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Abstract

In this work, predicated on nanoscale size-effects, we explore the tantalizing possibility of creating

apparently piezoelectric composites without using piezoelectric constituent materials. In a

piezoelectric material an applied uniform strain can induce an electric polarization (or vice-versa).

Crystallographic considerations restrict this technologically important property to non-centrosym-

metric systems. Non-uniform strain can break the inversion symmetry and induce polarization even in

non-piezoelectric dielectrics. The key concept is that all dielectrics (including non-piezoelectric ones)

exhibit the aforementioned coupling between strain gradient and polarization—an experimentally

verified phenomenon known in some circles as the flexoelectric effect. This flexoelectric coupling,

however, is generally very small and evades experimental detection unless very large strain gradients

(or conversely polarization gradients) are present. Based on a field theoretic framework and the

associated Greens function solutions developed in prior work, we quantitatively demonstrate the

possibility of ‘‘designing piezoelectricity,’’ i.e. we exploit the large strain gradients present in the

interior of composites containing nanoscale inhomogeneities to achieve an overall non-zero

polarization even under an uniformly applied stress. We prove that the aforementioned effect may be

realized only if both the shapes and distributions of the inhomogeneities are non-centrosymmetric.

Our un-optimized quantitative results, based on limited material data and restrictive assumptions on

inhomogeneity shape and distribution, indicate that apparent piezoelectric behavior close to 10% of

Quartz may be achievable for inhomogeneity sizes in the 4 nm range. In future works, it is not
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unreasonable to expect enhanced performance based on optimization of shape, topology and

appropriate material selection.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and central concept

Non-centrosymmetry is a necessary condition for a crystal to exhibit piezoelectricity,
where an applied uniform strain induces electric polarization (or vice versa). Here the
polarization vector P is related to the second-order strain tensor e through the third-order
piezoelectric tensor p (Nye, 1985)

Pi ¼ pijk�jk. (1)

Tensor transformation properties require that under inversion-center symmetry, all odd-
order tensors vanish. Thus, most common materials, e.g. Silicon, and NaCl are not
piezoelectric whereas ZnO and GaAs are. The simple schematic in Fig. 1 illustrates the
molecular origins of the classical piezoelectric effect. However, it is possible to visualize
how a non-uniform strain or the presence of strain gradients may potentially break the
inversion symmetry and induce polarization even in centrosymmetric crystals (Fig. 2).
Formally, this is tantamount to extending Eq. (1) to include strain gradients

Pi ¼ pijk�jk|fflffl{zfflffl}
¼0; for non�piezo materials

þmijkl

q�jk

qxl

. (2)

Here mijkl are the so-called flexoelectric coefficients. Although the components of the
third-ordered tensor ‘p’ (piezoelectric coefficients) are non-zero for only selected
(piezoelectric) dielectrics, the flexoelectric coefficients (components of the fourth-order
tensor ‘l’) are non-zero for all dielectrics. This implies that under a non-uniform strain, at
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Fig. 1. Illustration of ‘‘Classical’’ piezoelectricity. The left figure shows the tetrahedrally coordinated

cation–anion unit of a ZnO crystal. The center of negative charge of the oxygen (O) anions coincides with the

center of positive charge, which is located at the Zinc (Zn) ion. Thus, there is no net dipole polarization in the

absence of external pressure. Upon application of external pressure, the centers of positive and negative charge

suffer relative displacement with respect to each other thereby inducing a dipole moment. Such dipole moments

are induced throughout the crystal lattice thereby giving rise to net polarization.
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least in principle, all dielectric materials are capable of producing a polarization. The
reader is referred to our recent work (Maranganti et al., 2006) that discusses flexoelectricity
in detail although essential concepts are summarized here as well.
The universal strain gradient—polarization coupling can be interpreted from the point

of view of two length scales: (i) at the length scale of a single (or few) unit cell(s), (ii) at a
coarser length spanning many individual crystalline unit cells, i.e. the dimension of a
nanostructure or larger. At the unit cell level, Fig. 2 illustrates how NaCl (which is non-
piezoelectric) will yield zero net dipole moment (and hence no polarization) under
application of uniform strain but will exhibit an apparent piezoelectric effect when
subjected to strain gradients, e.g. bending or inhomogeneous stretching. At a coarser
length scale, the effect of individual unit cells is accounted for in the phenomenologically
introduced flexoelectric coefficients (Eq. (2)). As long as the flexoelectric coefficients are
non-negligible, a finite polarization will manifest at coarser scales provided the
nanostructures are properly designed. By proper design, we imply that the overall
symmetry of the nanostructure must be such that the average of the polarization due to the
presence of strain gradients is non-zero. For example, a heterogeneous spherical particle
consisting of two different non-piezoelectric materials when subjected to uniform stress
will exhibit spatially varying polarization due to flexoelectricity. The polarization will be
significant if the particle is in the nanoscale size and if the difference in the dielectric and
elastic properties of the constituents is large since the strain gradients will then be large.
However, symmetry indicates that the net average polarization will regardless be zero.
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Fig. 2. (a) Undeformed NaCl unit cell. The sodium ion is positively charged while the four neighboring chlorine

