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Magnetoelectric coupling—the ability of a material to magnetize upon application of an electric field and,
conversely, to polarize under the action of a magnetic field—is rare and restricted to a rather small set of exotic
hard crystalline materials. Intense research activity has recently ensued on materials development, fundamental
scientific issues, and applications related to this phenomenon. This tantalizing property, if present in adequate
strength at room temperature, can be used to pave the way for next-generation memory devices such as miniature
magnetic random access memories and multiple state memory bits, sensors, energy harvesting, spintronics,
among others. In this Rapid Communication, we prove the existence of an overlooked strain mediated nonlinear
mechanism that can be used to universally induce the giant magnetoelectric effect in all (sufficiently) soft
dielectric materials. For soft polymer foams—which, for instance, may be used in stretchable electronics—we
predict room-temperature magnetoelectric coefficients that are comparable to the best known (hard) composite
materials created. We also argue, based on a simple quantitative model, that magnetoreception in some biological
contexts (e.g., birds) most likely utilizes this very mechanism.
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Despite their discovery as early as in the 1950’s, mag-
netoelectric materials remained a scientific curiosity for
several decades. Single-phase, intrinsically magnetoelectric
materials are only weakly so, and that too at impractically
low temperatures—in fact, to date, a single-phase material
that exhibits a strong enough magnetoelectric effect for room-
temperature operable technological applications has yet to be
discovered [1–10]. Recent advances in fabrication methods,
nanotechnology, and concurrent insights from ab initio calcu-
lations have spurred intense research in this field [1,2,11,12].
Indeed, several exciting applications appear to be on the
horizon based on magnetoelectric materials, e.g., wireless
energy transfer [4], spintronics, multiple-state memory bits
[8], nonvolatile memories, among others [3]. In the case of
memories, for instance, the magnetoelectric effect could in
principle allow data to be written electrically and read and
retrieved magnetically [2].

The scarcity and the weak magnetoelectricity in single-
phase materials can be partially understood from symmetry
and atomistic considerations [11,13]. Ferroelectrics must be
dielectric while ferromagnetic materials are usually metallic.
Additionally, ferroelectrics require broken centrosymmetry
while ferromagnetics require broken time-reversal symmetry.
The stringent symmetry constraint, and the contradictory elec-
tronic structure of the typical ferromagnets and ferroelectrics,
allow very few materials to support the magnetoelectric
effect [2,8,14]. An alternative and promising approach to
engineer magnetoelectricity is through the development of
composite materials that indirectly connect electrical and
magnetic degrees of freedom through a third order parameter
(e.g., mechanical deformation). A typical such scheme is to
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create composites of piezoelectric (usually ferroelectric) and
magnetostrictive materials [12,15–18]. In such a composite, an
applied magnetic field will cause the magnetostrictive compo-
nent to deform. The mechanical strain is transferred to the
adjoining piezoelectric phase. The strain in the piezoelectric
phase then produces an electric field. Notably, while neither
of the constituent materials are magnetoelectric, overall, they
function as such. For large magnetoelectric coupling, the
magnetostrictive and piezoelectric coefficients must be quite
high. The latter, despite many advances, is not simple to
achieve. Furthermore, brittle ceramics are the most commonly
used constituents with their accompanying disadvantages of
fabrication, expense, scarcity, and small deformation. Soft
magnetoelectric materials, if available, would yield orders of
magnitude higher deformation than currently possible. Further,
they will also find application in stretchable electronics,
nonplanar configurations [19], memory devices, and have the
additional advantage of ease of manufacturability and cost
effectiveness. We note here that fairly extensive work on
soft multifunctional materials exists in the purely electrostatic
context—see, for example, Refs. [20,21] and references
therein.

In this Rapid Communication we report a mechanism that
does not require creating complex composites and can be
universally employed for all soft dielectric materials to create a
giant magnetoelectric effect. In addition, aided by the presence
of externally deposited magnetic dipoles in soft polymers (that
do not have to be piezoelectric), the magnetoelectric coefficient
may be increased to values that are comparable to the best
known composites. Our suggested mechanism, although also
strain mediated, neither requires the use of composites nor
piezoelectric or magnetostrictive materials.

