ð

U

jrrwj2 < þ1;
ð

U

jPj2 < þ1;w;rwjC1
¼ 0

$ %

(2.10)

To find the Euler–Lagrange equations and boundary conditions
associated with the above variational principle (2.19), we assume
ðw;PÞ 2 S is the minimizer, and then for any perturbation
ðw;PÞ! ðw;PÞ6 eðw1;P1Þ we have (0 < e) 1)

F½w 6 ew1;P 6 eP1+ - F½w;P+ (2.11)

which implies

d

de
F½wþ ew1;Pþ eP1+ e¼0 ¼ 0j (2.12)

Upon some tedious but standard calculations, the above equation
implies

ð

U

f½rr " ðLrrwÞþDðfPÞ(bz+w1þ½f DwþaP(Ez+P1g

þ
ð

@U

frw1 " ½Lrrwþ fPI+n(w1n " ½divðLrrwÞþrðfPÞ+g¼ 0

(2.13)

where I 2 R2!2 is the identity matrix and n is the unit outward
normal on @U. Further, by the divergence theorem the last term
on the left-hand side of Eq. (2.13) can be rewritten as (t is the
tangential unit vector)
ð

@U

n " ðLrrwþ fPIÞn@"w1

(
ð

@U

w1f@sðt " ðLrrwþ fPIÞnÞ þ n " divðLrrwþ fPIÞg

(2.14)

where ð@" ; @sÞ ¼ ðn "r; t "rÞ denote the normal and tangential
derivatives on @U, respectively. Since (w1, P1) on U and
ð@"w1;w1Þ on @U can be chosen arbitrarily, Eqs. (2.13) and (2.14)
imply the following Euler–Lagrange equations and boundary con-
ditions associated with Eq. (2.9)

rr " ðLrrwÞ þ DðfPÞ ( bz ¼ 0 on U;

fDwþ aP( Ez ¼ 0 on U;

w ¼ 0; rw ¼ 0 on C1;

n " ½Lrrwþ fPI+n ¼ 0; on C2;

@sðt " ðLrrwþ fPIÞnÞ þ n " divðLrrwÞ þ fPIÞ ¼ 0 on C2

8
>>>>>><

>>>>>>:

(2.15)

Using Eq. (2.15)2 we eliminate P in Eq. (2.15)1,4,5, and obtain

M :¼ ~Lrrw; ~L :¼ L( f 2

a
I& I on U;

rr " Mþ f

a
EzI

& '
( bz ¼ 0 on U;

w ¼ 0; rw ¼ 0 on C1;

n "Mn ¼ 0; @sðt "MnÞ þ n " divM ¼ 0 on C2

8
>>>>>>><

>>>>>>>:

(2.16)

We remark that the above Eq. (2.16) forms a standard elliptic
boundary value problem for w; the existence, uniqueness, and sta-
bility has been thoroughly investigated; see, e.g., Evans [49].

In the absence of external electric field Ez and mechanical load
bz, a trivial solution to the above problem is clearly given by
(w, P)¼ (0, 0). The stability and uniqueness of this trivial state
(w, P)¼ (0, 0) requires that

1

2
n " Lnþ f trðnÞPþ 1

2
aP2 > 0 8 nonzero n 2 R2!2

sym P 2 R

(2.17)

For isotropic membranes with L specified by Eq. (2.3), the
requirement (2.17) is equivalent to

lb > 0; lb þ kb > 0; a > 0 & lb þ kb >
f 2

a
(2.18)

or in terms of jb;jg (cf. Eq. (2.4))

jb > 0; (2jb < jg < 0; a > 0 & jb þ
jg

2
>

f 2

a
(2.19)

Moreover, it is worthwhile to present relations between the
material constants in Eq. (2.6) and some more familiar quantities.
First of all, if the self-field energy is neglected, from Toupin [50]
we can show that

a ¼ 1

e0veh

where e0 is the electric permittivity of the free space, ve is the
electric susceptibility, and h is the thickness of the membrane.
Including the self-field energy in the term (1/2)aP2 would increase
the constant a. Petrov [51], in the biological context, and Kalinin
and Meunier [30], for a crystalline membrane, have shown that
the net macroscopic electromechanical polarization developed in
a bent membrane may be phenomenologically be considered to be
linearly proportional to its curvature

P ¼ (cH (2.20)

where H¼ tr(n) is (twice of) the mean curvature with the dimen-
sion of 1/m, P is the polarization per unit area with the dimension
of C/m, and hence, c is the flexoelectric constant and has the
dimension of C, which is quantitatively different from the flexo-
electric coefficient in our expressions. In our theory, for a homog-
enous membrane and in the absence of external electric field, Eq.
(2.15)2 implies that

P ¼ ( f

a
trn ¼ ( f

a
H (2.21)

Comparing with Eq. (2.20), we find

c ¼ f

a
(2.22)

Therefore, our definition of flexoelectric constant f has the dimen-
sion of Nm/C.