ions are negatively charged. As can be seen, the center of gravities of the negative charge and the positive charge

coincide leading to (expectedly) zero net dipole moment. (b) Uniform Strain: application of a uniform strain

displaces the identical ions equally from the center of inversion and hence the centers of the negative and positive

charges coincide again thereby resulting in zero net polarization implying that NaCl is non-piezoelectric. (c) NaCl

unit cell under non-uniform stretching. Application of a non-uniform strain however results in relative

displacement of the centers of the negative charge and positive charge with respect to each other. This results in a

dipole moment (represented by the thick red arrow) in the direction opposite to the strain gradient for the

considered cell. (d) and (e) Polarization due to bending.
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Thus, ‘‘proper design’’ in the present context refers to (i) optimum topology, (ii) optimum
differences in the material properties of the constituents that comprise the nanostructures,
and (iii) optimum size.

Fig. 3 illustrates the main principle from a coarse-grained perspective.
Consider a composite consisting of two or more different non-piezoelectric dielectric

materials. Even under application of uniform stress, a non-uniform strain distribution will
be generated in this system. Due to the presence of strain gradients and the flexoelectric
coupling, polarization will ensue. For ‘‘properly designed’’ nanocomposites, the net
average polarization will be non-zero. Thus, the nanostructure will exhibit an overall
electromechanical coupling under uniform stress behaving like an ‘‘apparently’’ piezo-
electric material. The individual constituents must be at the nanoscale since this concept
requires very large strain gradients and those (for a given strain) are generated easily only
for small-scale structures.

Both mathematically (Eq. (2)) and physically (Figs. 2 and 3), it is manifestly possible to
induce electric fields in non-piezoelectrics via strain gradients. The next logical question is
how significant is this effect? As will be quantitatively demonstrated in later section, this
effect is of appreciable amount (for most dielectric materials) only at the nanoscale and
thus is most relevant in the context of nanostructures. Due to the role of gradients,
flexoelectricity is essentially a size-effect and negligible at supra-nano length scales (for
most ordinary dielectrics). Consider a structure with certain mechanical boundary
conditions; the mechanical strain can be considered to be roughly the same if the system is
shrunk self-similarly from mm’s to nm’s. However, the strain gradient will increase by six
orders of magnitude! Incidentally, the statement regarding size-independence of strain is
not strictly true (e.g. Zhang and Sharma, 2005a, b, Sharma et al., 2003); there is a size-
dependency to strain at the nanoscale but that does not influence the point we are trying to
make here, i.e. even if strain were size-independent, the strain gradient scales inversely with
size. Flexoelectric coefficients are not readily available but some reasonable estimates are
known for graphene (Dumitrica et al., 2002) and NaCl (Askar and Lee, 1970). Choosing
the latter as an example, we can calculate its electromechanical coupling coefficient under
applied voltage. One would expect it to be zero since NaCl is non-piezoelectric. However, if
the flexoelectric effect is properly taken into account, it can be inferred that at 10 nm
thickness, the electromechanical coupling factor reaches 80% of the value of Quartz or
alternatively 12% of lead zirconate titanate (PZT) (Mindlin, 1968).
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Fig. 3. Through suitable topology, arrangement, constituent property difference and selection of optimum size,

heterogeneous nanostructures (i.e. bi-laminate or film with conical inclusions) such as shown in the figure can be

created that will yield an ‘‘apparently’’ piezoelectric behavior despite the constituents being non-piezoelectric.

Here C1 and C2 denote the ‘elastic constants’ of the two materials considered. The second figure is adapted from

paper by Cross and co-workers (Fousek, et al., 1999, Cross, 2006).
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The flexoelectric phenomenon has been experimentally observed during bending of
crystal plates (e.g. Bursian and Trunov, 1974) and measurements on thin films (Catalan
et al., 2004). Mindlin (1968) used the converse of the flexoelectric effect to explain the
anomalous capacitance measurements of thin dielectric films while Yakobson and
coworkers employed it to discuss the polarization in curved carbon shells (Dumitrica
et al., 2002). Experiments with dislocated non-piezoelectric dielectric crystals have
attributed overall electromechanical coupling to polarization in the vicinities of
dislocations (e.g. Whitworth, 1964; Nowick and Heller, 1965; Bauer and Brantley, 1970;
Robinson et al., 1978).1 The flexoelectric effect may also be used to provide an explanation
for the size-dependent piezoelectric behavior of boron nitride nanotubes (Nakhmanson
et al., 2003). The aforementioned works are related to crystalline materials. As an aside, we
note here that a large literature also exists in the liquid crystal and biological membrane
context. It is noteworthy though that the term, ‘‘flexoelectricity’’ for crystalline materials
was coined inspired by similar phenomenon in liquid crystals (Meyer, 1969; Schmidt et al.,
1972; Indenbom et al., 1981).
Kogan (1963) has argued that for all dielectrics, e/a (E10�9 C/m) is an appropriate