Before presenting a quantitative calculation, the central
physical concept is explained via Fig. 1. We consider a soft
homogeneous dielectric thin film as sketched in Fig. 1(a).
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FIG. 1. (Color online) The schematic and the central concept.
(a) Visualize a homogeneous dielectric thin film that is neither
magnetostrictive nor piezoelectric. The material has a magnetic
permeability different from that of vacuum (i.e., μr > 1). (b) The
thin film is placed under bias and the film is uniformly polarized.
Due to the electric Maxwell stress, the thin film is compressed.
(c) The compressed thin film (with the preexisting electric field)
is now placed in a magnetic field. The magnetic Maxwell stress now
also deforms the thin film which alters the preexisting electric field.
The change in electric field can be measured as current.

The materials are assumed to be elastically nonlinear, and
electrostatically and magnetostatically linear, with constitutive
relations given by

�̃mech = ∂Welst(F)

∂F
, e = p

ε0(εr − 1)
, h = m

μr − 1
, (1)

where F, p, and m are the deformation gradient, polarization,
and magnetization, respectively; �̃mech, e, and h are the
mechanical Piola-Kirchhoff stress, electric field, and magnetic
field, respectively; Welst = Welst(F) is the elastic energy density
function, and μr (respectively εr ) is the relative magnetic
permeability (respectively electric permittivity) of the elas-
tomer. Since the material is homogeneous, nonpiezoelectric,
and nonmagnetostrictive, there should be no intrinsic coupling

between polarization and magnetization, i.e., no intrinsic
magnetoelectricity. This is well evident from the constitutive
relations in (1). We apply a uniform external electric field
to this material. This may alternatively be also achieved by
embedding charge in the soft material, as done experimentally
in electret materials [22]. The electrical Maxwell stress will
tend to compress the material and the film will polarize
[Fig. 1(b)]. Further, we apply an external magnetic field that
will also exert a magnetic Maxwell stress on the film and
induce an additional change in the thickness of the film. As
shown in Fig. 1(c), this ensuing change in thickness will in
turn change the state of the preexisting electric field and hence
polarization. The converse effect can be similarly explained if
there are external magnetic dipoles embedded in the film or a
preexisting applied magnetic field exists.

Several observations may be made: (1) The aforementioned
mechanism is universal for all dielectric films. (2) The
aforementioned mechanism does not require the materials
to be magnetostrictive or piezoelectric and instead relies on
the universal (and nonlinear) Maxwell stress effect. (3) How
strong is this effect? The material must be soft. From a
practical viewpoint, the magnetic field (H field) can reach
up to the order of 104 Oe (i.e., the magnetic flux B is 1 T)
and the dielectric strength of typical materials is at the order
106–108 V/m. Therefore, the upper bound on the Maxwell
stress (∼ε0|E|2 + μ0|H|2) is roughly 105 Pa, corresponding
to 10% strain for a material of Young’s modulus of 1 MPa.
Therefore, the magnetoelectric coupling induced by the
Maxwell stress is only significant for soft polymer-based
materials that require a geometrically nonlinear theory of
elasticity. (4) The magnetic permeability of the material
must differ from that of the vacuum. As an example, this
condition may be ensured and improved for all soft materials
by simply embedding a minute amount of magnetic dipoles
(e.g., soft magnetites). We note here that there does exist
a magnetic polymer [23] which may be quite useful in the
context of our proposed mechanism (albeit, by no means,
necessary). (5) The strength of the coupling may be tuned by
the applied voltage V or the magnetic field (for the converse
effect).