3 Homogenization of Heterogeneous Flexoelectric
Membranes

We now consider a heterogeneous flexoelectric membrane with
material properties are given by

LðeÞðxÞ ¼ Lp
x

e

( )
; f ðeÞðxÞ ¼ fp

x

e

( )
; aðeÞðxÞ ¼ ap

x

e

( )
(3.1)
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where e) 1 characterizes the length scale of the microscopic
variations of the material properties, and without loss of general-

ity, assume the material constants Lp : R2 ! R2!2!2!2 and

fp; ap : R2 ! R are periodic functions with unit cell Y¼ (0, 1)2.
Since the material properties are highly oscillating, we anticipate
the solutions to Eqs. (2.15) or (2.16), denoted by (w(e), P(e)), are
highly oscillating as well. To find the coarse-grained effective
properties of the heterogeneous flexoelectric membrane, we
employ the formal two-scale expansion method, assuming that

ðwðeÞðxÞ;PðeÞðxÞÞ ¼
X1

k¼0

ekðwkðx; yÞ;Pkðx; yÞÞ (3.2)

where y¼ x/e is the “fast” variable for capturing the microscopic
oscillations, (in contrast, x-dependence characterizes macroscopic
or coarse-grained behavior) y 7! ðwkðx; yÞ;Pkðx; yÞÞ are periodic
functions of period Y, and

1

jYj

ð

Y
ðwkðx; yÞ;Pkðx; yÞÞdy ¼ ð0; 0Þ 8k - 1 (3.3)

From Eq. (3.2), direct calculations show that

rrwðeÞðxÞ ¼
X1

k¼0

"
1

e2
ryrywkðx; yÞ þ

2

e
ryrxwkðx; yÞ

þrxrxwkðx; yÞ
#

(3.4)

where subscript x or y indicates that the derivatives are taken with
respect to the first or the second variables of wk. Collecting terms
according to the orders of e we rewrite Eq. (3.4) as

rrwðeÞðxÞ ¼ 1

e2
ryryw0ðx; yÞ þ 1

e
½2ryrxw0ðx; yÞ

þ ryryw1ðx; yÞ+ þ rxrxw0ðx; yÞ

þ 2ryrxw1ðx; yÞ þ ryryw2ðx; yÞ þ oð1Þ
(3.5)

For ease of notation, we introduce

~L
ðeÞ ¼ LðeÞ ( ðf

ðeÞÞ2

aðeÞ
I& I; ~Lp ¼ Lp (

f 2
p

ap
I& I (3.6)

Then, by Eq. (2.16)1 we see that the original oscillating solution
w(e) satisfies

rr " ð~LðeÞrrwðeÞÞ þ D
f ðeÞ

aðeÞ
Ez

& '
( bz ¼ 0 on U (3.7)

Inserting Eq. (3.2) into Eq. (3.7) and collecting terms associated
with ek for k.(2, we obtain a cascade of equations since a Lau-
rent series of e vanishes on a neighborhood of origin if and only if
all coefficients are zero. The leading order is e(4 and implies

ryry " ð~LpðyÞrrw0ðx; yÞÞ ¼ 0 8ðx; yÞ 2 U! Y (3.8)

The above equation concerns a function of y-variables while x can
be regarded as a parameter. By Eq. (2.17) and standard theory of
elliptic equations, it can be shown that Eq. (3.8) admits a unique
periodic solution within an additive constant. This implies that w0

shall be independent of y and will be denoted by

w0 ¼ w0ðxÞ (3.9)

The next order is e(3 and yields

ryry " ð~LpðyÞrrw1ðx; yÞÞ ¼ 0 8ðx; yÞ 2 U! Y (3.10)

which, by similar argument and Eq. (3.3), implies

w1 ¼ w1ðxÞ ¼ 0 (3.11)

Collecting terms associated with e(2 we obtain

ryry " ½~LpðyÞðryryw2ðx; yÞ þrxrxw0ðxÞÞ+

þ Dy
fpðyÞ
apðyÞ

Ez

& '
¼ 0 8ðx; yÞ 2 U! Y (3.12)

One may continue the above calculations for higher order terms
such as e(1, e0, etc., which, presumably, would enable us to
identify the homogenized effective flexoelectric properties of the
membrane and the equations governing the macroscopic quanti-
ties. However, these calculations would inevitably involve higher
order terms such as w3(x, y) and w4(x, y) in the expansion (3.2)
and, hence, be tedious and obsolete. It is, therefore, favorable to
switch to the variational formulation (2.9). Inserting Eq. (3.2) into
Eq. (2.8) and recalling the identity that for e) 1 and smooth
function f (x, y), which is periodic with unit cell Y with respect to
variable y,

ð

U

f x;
x

e

( )
dx ¼

ð

U

(
ð

Y
f ðx; yÞdydxþ oð1Þ (3.13)

where (
Ð

V ¼ 1=volumeðVÞ
Ð

V denote the average value of the inte-
grand over the domain V. By Eqs. (3.5), (3.9), and (3.11) we find
that in terms of w0, w2 and P0, the total free energy is given by

F½wðeÞ;PðeÞ+ ¼ F2S½w0; !P0; w2;P
0
0+ þ oð1Þ (3.14)

where ð !P0ðxÞ ¼ (
Ð

Y P0ðx; yÞdy and P00ðx; yÞ ¼ P0ðx; yÞ ( !P0ðxÞÞ

F2S½w0; !P0; w2;P
0
0+ ¼

ð

U

(
ð

Y

$
1

2
ðryryw2 þrxrxw0Þ

" Lpðryryw2 þrxrxw0Þ þ fpðP00 þ !P0Þ

! ðDyw2 þ Dxw0Þ þ
ap

2
jP00 þ !P0j2

%

(
ð

U

ð !P0Ez þ w0bzÞ (3.15)

Here, the leading order free energy functional is expressed in
terms of both macroscopic (x only-dependent) state (w0; !P0) and
microscopic (y-dependent) state (w2; !P00). Neglecting the higher
order terms in Eq. (3.14), from the variational principle (2.9) we
obtain the two-scale variational problem

min
ðw0; !P0Þ2S

min
ðw2 ;P00Þ

F2S½w0; !P0; w2;P
0
0+ (3.16)