lower bound for the flexoelectric coefficients, where e is the electronic charge and a is the
lattice parameter. Later experiments (Ma and Cross, 2001a) and simple linear chain
models of ions (Marvan and Havranek, 1997) suggested multiplication by relative
permittivity for normal dielectrics. Much larger magnitudes (E10�6 C/m) of flexoelectric
coefficients than this lower bound are observed in certain ceramics (Ma and Cross, 2001b,
2002, 2003). Electric field created in non-piezoelectric CaWO4 crystals with 4/m symmetry
by applying a twisting moment was experimentally measured by Zheludev et al. (1969),
which though closely related to flexoelectricity, was attributed mainly to disappearance of
centrosymmetry due to applied torsion. Marvan and Havranek (1988) found presence of
flexoelectric effect in an isotropic elastomer with flexoelectric coefficients roughly of the
order of e/a. Flexoelectricity, of course also exists in materials that are already piezoelectric
and in fact experimental evidence suggests that flexoelectric coefficients are unusually high
in such materials—see the experimental work of Cross and co-workers (2001a, b, 2002,
2003, 2006) on ferroelectric perovskites like PMN, PZT, and BST. In fact, the notion of
creating ‘‘apparently piezoelectric’’ composites without using piezoelectric constituents
appears to have first appeared in a work by Fousek et al. (1999) and more recently in work
by Zhu et al. (2006) who have experimentally realized this concept.2

Lattice level ‘‘shell’’ type models of crystalline dielectrics clearly indicate that the long
wavelength limit of the lattice dynamical results do not lead to the classical piezoelectric
theory, which from an atomistic point of view, is simply the long wavelength
representation of the core–core interactions while core–shell and shell–shell interactions
are neglected (Cochran and Cowley, 1962; Dick and Overhauser, 1958; Tolpygo, 1962).
To tackle this discrepancy, Mindlin (1968) introduced a continuum field theory
that incorporates coupling of polarization gradients to strain (or in our language—the
converse flexoelectric effect). This theory is found to correctly represent the core–shell and
shell–shell interactions within a continuum field-theoretic formalism (see also the
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1For this to occur, a necessary requirement is that the crystalline solid contain an excess of dislocation of a

certain sign.
2This was brought to our attention by one of the anonymous referee’s at an advanced stage of the peer-review

process.
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study of Askar and Lee, 1970). It should be noted that Mindlin’s theory does not
incorporate the direct flexoelectric effect or the strain gradient-polarization coupling
discussed earlier. Several work subsequently expanded on Mindlin’s original theory. Askar
et al. (1971) considered elastic and dielectric state of cylindrical and spherical cavities as
well as cracks. In a later paper, using lattice dynamical methods, the same authors also
evaluated the material constants of Mindlin’s theory for KCl and NaCl (1974). From the
view-point of condensed matter physics, Tagantsev (1986, 1991) has proposed a
phenomenological description and, in addition to providing a review, clarified several
concepts related to both flexoelectricity and piezoelectricity based upon microscopic
considerations.

Yet another electromechanical coupling effect which deserves mention is the well-known
phenomena of electrostriction (Maugin, 1988) which is also universal for dielectrics.
Electrostriction is a nonlinear effect and becomes operative at very high electric fields—
the developed strain depends on the square of the electric field and consequently the
direction of the electric field is independent of the sign of the strain (compression versus
tension). In addition, an inverse electrostriction effect does not exist, i.e. deformation does
not produce an electric field. This nonlinear effect is ignored in the present work since we
only consider linearized theories and thus small strains (although not small strain

gradients).
In the present work, based on a field theoretic framework and the associated Greens

function solutions developed in prior work (Maranganti et al., 2006), we quantitatively
demonstrate the possibility of ‘‘designing piezoelectricity,’’ i.e. we exploit the large strain
gradients present in the interior of composites containing nanoscale inhomogeneities to
achieve an overall non-zero polarization even under applied uniform stress. We show that
the governing equations for flexoelectricity demand that the inhomogeneity shape must be
non-centrosymmetric for a non-zero average polarization.

The paper is organized as follows. In Section 2, we discuss the mathematical framework
and the governing equations for the extended theory of electromechanical coupling. In
Section 3, we develop solutions for the embedded inclusion problem subject to dilatational
transformation strain. Centrosymmetric (spherical) and non-centrosymmetric (orthogonal
polyhedral) shapes are used to demonstrate that to obtain non-zero average polarization in
the aforementioned ‘‘meta material’’, the requirement of material non-centrosymmetry is
transferred to requirement of shape non-symmetry of the inhomogeneity and topology
arrangement. In Section 4, we propose a simple proof of this proposition. The
homogenization scheme used to obtain quantitative results is discussed in Section 5 while
the numerical calculations are presented in Section 6. We conclude in Section 7.