We now present a quantitative explanation and the geomet-
rically nonlinear theory underpinning the central mechanism
that was heuristically explained above. The thermodynamic
state of the film in Fig. 1 is described by the deformation,
polarization, and magnetization (per unit volume in the refer-
ence configuration) [χ (X),P̃(X),M̃(X)], where X = (X,Y,Z)
are the Lagrange coordinates of the material points. Since the
central idea is related to the nonlinear deformation state, the
distinction between the reference and deformed configuration
must be carefully maintained. For simplicity (and without
impacting the central physics), we suppose that the conducting
electrodes maintain constant electrostatic potentials on the
top and bottom faces and are mechanically trivial (i.e., zero
stiffness and zero thickness), and the film is in a uniform
external magnetic field he that permeates to the entire space.
Since the film is thin (the thickness L is much smaller than the
width L1 in the other two directions), we can safely neglect the
electric field in the ambient medium (i.e., the fringe electric
field). In addition, parallel to the classic theory for axially
loaded members, we assume that the deformation x = χ (X)
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to be of the form

x = X + u(X), (2)

y = Y (1 + εy(X)), z = Z(1 + εz(X)), and that the polariza-
tion P̃ = P̃ (X)ex is along the ex direction and depends only on
X, where x = (x,y,z) are the Euler coordinates and u,εy,εz :
(0,L) → R are scalar functions describing the deformed state
of the film. Denote the deformation gradient by F = Grad χ ,
the stretches in the X (respectively Y,Z) direction by λ1 =
1 + ∂u

∂X
(respectively λ2 = ∂y

∂Y
= 1 + εy,λ3 = ∂z

∂Z
= 1 + εz),

and J = det F = λ1λ2λ3 the Jacobian measuring the change
of volume. In the current configuration the polarization p and
magnetization m on the film are given by

p = P̃/J, m = M̃/J. (3)

Without loss of generality we assume that x(0) = 0 and x(L) =
l. Clearly, the electric field −grad ξ and the magnetic field
−grad ζ in the current configuration must satisfy the Maxwell
equations

div(−ε0 grad ξ + p) = 0, div(−grad ζ + m) = 0, (4)

for the boundary conditions ξ (x = l) = V , ξ (x = 0) = 0, and
−grad ζ → he as |x| → +∞. We first observe that, as implied
by the constitutive laws (1), the stored or internal energy
density function of the material is of the following form [24]:

�(F,P̃,M̃) = Welst(F) + |P̃|2
2ε0(εr − 1)J

+ μ0|M̃|2
2(μr − 1)J

. (5)

For ease of exposition, we assume that the material is elasti-
cally isotropic, a reasonable assumption for soft polymers. Our
central idea is not sensitive to the choice of particular elasticity
model and here we employ the Neo-Hookean hyperelastic
model with Welst(F) given by (μ is the shear modulus, κ is the
bulk modulus)

Welst = μ

2

[
J−2/3

(
λ2

1 + λ2
2 + λ2

3

) − 3
] + κ

2
(J − 1)2. (6)

Taking the applied voltage and external magnetic field into
account, we identify the total free energy of the system as
[24,25]

1

L2
1

F [χ ,P̃,M̃]

=
∫ L

0
�(F,P̃,M̃)dX

+ ε0

2

∫ l

0
λ2λ3|grad ξ |2dx + V λ2λ3(−ε0 grad ξ + p)|x=l

+
∫ l

0
λ2λ3

μ0

2
|grad ζ self |2 −

∫ l

0
λ2λ3μ0he · mdx, (7)

where −grad ζ self := −grad ζ − he is the self-magnetic field
induced by the magnetized film alone. By the principle of
minimum free energy, we conclude that the equilibrium state
of the film is dictated by the variational problem

min
(χ ,P̃,M̃)

F [χ ,P̃,M̃]. (8)

By a standard first variation calculation we immediately
find that in equilibrium the polarization p and magnetiza-
tion m necessarily satisfy that p = −ε0(εr − 1)grad ξ and

m = (μr − 1)(−grad ζ self + he), which are precisely the sec-
ond and third constitutive relations in (1). Inserting these
constitutive relations (1) into the Maxwell’s equations (4) we
find that the electric field −grad ξ and polarization for x ∈ (0,l)
are given by