The above variational problem determines both the macroscopic
state (w0; !P0) and microscopic state (w2; !P00) of the heterogeneous
flexoelectric membrane. We remark that by definition (3.3) the
microscopic state ðw2;P00Þ shall satisfy that, in addition to the
periodicity, integrability, and differentiability conditions,

ð

Y
w2ðx; yÞdy ¼ 0;

ð

Y
P00ðx; yÞdy ¼ 0 8x 2 U

Focusing on the inner minimization problem in Eq. (3.16) first,
we introduce the concept of effective internal energy density
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We : R2!2
sym !R! R as a quadratic form such that for any

ðn;PÞ 2 R2!2
sym !R,

Weðn;PÞ ¼ min
ðw0;P0Þ2S0

Fp½w0;P0; n;P+ ¼:
1

2
n " Lenþ Fe " nPþ 1

2
aeP2

(3.17)

where

Fp½w0;P0; n;P+ :¼ (
ð

Y

"
1

2
ryryw0 þ n
+ ,

" Lp ryryw0 þ n
+ ,

þ fpðP0 þ PÞðDyw0 þ trðnÞÞ þ ap

2
P0 þ Pj j2

#
;

S0 :¼
$
ðw0;P0Þ :

ð

Y
w0 ¼ 0;

ð

Y
P0 ¼ 0; periodic with period Y

%

(3.18)

Then it is straightforward to show that the outer minimization
problem in Eq. (3.16) is equivalent to

min
ðw0 ; !P0Þ2S

Fe½w0; !P0+;

Fe½w0; !P0+ :¼
ð

U

Weðrrw0;P0Þ (
ð

U

ð !P0Ez þ w0bzÞ

Comparing the above variational problem with the original varia-
tional problem (2.9) and (2.8), we henceforth justify our definition
of effective energy density and associated effective material prop-
erties in Eq. (3.17).

We remark that Eq. (3.17) is reminiscent of the classic varia-
tional definitions of the effective properties of, e.g., elastic com-
posites or conductive composites, and it completely determines
the effective material properties Le;Fe and ae. To explicitly solve
for the minimizer (w0, P0) of the variational problem in Eq. (3.17),
it is useful to find the associated Euler–Lagrange equation. By
argument in analogy with Eqs. (2.11)–(2.13) and restricted to any
subdomain D ' Y on which (w0, P0) are smooth, we have that for
any ðw01;P01Þ 2 S

0,

ð

D
f½rr " ½Lpðrrw0 þ nÞ+ þ D½fpðP0 þ PÞ++w01 þ ½fpðDw0 þ trnÞ

þ apðP0 þ PÞ+P01gþ
ð

@D
rw01 " ½Lpðrrw0 þ nÞ þ fpðP0 þ PÞI+n

(
ð

@D
w01n " ½div½Lpðrrw0 þ nÞ+ þr½fpðP0 þ PÞ++ ¼ 0

(3.19)

where n is the unit outward normal on @D. Here and subsequently,
we drop the subscript y associated with differential operators
without the danger of confusion. Further, the last two terms in
Eq. (3.19) can be rewritten as (t is the tangential unit vector)

ð

@D
@"w01n "Mn(

ð

@D
w01fn " divMþ @sðt "MnÞg (3.20)

where

M ¼ Lpðrrw0 þ nÞ þ fpðP0 þ PÞI (3.21)

is introduced for brevity. Physically we may identify the above
tensor as the “bending moment tensor.”

If D¼Y (or in weak sense), Eq. (3.19) holds for any
ðw01;P01Þ 2 S

0 only if the following Euler–Lagrange equations
holds:

rr " Lpðrrw0 þ nÞ þ D½fpðP0 þ PÞ+ ¼ k0 on Y;

fpðDw0 þ trnÞ þ apðP0 þ PÞ ¼ k on Y

(
(3.22)

where the constants k; k0 2 R are the Lagrange multipliers arising
from the constraints defined in Eq. (3.18). Integrating Eq. (3.22)1

over Y implies k0¼ 0; integrating 1/ap (3.22)2 over Y implies

k(
ð

Y

1

ap
¼ Pþ(

ð

Y

fp
ap
ðDw0 þ trnÞ (3.23)

which can be used to determine the Lagrange multiplier k. Elimi-
nating (P0þP)-term in Eq. (3.22)1 by Eq. (3.22)2 we obtain

rr "M ¼ 0; M ¼ ~Lpðrrw0 þ nÞ þ fp
ap

kI ¼ 0 on Y (3.24)

Taking Eq. (3.22) into account, by Eq. (3.18)1 we find the
minimum of the energy functional defined by Eq. (3.17) can be
rewritten as

Weðn;PÞ ¼ (
ð

Y

"
1

2
ðrrw0 þ nÞ "Lpðrrw0 þ nÞ (

f 2
p

2ap
ðDw0 þ trnÞ2

þ kfp
2ap
ðDw0 þ trnÞ þ 1

2
ðP0 þ PÞ½fpðDyw0 þ trnÞ

þ apðP0 þ PÞ+
#

¼ (
ð

Y

"
1

2
ðrrw0 þ nÞ " ~Lpðrrw0 þ nÞ þ k2

2
(
ð

Y

1

ap

¼:
1

2
n "Lenþ Fe " nPþ 1

2
aeP2 (3.25)

For a heterogeneous membrane with microstructure as illus-
trated in Fig. 2(a), in general (w0, P0) cannot be smooth over the
entire domain. Therefore, the partial different Eqs. (3.22) and
(3.24) hold restricted to each phase. Across the interfaces between
two phases, by Eq. (3.19) and corresponding to Eq. (2.16)3.4 we
infer the following interfacial conditions shall hold

w½ +½ + ¼ 0; rw½ +½ + ¼ 0;

n " ½M++n ¼ 0; ½n " divMþ @sðt "MnÞ++ ¼ 0

(

(3.26)

where "½ +½ + denote the jump across the interface. For specified heter-
ogeneity of the membrane, one can solve Eqs. (3.24) and (3.26)
for w0 and determine the effective properties by Eq. (3.17). Exam-
ples of solutions will be presented in the next section.