2. Mathematical framework and governing equations

Assuming an isotropic centrosymmetric3 dielectric, the most general expression for the
linearized internal energy density function S incorporating terms involving first gradients
of the deformation gradient and the polarization is (Sahin and Dost, 1988)

S ¼ 1
2

aklPkPl þ
1
2

bijklPi;jPk;l þ
1
2

cijkl�ij�kl þ dijklPi;j�kl þ f ijklPiuj;kl þ
1
2

gijklmnui;jkul;mn

(3)
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3Thus, the material is non-piezoelectric.
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u and P being displacement and polarization vectors respectively, eij are the components of
the infinitesimal strain tensor e defined as

�ij ¼
1
2
ðui;j þ uj;iÞ. (4)

Unless stated otherwise, Cartesian basis is used throughout and both index and direct
notation will be used as convenient. ‘a’ is second-order reciprocal dielectric susceptibility,
‘c’ is fourth-order elastic constant tensor, ‘d’ is the tensor corresponding to higher-order
electro-elastic couplings which link gradients of polarization to strains, ‘b’ is the tensor
corresponding to the converse flexoelectric effect and is thus coupled to polarization
gradients, ‘f’ is the tensor of flexoelectric coefficients, while ‘g’ dictates purely elastic
nonlocal effects corresponding to the strain gradient elasticity theories. The extended
theory implicit in Eq. (3) differs from classical theory of piezoelectricity in that
characteristic length scales appear and (as expected and desired) results are size-dependent.
Such formalism is a modified version of Mindlin’s framework (Mindlin, 1968) and has
been further developed in our earlier work (Maranganti et al., 2006).
Neglecting the purely elastic nonlocal effects (i.e. ‘g’) for an isotropic continuum

occupying domain O and boundary S, standard variational analysis of Eq. (3) can be used
to obtain the following system of equilibrium equations, boundary conditions and
constitutive relations:

Equilibrium equations:

tij � tjim;m

� �
;j
þ Fi ¼ 0,

Eij;j þ Ei � f;i þ E0
i ¼ 0,

� �0f;ii þ Pi;i ¼ 0 in O,

f;ii ¼ 0 in On, ð5a2dÞ

where f, E0, F are the electric potential, external electric field and external force
respectively, tij, Ei and Pi are the components of the stress tensor, effective local electric
field and the polarization vector respectively while Eij and tijm represents the higher-order
local electric force and stress, which includes higher-order gradients of the displacement
vector (like ui,jm), respectively. Note that these electromechanical stresses are defined as the
partials of S with respect to the of respective field vectors as

tij �
qS
qeij

; tijm �
qS
qui;jm

,

Eij �
qS
qPi;j

; Ei �
qS
qPi

. ð6a2dÞ

Boundary conditions:

nisij ¼ tj ;

niEij ¼ 0,

ni 1�0f;iUþ Pi

� �
¼ 0 ð7a2cÞ

n and t are the exterior normal unit vector and the surface traction vector, respectively; e0 is
the dielectric constant and the symbol 1 U denotes the jump across the surface S.
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Constitutive relations:

tij ¼ c12dijdps þ 2c44dipdjs

� �
up;s þ d12dijdps þ d44 disdjp þ djsdip

� �� �
Pp;s,

tijm;m ¼ f 12dpidjs þ f 44 dpsdji þ disdjp

� �� �
Pp;s,

Eij ¼ d12dijdps þ d44 disdjp þ djsdip

� �� �
up;s

þ b12dijdps þ b44 þ b77ð Þdisdjp þ b44 � b77ð Þdjsdip

� �
Pp;s,

Ei ¼ � aPi þ f 12dijdps þ f 44 disdjp þ djsdip

� �� �
uj;ps

� �
. ð8a2dÞ

Eqs. (8a–d) can be combined with Eqs. (5a–d) to yield the following Navier-like
governing equations:

c44r
2uþ ðc12 þ c44Þrruþ ðd44 � f 12Þr

2Pþ ðd12 þ d44 � 2f 44ÞrrPþ F ¼ 0,

ðd44 � f 12Þr
2uþ ðd12 þ d44 � 2f 44Þrruþ ðb44 þ b77Þr

2P

þ ðb12 þ b44 � b77ÞrrP� aP�rfþ E0 ¼ 0,

� �0r
2fþrP ¼ 0. ð9a2cÞ

It should be noted that the displacement and polarization fields are coupled through the
constants d and f. Eq. (9a–c) can be rewritten as

Cijuj þDijPj þ F i ¼ 0,

Dijuj þ BijPj � f;i þ E0
i ¼ 0,

� �0f;ii þ Pi;i ¼ 0, ð10a2cÞ

where

Cji ¼ Cjpisrprs ¼ c12djpdis þ c44 dpsdij þ djsdip

� �� �
rprs,

Dji ¼ Djpisrprs ¼ d12 þ d44 � 2f 44

� �
djpdis þ ðd44 � f 12Þdpsdij

� �
rprs,

Bji ¼ Bjpisrprs � adij ¼ b12djpdis þ b44 þ b77ð Þdpsdij þ b44 � b77ð Þdjsdip

� �
rprs � adij.