−grad ξ = −V

l
ex, p = −ε0(εr − 1)

V

l
ex. (9)

Also, if the external magnetic field he = he
xex , the self-

magnetic field −grad ζ self and magnetization for x ∈ (0,l) are
given by

−grad ζ self = −μr − 1

μr

he
xex, m = μr − 1

μr

he
xex, (10)

whereas if the external magnetic field he = he
yey , the self-

magnetic field −grad ζ self and magnetization is given by

−grad ζ self = 0, m = (μr − 1)he
yey. (11)

Therefore, by (3), (5), (7), (9), (10), (11), and straightfor-
ward algebraic calculations, we rewrite the free energy in terms
of λ1 = l/L,J as

F (λ1,J )

μLL2
1

= Ŵelst(λ1,J ) − J

2λ2
1

f̂ elct − J

2
f̂ mgf, (12)

where the following dimensionless quantities are introduced
for clarity:

Ŵelst(λ1,J ) = 1

2

[
J−2/3

(
λ2

1 + 2J

λ1

)
− 3

]
+ κ̂

2
(J − 1)2,

κ̂ = κ

μ
, f̂ elct = εrε0V

2

μL2
, (13)

f̂ mgf = μ0

μ

[
μr − 1

μr

(
he

x

)2 + (μr − 1)
(
he

y

)2
]

.

The equilibrium (λ1,J ) shall be such that F (λ1,J ) is mini-
mized, and hence necessarily satisfy ∂F

∂λ1
= ∂F

∂J
= 0, i.e.,

J−2/3λ1 − J 1/3λ−2
1 + Jλ−3

1 f̂ elct = 0,

− 1
3

(
J−5/3λ2

1 − J−2/3λ−1
1

) + κ̂(J − 1)

− 1
2λ−2

1 f̂ elct − 1
2 f̂ mgf = 0. (14)

From (14) we observe that the stretching λ1 and hence the
actual electric field along the ex direction E = −ξ,x = − V

Lλ1
depend on the magnitude and direction of the external
magnetic field he. From this viewpoint, the magnetoelectric
coupling is effectively created from the Maxwell stress and
geometric nonlinearity. The change of electric field at the
presence of an external magnetic field is appropriate for
evaluating the strength of this magnetoelectric coupling, which
is given by

E = −V

L

(
λ−1

1

∣∣he �=0 − λ−1
1

∣∣
he=0

)
. (15)

Immediately, we also find the change of polarization
p = ε0(εr − 1)E.

We can numerically solve (14) and determine the change
of electric field E induced by the external magnetic field;
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FIG. 2. (Color online) Magnetoelectric coupling constants of soft
films with εr = 20, κ̂ = 14/3, and Ẽ0 = 107 V/m.

the dependence of the magnetoelectric coupling constant
α := E/he

y on the in-plane magnetic field strength he
y is shown

in Fig. 2 for a fixed nominal electric field Ẽ0 := V/L =
107 V/m (ε0|Ẽ0|2 = 885.4 Pa). The material properties are
chosen as εr = 20, μr = 5, κ̂ = 14/3 (corresponding to a Pois-
son ratio 0.4), and μ = 1, 0.9, 0.8, 0.7, 0.6, and 0.5 MPa. From
Fig. 2 we observe that the magnetoelectric coupling constant
depends linearly on he

y initially and then deviates for larger
he

y ; the dependence of the magnetoelectric coupling constant
on the external magnetic field (and nominal electric field) is
qualitatively different from the conventional magnetoelectric
composites or multiferroic crystals. The magnetoelectric coef-
ficients depicted in Fig. 2 compare well with some well-known
composites, e.g., at a field of 300 Oe: A textured NCZF-PZT-
PZN-NCZF trilayer system has an α of 900 mV/cm Oe, which
drops to 200 at a field strength of 500 Oe [9]. In general, a direct
comparison with some other claimed high magnetoelectric
composites (e.g., Tefernol-D/PZT [26]) is difficult since our
results are essentially frequency independent, are capable of
orders of magnitude larger deformations, and finally may yield
higher polarization for the same magnetoelectric coefficient.
Additionally, several composite configurations rely on the
proximity of the constituent ferroelectric materials to phase
transformation conditions.