4 Effective Flexoelectric Properties of Two-Phase
Membranes

We now consider two-phase periodic flexoelectric membranes.
As illustrated in Fig. 2, the microstructure of the composite

Fig. 2 A representative volume element of two-phase hetero-
geneous membrane: (a) a simple laminate; (b) inclusions em-
bedded in a continuous matrix
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membrane is described by a periodic piecewise constant material
property tensor

~LpðyÞ ¼ ~LðyÞ ¼ ~L
ðiÞ
; f ðyÞ ¼ f ðiÞ; aðyÞ ¼ aðiÞ if y 2 Xi

(4.1)

where Xi (i¼ 1, 2) is the region occupied by the ith phase and
forms a subdivision of the unit cell Y. Here and subsequently, we
drop the subscript p associated with material properties without
the danger of confusion. Denote by hi ¼ jXij=jYj the volume frac-
tion of the ith phase. Our goad is to solve Eqs. (3.24) and (3.26)
for w0, which, by Eq. (4.1), is rewritten below

rr "M ¼ 0 on X1 [ X2;

w0½ +½ + ¼ 0; rw0½ +½ + ¼ 0; on @X1;

n " M½ +½ +n ¼ 0; n " divMþ @sðt "MnÞ½ +½ + ¼ 0 on @X1;

periodic boundary conditions on @Y

8
>>>>>><

>>>>>>:

(4.2)

where

M ¼
~L
ð1Þðrrw0 þ nÞ þ f ð1Þ

að1Þ
kI on X1;

~L
ð2Þðrrw0 þ nÞ þ f ð2Þ

að2Þ
kI on X2

8
>>><

>>>:
(4.3)

Below we present solutions to Eqs. (4.2) and (4.3) for microstruc-
tures of simple laminates (Fig. 1(b)) and elliptic inclusions
(Fig. 1(a)) in the dilute limit. The closed-form formula of effec-
tive properties is also obtained for periodic E-inclusions in finite
volume fractions. These solutions give useful insights on engi-
neering flexoelectric membranes for a variety of applications.

4.1 Simple Laminates. For a simple laminate as sketched in
Fig. 2, we anticipate the curvature tensor rrw0 is piecewise
constant for any applied average curvature n, assuming that
rrw0 ¼ ni 2 R2!2

sym on Xi (i¼ 1, 2). Clearly, being a second gra-
dient of a continuously differentiable scalar field w0, across the
interface n1 and n2 shall satisfy (n is the unit normal of the
interface)

n1 ( n2 ¼ qn& n (4.4)

for some constant q 2 R. Clearly, Eq. (4.2)1 is trivially satisfied
inside X1 and X2, so is Eq. (4.2)2. The third of Eq. (4.2) and the
periodicity of w0 require that

n " ~L
ð1Þðn1 þ nÞ þ f ð1Þ

að1Þ
kI( ~L

ð2Þðn2 þ nÞ ( f ð2Þ

að2Þ
kI

" #
n ¼ 0;

h1n1 þ h2n2 ¼ 0 (4.5)

Solving Eqs. (4.4) and (4.5) for n1 and n2, we obtain

n1 ¼ h2qn& n n2 ¼ (h1qn& n; D~L ¼ ~L2 ( ~L1;

D b ¼ D~Lðn& nÞ; q ¼ n " D bþ kDc
~Dn

;

Dc ¼ cð2Þ ( cð1Þ; cðiÞ ¼ f ðiÞ

aðiÞ
ði ¼ 1; 2Þ;

~Dn ¼ Dðh1
~L2 þ h2

~L1;nÞ; DðL;nÞ :¼ ðn& nÞ " Lðn& nÞ
(4.6)

Further, for brevity we introduce

ah ¼ (
ð

Y

1

a

& '(1

; ca ¼ (
ð

Y

f

a
(4.7)

where superscript h (a) indicates the harmonic (arithmetic) mean.
Inserting Eq. (4.6) into Eq. (3.23), we find that

k ¼ ahðkPPþ kH " nÞ; kP ¼
~Dn

~Dn þ h1h2ah
Dc2

;

kH ¼
~DncaI( h1h2DcD b

~Dn þ h1h2ah
Dc2

(4.8)

and, hence,

q ¼ qPPþ qH " n; qP ¼
ah

Dc
~Dn þ h1h2ah

Dc2
;

qH ¼
D bþ ah

DccaI
~Dn þ h1h2ah

Dc2
(4.9)