ð11a2cÞ

These equations may be solved, in analogy with Kelvin’s solution in the theory of
linearized elasticity by appropriate Green’s functions. We can define two sets of Green’s
functions fG1

in;G
2
in;f

f
ng and fG

3
in;G

4
in;f

E
n g corresponding to Eqs. (10a–c) as follows:

CjiG
1
inðx� x0Þ þDjiG

2
inðx� x0Þ þ djndðx� x0Þ ¼ 0,

DjiG
1
inðx� x0Þ þ BjiG

2
inðx� x0Þ � rjf

f
nðx� x0Þ ¼ 0,

� �0r
2ff

nðx� x0Þ þ riG
2
inðx� x0Þ ¼ 0,

CjiG
3
inðx� x0Þ þDjiG

4
inðx� x0Þ ¼ 0,

DjiG
3
inðx� x0Þ þ BjiG

4
inðx� x0Þ � rjf

E
n ðx� x0Þ þ djndðx� x0Þ ¼ 0,

� �0r
2fE

n ðx� x0Þ þ riG
4
inðx� x0Þ ¼ 0. ð12a2fÞ

As evident, the first three equations (12a–c) are the Navier-like equations for the
displacement, polarization and the potential fields corresponding to a unit point force

(denoted by a delta function). Similarly, Eqs. (12d–f) are the governing equations for the
displacement, polarization and the potential fields corresponding to a unit point electrical

field.
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In our previous work (Maranganti et al., 2006) we have derived analytical expressions
for the Green’s functions corresponding to the Lagrangian of Eq. (3) which includes pure
strain-gradient terms (coupled by the tensor g). Neglecting these purely nonlocal terms the
Green’s functions become

4pG
1ð Þ

ij ¼ qiqj Cð01ÞRþ Cð11ÞI1 � Cð12ÞI2
� �

þ dijr
2 Cð02ÞRþ Cð12ÞI2
� �

,

4pG
2ð Þ

ij ¼ 4pG
3ð Þ

ij ¼ qiqj Cð21ÞI1 þ Cð22ÞI2
� �

� dijr
2 Cð22ÞI2
� �

,

4pG
4ð Þ

ij ¼ qiqj
I1

aþ �0ð Þ
�1
�

I2

a

� �
þ dijr

2 I2

a

� �
ð13a2cÞ

which are same as those derived by Nowacki and Hsieh (1986). The coefficients C(ij) and
expression Ia have been defined in Appendix A.

3. Illustrative solutions for centrosymmetric (spherical) and noncentrosymmetric (orthogonal

polyhedral) inclusion

Consider an arbitrary shaped inclusion with a prescribed stress-free transformation
strain e* in its domain (O), located in an infinite isotropic medium. Here we follow the
convention that the word ‘‘inclusion’’ refers to an embedded region that has the same
mechanical and dielectric properties as the surrounding material but with a transformation
strain or polarization prescribed within its domain while the word ‘‘inhomogeneity’’ is
referred to as an embedded region with material properties differing from the surrounding
matrix. Following Eshelby’s (1957) well-known formalism, given a uniform transforma-
tion strain, the displacement ui(x) and the polarization field Pi(x) can be written as

uiðxÞ ¼ �

Z
c12djldmn þ 2c44djmdln

� �
�nmnðx

0ÞG1
ij;lðx� x0Þdx0

�

Z
d12 � f 44

� �
djldmn þ 2d44 � f 12 � f 44

� �
djmdln

� �
�nmnðx

0ÞG2
ij;lðx� x0Þdx0

ð14Þ

and

PiðxÞ ¼ �

Z
c12djldmn þ 2c44djmdln

� �
�nmnðx

0ÞG3
ij;lðx� x0Þdx0

�

Z
d12 � f 44

� �
djldmn þ 2d44 � f 12 � f 44

� �
djmdln

� �
�nmnðx

0ÞG4
ij;lðx� x0Þdx0,

ð15Þ

where fG1
in;G

2
in;G

3
in;G

4
ingare defined as the set of Green’s functions corresponding to

Eqs. (12a–f) and are defined in Eqs. (13a–c).
Now, for a given transformation strain the polarization Pi for an inclusion of any shape

can be written in terms of potentials f(x), c(x), Ma(x) as

PiðxÞ ¼ � 3c12 þ 2c44ð Þ�nqi Að2Þf;kk þ Cð2ÞM1
;kk þDð2ÞM2

;kk

	 

� 3 d12 � f 12

� �
þ 2 d44 � f 44

� �� �
�nqi Að3Þf;kk þ Cð3ÞM1

;kk þDð3ÞM2
;kk

	 

, ð16Þ
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where

f xð Þ ¼
1

4p

Z
O

1

R
dx0; cðxÞ ¼

1

4p

Z
O

Rdx0; Ma xð Þ ¼
1

4p

Z
O

e�R=la

R
dx0 (17a2c)