Figure 3 shows the dependence of p on the direction of the
angle θ for a fixed nominal electric field Ẽ0 = 107 V/m and
external magnetic field |he| = 106 A/m; the shear modulus
μ = 0.5 MPa and κ̂ = 14/3,10,20,30,40.

We remark here that the mechanism pointed out by us is not
at odds with the ongoing composite development efforts and
indeed may be combined with those to leverage this nonlinear
effect to further improve materials design.

From Fig. 2 we observe that the induced electric field by
the external magnetic field is roughly proportional to he and
the slope of the curves increases as the shear modulus μ or
bulk modulus κ decrease. To calculate the slope explicitly,
we assume small strain λ := λ1 − 1 ∼ J := J − 1 ∼ η � 1,
expand and truncate the free energy (12) up to the order of η2,
neglect an immaterial (λ1,J )-independent constant, and, after
imposing the necessary conditions ∂F/∂λ = ∂F/∂J = 0 for

FIG. 3. (Color online) The change of polarization vs the direction
of applied magnetic field. The magnitude of the magnetic field
|he| = 104 Oe, applied nominal electric field Ẽ0 = 107 V/m, and
shear modulus μ = 0.5 MPa.

the equilibrium (λ,J ), obtain

3(1 − f̂ elct)λ − (1 − f̂ elct)J + f̂ elct = 0,

−(1 − f̂ elct)λ + (
1
3 + κ̂

)
J − 1

2 f̂ elct − 1
2 f̂ mgf = 0. (16)

Solving the above equations we finally obtain the change of
electric field (15):

E = Ẽ0
f̂ mgf

2(3κ̂ + f̂ elct)
. (17)

While the implications for materials science are obvious
from the preceding discussions, we also comment on the pos-
sible relevance of our suggested mechanism in biology. Certain
anaerobic bacteria, flighted birds, among many other life
forms, possess magnetoreception—see, e.g., Refs. [27–30].
The central mechanisms underpinning biological magnetore-
ception, however, are still under debate. For instance, in the
case of avian magnetoreception [30], no magnetoelectric organ
or material constituent has been found. While small iron-oxide
“magnetite” crystals with a relative magnetic permeability μr

at the order of 102–105 are found in magnetoreceptive cells, the
mechanism that will allow magnetic signals to be interpreted
electrically has not been elucidated. Here we show that
our proposed mechanism provides an experimentally testable
explanation. To make quantitative estimates, we consider a
lipid bilayer with embedded magnetite particles. A typical
cell membrane has a nominal electric field at the order of
4.0 × 106 V/m across the membrane due to an ion imbalance
of actively gated transportation whereas neurons can sense
an electric field change as low as 0.1 V/m [31], which is
0.025 ppm of the nominal electric field. Since the earth
magnetic field is about 0.6 Oe on its surface, the change of
electric field due to the change of direction of the magnetic
field, given by (17), is estimated to be E ≈ Ẽ0

5×10−4μr

κ
.

Therefore, if μr/κ � 5 × 10−5 Pa−1, the change of electric
field will be sensible to neurons. In reality, we however
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anticipate that the presented model oversimplifies the elastic
and magnetic behaviors of the lipid bilayer membrane,
ignoring the out-of-plane anisotropy of the membrane and
replacing the magnetic effect of ferrite particles by an effective
permeability μr . A more detailed derivation of the resulting
electric field change on account of these effects is rather tedious
and will be presented elsewhere, however, we have verified that

our estimates are reasonable, thus ensuring the plausibility of
our argument.
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