Inserting Eqs. (4.6), (4.8), and (4.9) into Eq. (3.25), we obtain

1

2
n " Lenþ Fe " nPþ 1

2
aejPj2

¼ k2

2ah
þ(
ð

Y

"
1

2
ðrrw0 þ nÞ " Lpðrrw0 þ nÞ

¼ 1

2
n " ðh1L1 þ h2

~L2Þn( h1h2qn " D bþ h1h2

2
q2 ~Dn þ

k2

2ah

Therefore, the effective material properties are given by

Le ¼ h1
~L1 þ h2

~L2 þ h1h2½ ~DnqH & qH

( ðD b& qH þ qH & DbÞ+ þ ahkH & kH;

Fe ¼ h1h2qPð ~DnqH ( DbÞ þ ahkPkH

¼ ahkPkHð1þ h1h2ah
Dc2= ~DnÞ ¼ ahkH;

ae ¼ ahk2
P þ h1h2q2

P
~Dn ¼ ahkP

8
>>>>>>>>>><

>>>>>>>>>>:

(4.10)

4.2 Elliptic Inclusions in the Dilute Limit. We now con-
sider particulate composite membrane with particles of one phase
embedded in another continuous phase. In the dilute limit, the
interactions between particles are negligible; the overall heteroge-
neous membrane is well modeled by a single inclusion X1 embed-
ded in an infinite matrix X2 ¼ R2nX1. In this single inclusion
model, the problem of interest can still be formulated as Eqs. (4.2)
and (4.3) upon replacing the unit cell Y by R2 and periodic bound-
ary conditions on w0 by the decay condition

jrrw0ðyÞj ! 0 as jyj ! þ1 (4.11)

Closed-form solutions to Eqs. (4.2) and (4.3) for heterogeneous
materials as specified by Eq. (4.1) are rare. In the context of clas-
sic elasticity, an exception is when the inclusion X1 is an ellipsoid.
As will be shown below, this exception persists for present setting
of flexoelectricity since the critical uniformity property holds for
the corresponding homogeneous problem (cf., Eqs. (4.12) and
(4.13)). To see this, following the classic work of Eshelby [52,53]
we first consider the homogeneous inclusion problem

rr " ½~Lð2Þrrw0 þM/vX1
+ ¼ 0 on R2 (4.12)
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where M/ 2 R2!2
sym is analogous to “eigenstress” in the context of

Eshelby [52], and vX1
¼ 1 on X1;¼ 0 otherwise. By the same

argument of Eshelby [52] (also see Ref. [54]), it can be shown
that a solution to Eqs. (4.12) and (4.11) satisfies that for any
x 2 X1;

rrw0ðxÞ ¼ (1

ð2pÞ2

ð

R2

k̂& k̂ðk̂ "M/k̂Þ

Dð~Lð2Þ; k̂Þ

ð

X1

expð(ik " ðx0 ( xÞÞdx0dk

¼(RM/ (4.13)

where k̂ ¼ k=jkj is a unit vector, R : R2!2
sym ! R2!2

sym is recognized
as the Eshelby tensor and given by [55,56]

ðRÞpiqj ¼ (
ð

S1

ðk̂Þpðk̂Þiðk̂Þqðk̂Þj detðAÞ

Dð~Lð2Þ; k̂ÞjAk̂j2
dk̂

where A 2 R2!2
sym is such that X1 ¼ fAx : x 2 B2g, B2 ' R2 is a

unit ball, DðL; k̂Þ is as defined in Eq. (4.6) and S1 ¼ fx 2 R2

: jxj ¼ 1g is the unit sphere.
The remarkable uniformity property of rrw0 on X1, i.e.,

Eq. (4.13), entails closed-form solutions to the inhomogeneous
problem (4.2) by solutions to the homogeneous problem (4.12).
To see this, we first observe that a solution to Eq. (4.12) automati-
cally satisfies Eq. (4.2)1 on the matrix X2 since they are the same
equations and on the inclusion X1 since rrw0 is uniform on X1

by Eq. (4.13). Further, solutions to Eq. (4.12) necessarily satisfy
the following interfacial conditions on @X1

n " ½~Lð2Þrrw0 þM/vX1
+n ¼ 0 on @X1;

hh
n " div½~Lð2Þrrw0 þM/vX1

+

þ @sft " ½~L
ð2Þrrw0 þM/vX1

+ng
ii
¼ 0 on @X1

8
>>>><

>>>>:

which can be rewritten as

n " ½Lð2Þrrw0+nj@Xþ1 ¼ n " ½Lð2Þrrw0+nj@X(1 þn "M/n;

fn " div½Lð2Þrrw0+ þ@s½t " ðLð2Þrrw0Þn+gj@Xþ1

¼ fn " div½Lð2Þrrw0+ þ@s½t " ðLð2Þrrw0Þn+gj@X(1 þ@sðt "M/nÞ

8
>>>><

>>>>:

(4.14)

Inserting Eq. (4.3) into Eqs. (4.2)2 and (4.2)3, they can be rewrit-
ten as

n " ½Lð2Þrrw0+nj@Xþ1 ¼ n " ½Lð1Þrrw0+nj@X(1 ( n " ðDLnÞn( Dck;

n " div½Lð2Þrrw0+j@Xþ1 þ @sft " ½Lð2Þrrw0+ngj@Xþ1
¼ fn " div½Lð1Þrrw0+ þ @s½t " ðLð1Þrrw0Þn+gj@X(1
(@s½t " ðD~LnÞn+

8
>>>>>><

>>>>>>:

(4.15)

Further, we notice that div½Lð1Þrrw0+j@X(1 ¼ 0 for a solution to
Eq. (4.12) according to Eq. (4.13). Comparing Eq. (4.15) with
Eq. (4.14) we conclude that if the “equivalent eigenstress” M* is
such that

M/ ¼ (½D~Lðrrw0 þ nÞ þ DckI+j@X(1 ¼ D ~LRM
/ ( D~Ln( DckI

(4.16)

then Eq. (4.15) is satisfied by a solution satisfying Eqs. (4.14) and
(4.13).