R is |x�x0| and la are the length scale parameters defined in Appendix A.
It is important to note that the inclusion geometry dependence of Eq. (16) is buried

within the definitions of the potentials f(x), c(x) and Ma(x). Thus the solution of the
polarization field of an embedded transformed inclusion is reduced entirely to
the determination of the three potentials. The first two are merely the Newtonian
(i.e. Harmonic) and Biharmonic potential for the inclusion shape while the third is the
lesser known and harder to evaluate Yukawa potential. Closed form expressions for the
Newtonian and Biharmonic potential exist for a variety of shapes (see for example, Mura,
1987) while only spherical and circular shape is amenable to analytical reduction in the
case of Yukawa potential (e.g. Gibbons and Whiting, 1981; Cheng and He, 1997).

Andreev and Downes (1999), in connection with quantum dot structures, suggested a
general analytical method using Fourier transform technique that allows straightforward
separation of shape effects. The characteristic function for the inclusion w(r) is defined as

w rð Þ ¼
1; r 2 O;

0; reO:

(
(18)

The Fourier transform of the characteristic function is

ŵ qð Þ ¼

Z
O
e�iqx dV xð Þ. (19)

The polarization field (Eq. (16)) can be re-written in Fourier space as

dPiðqÞ ¼ iqiqkqkŵðqÞ�
n

~c Að2Þdf qð Þ þ Cð2Þ dM1 qð Þ þDð2Þ dM2 qð Þ
	 

þ ~d Að3Þdf qð Þ þ Cð3Þ dM1 qð Þ þDð3Þ dM2 qð Þ
	 


8><>:
9>=>;; (20)

where

~c ¼ 3c12 þ 2c44ð Þ; ~d ¼ 3 d12 � f 12

� �
þ 2 d44 � f 44

� �� �
.

Thus, substituting Eqs. (17a–c) in Eq. (16) and transforming to Fourier space (Kleinert,
1989), we obtain the following analytical expression for the polarization:

dPiðqÞ ¼ iqiqkqkŵðqÞ�
n
~cAð2Þ þ edAð3Þ

q2
þ
ecCð2Þ þ edCð3Þ

q2 þ ð1=l21Þ
þ
ecDð2Þ þ edDð3Þ

q2 þ ð1=l22Þ

 !
, (21)

The complete shape information for the inclusion is contained within ŵðqÞ making other
terms in Eq. (21) independent of the shape (and geometry) effects. Eq. (21) can now be
used to evaluate the polarization field for inclusion of any geometry in Fourier space, if
ŵðqÞ for that geometry is known.

For the spherical shape (as shown in Fig. 4a), the shape function has a simple form
(Andreev and Downes, 1999)

ŵ q;Rð Þ ¼
4p
q

sinðqRÞ

q2
�

R cosðqRÞ

q2

� �
. (22)
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Here R is the radius of inclusion. Eq. (21) along with Eq. (22) may then be solved
numerically using spectral method (Trefethen, 2000). A periodic distribution (nxd, nyd, nzd)
of inclusions is used. If a single inclusion solution is desired, a large cell-spacing must be
employed to avoid interaction effects while (for eventual composite applications), the
spacing may be adjusted to take into account finite volume fraction. Dimension d

is normalized with the characteristic length-scale and each unit cell is uniformly meshed.
A distribution of polarization field is thus obtained in the Fourier space which is then
inverted back to the real space numerically. Thus contour-plots of the normalized electric
fields distribution as a function of size and material property combinations (i.e. different
combination of the characteristic lengths) for a spherical inclusion under dilatational strain
may be obtained. Of course, for spherical geometry, analytical expressions for the
potentials are available which can be directly used to generate such contour-plots which
are shown here in Fig. 5. The numerical scheme described above is however general and
essential for shapes other than spherical or cylindrical.
In Fig. 5, darker regions indicate low concentration of polarization while a lighter shade

indicates a higher concentration of polarization. The material is non-piezoelectric and yet
due to the presence of strain gradients, there exists a finite polarization in and around the
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Fig. 5. Normalized contour plots of the electric fields around a spherical inclusion for different sizes subject to

dilatational eigenstrain.

Fig. 4. Embedded inclusions (a) centrosymmetric (spherical) inclusion (b) non-centrosymmetric (orthogonal

polyhedral) inclusion.
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inclusion. As the size increases, the electric field becomes increasingly localized in thinner
and thinner layers at the interface. Unlike the points at the interface, the interior points of
the inclusion exhibit appreciable values only at sizes that are close to the flexoelectric
characteristic length scales. To be more concrete and for illustration, we choose
InAs–GaAs as an example inclusion-matrix system. Both are important quantum dot
materials and subject to a large lattice mismatch induced dilatational transformation
mismatch strain of �6.7%. We then find that for an inclusion size of 5 nm, even far from
the interface (i.e. a distance of 0.1� radius from center), electric fields of hundreds of kV/m
can be expected (this is in addition to the weakly classical piezoelectric effect in GaAs).

We should mention that spherical and such highly symmetric shapes are useless for
obtaining effective piezoelectric coefficients from non-piezoelectric constituents. The high
symmetry of such shapes ensures that the net averaged polarization vanishes globally
although locally it is non-zero. These results are included here to bring about some of the
qualitative nuances of the flexoelectric phenomenon.

As will be proved in Section 4, of real interest to the theme of the manuscript are
inclusions of non-centrosymmetric shape. In Fig. 6 we plot contours of the numerically
generated magnitude of the polarization field for orthogonal polyhedral shaped inclusion
(shown in Fig. 4b) subject to a dilatational transformation strain. Characteristic shape
function ŵðqÞ for the orthogonal polyhedral with a, b, c as the x, y, z-coordinate intercepts,
respectively is easily derived to be

bw q; a; b; cð Þ ¼

iabe�icq3q1q2 aq1 � bq2

� �
þ iace�ibq2q1q3 cq3 � aq1

� �
þibce�iaq1q2q3 bq2 � cq3

� �
þ aq1 � bq2

� �
bq2 � cq3

� �
cq3 � aq1

� � !
aq1 � bq2

� �
bq2 � cq3

� �
cq3 � aq1

� � ,

(23)

where q1, q2, q3 are the wave vectors.
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Fig. 6. Normalized contour plots of z-component of polarization around x– y plane of an orthogonal polyhedral

inclusion for different sizes.
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The size effect is evident as in the spherical case. With reduction in size, the electric field
is seen to get denser in and around the inclusion. The distribution of the electric field is not
symmetric. The lack of centrosymmetry in the distribution of polarization field results in a
non-zero net averaged polarization in the inclusion (and thus by extension in the whole
body). A notable observation is that if the inclusions were to be arranged in a
centrosymmetric topology (say for example, randomly oriented), the averaged polarization
will average to zero over the entire domain. Hence a proper arrangement of such non-

centrosymmetric shapes and a non-centrosymmetric topology is necessary to generate non-
zero average polarization. In the next section we formally provide this insight based on the
mathematical structure of the governing equations.

4. Proposition: the requirement of material non-centrosymmetry for piezoelectricity in

crystals is transferred to inhomogeneity shape and arrangement in flexoelectric continuum

Consider the case of a centrosymmetric inhomogeniety embedded inside an infinitely
large medium.

Case 1: Applied voltage boundary condition as specified below exists

f xð Þ



x¼f
¼ V ; f xð Þ




x¼�f
¼ �V . (24)

Since we have a centrosymmetric inhomogeneity, the boundary condition is anti-
centrosymmetric in the potential ‘f(x)’. Thus, the solution of the potential ‘f(x)’ will
exhibit the same anti-centrosymmetry as that exhibited by the boundary condition. Then it
follows that the potential ‘f(x)’ is an odd function in x:

fðxÞ ¼ �fð�xÞ. (25)

Substituting the above condition in Eq. (9c), we observe that the polarization field must
be an even function in ‘x’,4 i.e.

PðxÞ ¼ Pð�xÞ. (26)

Further, substituting Eq. (25) into Eq. (9a), we observe that the displacement field ‘u(x)’
is also an even function in x, i.e.

uðxÞ ¼ uð�xÞ. (27)

As a result of the above symmetry requirement on the displacement field, the strain field
‘e(x)’ is rendered an odd-function, i.e.

eðxÞ ¼ �eð�xÞ. (28)

Thus the strain averaged over the volume of the system in the case of applied voltage
condition is zero.

Case 2: Traction boundary condition exists as specified below

r � njr¼S ¼ t. (29)

Once again, since the inhomogeneity is centrosymmetric, the given boundary condition
is also centrosymmetric with respect to the stress ‘r(x)’. Thus, the solution of the stress
function ‘r(x)’ is also centrosymmetric. Then it follows that the stress ‘r(x)’ is an even
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4Here we have used the fact that the derivative of an odd function is an even function and vice versa.
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function in x. The stress field can be written in terms of the displacement and polarization
fields as

sijðxÞ ¼ c12dijuk;kðxÞ þ c44 ui;jðxÞ þ uj;iðxÞ
� �

þ d12dijPk;kðxÞ þ d44 Pi;jðxÞ þ Pj;iðxÞ
� �

. ð30Þ

Since r(x) is even in r we can infer that

c12dijuk;k xð Þ þ c44 ui;j xð Þ þ uj;i xð Þ
� �

þ d12dijPk;k xð Þ þ d44 Pi;j xð Þ þ Pj;i xð Þ
� �

¼ c12dijuk;k �xð Þ þ c44 ui;j �xð Þ þ uj;i �xð Þ
� �

þ d12dijPk;k �xð Þ

þ d44 Pi;j �xð Þ þ Pj;i �xð Þ
� �

. ð31Þ

From Eq. (9a) we observe that u(x) and P(x) have to be either both odd or both even.
One can easily verify that if one of them is odd and the other function is even (or vice
versa) then Eq. (9a) can never be satisfied. Further, from Eq. (27) we deduce that u(x) and
P(x) have to be both odd. Since P(x) is odd, the polarization averaged over the volume of
the system becomes zero.