The above relation for equivalence between two problems can
be obtained by a more direct argument. To see this, let us first
rewrite the inhomogeneous problem Eqs. (4.2) and (4.3) in a com-
pact form as

rr " ½~Lð2Þrrw0 ( ½D~Lðrrw0 þ nÞ þ DckI+vX1
+ ¼ 0 on R2

(4.17)

Comparing with Eq. (4.12), we see that the above equation has the
same “source” term if Eqs. (4.13) and (4.16) hold, and hence, their
solutions coincide.

Knowing rrw0 in one of the phase such as Eq. (4.13) is suf-
ficient to determine the effective properties of the composite
membrane. In subsequent calculations we take the unit cell Y as
finite; the physical assumption is that though Y is finite, since
h1 ) 1 (dilute limit), solutions to the inhomogeneous problem
(4.2) and (4.3) restricted to the inclusion X1 are well approxi-
mated by the single inclusion model where Y is are assumed to
be infinite (i.e., Eq. (4.17) with decay condition (4.11)). In other
words, in the dilute limit we assume that a solution to the inho-
mogeneous problem (4.2) and (4.3) for elliptic X1 still satisfies
Eq. (4.13) for finite unit cell Y. Therefore, by Eqs. (3.23) and
(4.13) we find that

k ¼ ah Pþ catrn( Dc(
ð

Y
vX1

Dw0
& '

¼ ah½Pþ catrnþ h1DctrðRM/Þ+ (4.18)

Inserting the above equation into Eq. (4.16) we obtain that

½D ~LR( II( h1ah
Dc2I& ðRIÞ+M/

¼ ½D~Lþ DcahcaI& I+nþ DcahPI

Assume that the tensor D~LR( II( h1ah
Dc2I& ðRIÞ : R2!2

sym
! R2!2

sym is invertible, we have

RM/ ¼ NððD~Lþ DcahcaI& IÞnþ DcahPIÞ;
N ¼ ½D~L( R(1 ( h1ah

Dc2I& I+(1
(4.19)

where the tensor N : R2!2 ! R2!2 is introduced for brevity.
Therefore, by Eq. (4.18) we have

k ¼ ahðkPPþ kH " nÞ;

kP ¼ 1þ h1ah
Dc2I " NI; kH ¼ h1DcD~LðNðIÞÞ þ cakPI

(4.20)

To determine the effective properties, we need to evaluate the
integral in Eq. (3.25). To this end, we first notice that upon multi-
plying Eq. (4.2)1 by w0, by the divergence theorem we have (cf.
Eq. (4.1))

(
ð

Y
rrw0 " ½~Lrrw0 ( ðD~Lnþ DckIÞvX1

+ ¼ 0

and hence, (cf. Eq. (4.13))

(
ð

Y
rrw0 " ~Lrrw0 ¼ (

ð

Y
rrw0 " ðD~Lnþ DckIÞvX1

¼ (h1ðRM/Þ " ðD~Lnþ DckIÞ (4.21)

Journal of Applied Mechanics JANUARY 2014, Vol. 81 / 011007-7

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 09/21/2013 Terms of Use: http://asme.org/terms



Therefore, the effective internal energy density (cf., Eq. (3.25))

Weðn;PÞ ¼ (
ð

Y

1

2
rrw0 " ~Lrrw0 þ n " ~Lrrw0 þ 1

2
n " Ln

" #
þ k2

2ah

¼ ( h1

2
ðRM/Þ " ðD~Lnþ DckIÞ þ h1n " D~LRM

/

þ k2

2ah
þ 1

2
n " (

ð

Y

~L

& '
n

¼ h1

2
ðRM/Þ " D~Ln( k

2

k
ah
( P( catrn

& '
þ k2

2ah

þ 1

2
n " (

ð

Y

~L

& '
n

¼:
1

2
n " Lenþ Fe " nPþ 1

2
aejPj2 (4.22)

and the material properties are given by (see Eq. (4.20) for values
of kP; kH)

Le ¼ h1 D~LND~Lþ ah

2
DccaðD~LNI& Iþ I& D~LNIÞ

" #

þ ahca

2
ðkH & Iþ I& kHÞ þ h1

~L1 þ h2
~L2;

Fe ¼ ah

2
ðkH ( cakPIÞ þ ah 1

2
kH þ

kPca

2
I

& '
¼ ahkH;

ae ¼ ahkP

8
>>>>>>>>>><

>>>>>>>>>>:

(4.23)

We remark that the formula (4.10) and (4.23) for simple
laminates and dilute elliptic inclusions are applicable for general
anisotropic constituent phases. In subsequent sections, we shall
restrict ourselves to isotropic constituent phases. In this case, the
factor appears in the denominator of integrand in Eq. (4.13), by
Eqs. (4.6), (2.3), and (3.6), is given by

Dð~Lð2Þ; k̂Þ ¼ 2lð2Þb þ kð2Þb (
jf ð2Þj2

að2Þ
¼: kð2Þb (4.24)

which is independent of k̂. This property of isotropic materials
implies relations between system of equations such as Eq. (4.12)
and simple scalar potential problems that can be conveniently
explored by Fourier analysis [57] or Green’s functions [52]. Equa-
tion (4.24) is also critical for showing the uniformity property
(4.13) can be generalized to periodic E-inclusions for dilatational
M/ ¼ m/I.

4.3 Periodic E-inclusions. The closed-form predictions
(4.23) are applicable to the dilute limit. For finite volume frac-
tions, closed-form solutions to the inhomogeneous problem (4.2)
and (4.3) can be obtained for periodic E-inclusions using similar
argument as for ellipses in the dilute limit. This approach has
been explored to obtain closed-form predictions of effective
properties in physical contexts such as conductivity, elasticity,
magnetoelectricity, and thermoelectricity. Below we derive the
closed-form formula of flexoelectric properties for a two-phase
membrane of periodic E-inclusions.

First of all, we recall that a periodic E-inclusion in a finite unit
cell Y ' R2 is defined as a domain X1 ' Y such that a solution to
the potential problem [57,58]

r2/ ¼ h1 ( vX1
on Y;

periodic boundary conditions on @Y

$
(4.25)

satisfies the overdetermined condition

rr/ ¼ (ð1( h1ÞQ on X1 (4.26)

where h1 ¼ jX1j=jYj is the volume fraction of the inclusion, and
Q 2 Q :¼ fM 2 R2!2

sym : M is nonnegative; trM ¼ 1g is referred
to as the shape matrix of the E-inclusions. By Fourier analysis and
Eq. (4.25), Eq. (4.26) implies that for any x 2 X1,

rr/ ¼ (
X

k2Knf0g
k̂& k̂

ð

X1

expð(ik " ðx0 ( xÞÞdx0

¼ (ð1( h1ÞQ (4.27)

where K is the reciprocal lattice associated with the (primitive)
unit cell Y ([59] chap. 4). We remark that the overdetermined
condition (4.26) places strong restrictions on the shape of X1;
the existence of periodic E-inclusions can be proved by the theory
of variational inequalities [57]. The reader is referred to Refs.
[57,58] for examples of periodic E-inclusions with volume frac-
tions, shape matrices, unit cells, and in two and three dimensions.
A simply connected periodic E-inclusion in two dimensions is
also called Vigdergauz microstructures [60]. The terminology
“E-inclusion” arises from the associations with the “Eshelby,”
“ellipsoid,” and “extremal” properties of such geometries.

To solve the inhomogeneous flexoelectricity problem (4.2) and
(4.3) for periodic E-inclusions, we notice that, by Fourier analysis,
a solution to the homogeneous problem

rr " ½~Lð2Þrrw0 þM/vX1
+ ¼ 0 on Y;

periodic boundary conditions on @Y

(
(4.28)

satisfies that for any x 2 Y,

rrw0ðxÞ ¼ (
X

k2Knf0g

k̂& k̂ðk̂ "M/k̂Þ

Dð~Lð2Þ; k̂Þ

ð

X1

expð(ik " ðx0 ( xÞÞdx0dk

(4.29)

If the material is isotropic, by Eq. (4.24) and comparing with Eq.
(4.27) we conclude that if M/ ¼ m/I for some m/ 2 R and X1 is
a periodic E-inclusion with volume fraction h1 and shape matrix
Q, then

rrw0ðxÞ ¼ ( ð1( h1Þm/

kð2Þb

Q 8x 2 X1 (4.30)

In analogy with Eqs. (4.14)–(4.17), it can be shown that the solu-
tion to the inhomogeneous problem (4.2) and (4.3) coincides with
that of the homogeneous problem (4.28) if the following algebraic
relation holds:

m/I ¼ (½D~Lðrrw0 þ nÞ þ DckI+j@X(1

¼ h2m/

kð2Þb

D~LQ( D~Ln( DckI (4.31)

In particular, if the shape matrix as Q¼ I/2, then

n ¼ 1

2
(m/ þ Dck

Dj
þ h2m/

kð2Þb

" #

I ¼:
H

2
I) m/ ¼

Djkð2Þb H þ Dckð2Þb k

h2Dj( kð2Þb

(4.32)

where H is the average applied mean curvature

Dj ¼ jð2Þ ( jð1Þ; jðiÞ ¼ lðiÞb þ kðiÞb (
jf ðiÞj2

aðiÞ
;

1

2
~L
ðiÞ

I ¼ jðiÞI

(4.33)
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By Eqs. (3.23) and (4.31) we have

k ¼ ah Pþ catrnþ h1h2
Dcm/

kð2Þb

 !

(4.34)

By Eqs. (4.32) and (4.34) we can express m* and k in terms of H
and P as

k ¼ ahðkPPþ kHHÞ; kP ¼
h2Dj( kð2Þb

h2Dj( kð2Þb ( h1h2ah
Dc2

;

kH ¼
caðh2Dj( kð2Þb Þ þ h1h2DjDc

h2Dj( kð2Þb ( h1h2ah
Dc2

; h1h2
Dcm/

kð2Þb

¼ k
ah
( P( caH

(4.35)

Therefore, by Eqs. (4.30) and (4.33), we find that the effective in-
ternal energy density is given by (cf., Eqs. (3.25), (4.21), (4.22)
and recall that n¼ (H/2)I, Q¼ I/2)

Weðn;PÞ ¼(
ð

Y

"
1

2
rrw0 " ðD~Lnþ DckIÞvX1

( n "D~Lrrw0vX1

þ 1

2
n " ~Ln

#
þ k2

2ah

¼(h1

2
ðD~Ln( DckIÞ "(

ð

X1

rrw0þ k2

2ah
þ1

2
n " (

ð

Y
L

& '
n

¼ h1h2m/

4kð2Þb

ðD~Ln( DckIÞ " Iþ k2

2ah
þ 1

2
n " (

ð

Y

~L

& '
n

¼ h1h2m/

2kð2Þb

ðDjH( DckÞþ k2

2ah
þ 1

2
n " (

ð

Y

~L

& '
n

¼ Dj
2Dc

k
ah
(P( caH

& '
Hþ 1

2
kðPþ caHÞþ 1

2
n " (

ð

Y
L

& '
n

¼:
1

2
n "LenþFe " nPþ 1

2
aejPj2

Eliminating m* and k by Eq. (4.35), we conclude that

I " LeI=4 ¼ Dj

Dc
ðkH ( caÞ þ ahcakH þ I " ðh1

~L1 þ h2
~L2ÞI=4;

Fe " I=2 ¼ Dj
2Dc
ðkP ( 1Þ þ ah

2
ðkH þ cakPÞ ¼ ahkH;

ae ¼ ahkP

8
>>>><

>>>>:

(4.36)

In addition, we assume that the heterogeneous membrane is effec-
tively isotropic in the sense that effective internal energy density
is given by

Weðn;PÞ ¼ le
bn " nþ

ke
b

2
ðtrnÞ2 þ f ePtrnþ 1

2
aejPj2

Then by Eq. (4.36) we have (see Eqs. (3.6), (4.6), (4.7), (4.24),
(4.33), and (4.35) for definitions of constants in terms of the origi-
nal material constants)

le
b þ ke

b ¼
Dj

Dc
ðkH ( caÞ þ ahcakH þ la

b þ ka
b;

f e ¼ ahkH; ae ¼ ahkP (4.37)

where la
b ¼ h1l

ð1Þ
b þ h2l

ð2Þ
b and ka

b ¼ h1k
ð1Þ
b þ k2l

ð2Þ
b are the

arithmetic average of lb and kb on the unit cell, respectively. To
compare with experiments, it is more convenient

ce ¼ f e

ae
¼ kH

kP
¼ ca ( h1h2

DjDc

kð2Þb ( h2Dj
(4.38)

5 Results and Discussion

We have obtained the closed-form predictions of the effective
elastic-flexoelectric properties of heterogeneous membranes.
These expressions can now be conveniently used to make an
assessment of the effect of inhomogeneities on the effective flexo-
electric coefficient. As example, we consider two-phase mem-
branes of protein inclusions (phase 1) in lipid bilayer (phase 2).
Representative material properties are given below [42]

lð1Þb ¼ lð2Þb ¼ 0;

kð2Þb ¼ 6:9! 10(23 N "m; kð1Þb ¼ 5:52! 10(22 N "m;

að2Þ ¼ 2:26! 1019 N "m
C2

; að1Þ ¼ 7:53! 1018 N "m
C2

;

cð2Þ ¼ f ð2Þ

að2Þ
¼ 4:43! 10(22C; cð1Þ ¼ f ð1Þ

að1Þ
¼ 4:43! 10(22C

8
>>>>>><

>>>>>>:

(5.1)

Since experiments directly measure polarization per unit area
(as a function of curvature), i.e., the constant c defined by
Eq. (2.22), below we present the effective constant ce ¼ f e=ae and
how it depends on the shapes and volume fractions of the

Fig. 3 Effective flexoelectric of protein inclusions in lipid bilayer: (a) the effective constant
ce 5 f e=ae as a function of aspect ratio of protein ellipsoid. The volume fraction of protein is
assumed to be 0.1, and (b) the effective constant ce 5 f e=ae as a function of volume fraction of
inclusion. The solid curve is predicted by Eq. (4.38); the dashed curve is calculated by Eq. (5.2)
assuming ax/ay 5 1.
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inclusions. In the dilute limit, by Eq. (4.23) we have that for bend-
ing in ex-direction

ce :¼ ex " Feex

ae
¼ ex " kHex

kP
(5.2)

which depends on the aspect ratio of the ellipse ax/ay. Figure 3(a)
show the functional dependence of ce on the aspect ratio ax/ay at
the fixed volume fraction h2¼ 0.1. We remark that ax=ay ) 1
(ax=ay 0 1) implies that the microstructure is essentially lami-
nates parallel to ex (ey).

The solid curve in Fig. 3(b) show the functional dependence of
ce on the volume fraction predicted by Eq. (4.38); the dashed
curve is calculated by Eq. (5.2) assuming ax/ay¼ 1.

We have developed a general framework to estimate the
effective elastic, dielectric, and flexoelectric properties of hetero-
geneous membranes. Our results are analytical due to the approxi-
mations made (dilute limit) and the simplified microstructures
considered (circular inhomogeneities and laminate). However, the
presented framework can be solved numerically to consider more
complex microstructures and to “design” flexoelectricity. There is
strong evidence of the importance of flexoelectricity in two-
dimensional structures such as graphene and soft-lipid bilayers
and the presented work can serve as the starting point for further
explorations. In particular we note the rather strong effect of
inclusion shape on the flexoelectric response. Given this outcome,
specifically introducing inhomogeneities that are polar may pro-
vide avenues to significantly enhance flexoelectric response for
both artificial and natural membranes.

Several challenges remain. We have stayed strictly within the
linearized regime. For solid membranes, out of plane deformation
modes are coupled to the in-plane behavior. Homogenization of
nonlinear membranes is nontrivial and presents both a challenging
problem and opportunity for future work.
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