Thus, to obtain effective piezoelectric behavior without using piezoelectric constituents,

the symmetry of the internal arrangement must be chosen carefully. Any topology that has
symmetry of transverse isotropy or less will yield a net overall polarization due to this
effect (higher symmetry cannot sustain odd-order tensors that characterize the topology).
In other words, the requirement of material non-centrosymmetry for naturally occurring

piezoelectrics is transferred to a requirement of shape/topology non-centrosymmetry in

flexoelectric media. Hence, for example, 2-layer laminate or the conical particle reinforced
thin film shown in Fig. 3 are candidates that can demonstrate this effect.

5. Homogenization scheme for apparently piezoelectric composites

In this section we present a simple homogenization scheme that allows us to
quantitatively, albeit approximately, estimate the effective piezoelectric behavior of a
nanocomposite that is not comprised of piezoelectric materials. Our goal in the present
manuscript is to demonstrate this central idea rather than develop a rigorous
homogenization theory hence the simplest possible approach is employed.

Consider an infinite non-piezoelectric matrix containing an arbitrary shaped inhomo-
geneity subject to a far-field uniform strain, eN. The Navier-like equations (Eqs. (9a–c))
may be re-written in an alternative form as

r C : eþD : rPð Þ þ F ¼ 0,

r D : eþ B : rPð Þ � rfþE0 ¼ 0,

� �0r
2fþrP ¼ 0. ð32a2cÞ

We define the position-dependent material properties as

CðxÞ ¼ Cm
þ ðCi

� Cm
Þ : HðxÞ ) Cm

þ ½C� : HðxÞ,

DðxÞ¼ Dm þ ½D� : HðxÞ,

BðxÞ ¼ Bm þ ½B� : HðxÞ, ð33Þ
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where

HðxÞ ¼
1 . . . x 2 V ;

0 . . . xeV ;

(
Cm; Dm; Bm !Material property tensors for matrix,

Ci; Di; Bi !Material Property tensors for the inhomogeneity; and

½ � ¼ difference between properties of the matrix and the inhomogeneity: ð34Þ

Hence Eq. (27a) becomes

rfCðxÞ : eþDðxÞ : rPg ¼ 0

) rfCm : eþ ½C� : eHðxÞ þDm : rPþ ½D� : PHðxÞg

) rfCm : eg þ rf½C� : eHðxÞg þ rfDm : rPg þ rf½D� : rPHðxÞg

) rfCm : eþDm : rPg þ ½C� : e dðSÞ þ ½D� : rPdðSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Body Force

¼ 0. ð35Þ

Similarly

rfDðxÞ : eþ BðxÞ : rPg ¼ 0

) rfDm : eþ Bm : rPg þ ½D� : edðSÞ þ ½B� : rPdðSÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼Body Electric Field

¼ 0. ð36Þ

Thus an inhomogeneity within a matrix can be modeled as a fictitious body force and a
fictitious body electric field. As customary in micromechanics (and already demonstrated
in Section 3), the displacement u and polarization P can be expressed in terms of the
derived Green’s functions as

u ¼ u1 �

Z
V 0

G1
r � f½C� : eðx0ÞgdV 0 �

Z
V 0

G2
r � f½D� : rPðx0ÞgdV 0 (37)

and

PðxÞ ¼ P1 �

Z
V 0

G3
r � f½D� : eðx0ÞgdV 0 �

Z
V 0

G4
r � f½B� : rPðx0ÞgdV 0. (38)

Employing Gauss theorem and discarding the boundary terms, we obtain

uiðxÞ ¼ u1i þ

Z
V 0

G1
jiðy
0 � x0Þ

n o
;l
f½Cklmn��mnðx

0ÞgdV 0

þ

Z
V 0

G2
jiðy
0 � x0Þ

n o
;l
f½Dklmn�Pm;nðx

0ÞgdV 0, ð39Þ

PiðxÞ ¼ P1i þ

Z
V 0

G3
jiðy
0 � x0Þ

n o
;l
f½Djlmn��mnðx

0ÞgdV 0

þ

Z
V 0

G4
jiðy
0 � x0Þ

n o
;l
f½Bjlmn�Pm;nðx

0ÞgdV 0. ð40Þ
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The strain field is then

�ijðxÞ ¼ �
1
ij þ

1
2

Z
V 0

G1
jk;liðy

0 � x0Þ þ G1
ik;ljðy

0 � x0Þ
n o

f½Cklmn��mnðx
0ÞgdV 0

þ 1
2

Z
V 0

G2
jk;liðy

0 � x0Þ þ G2
ik;ljðy

0 � x0Þ
n o

f½Dklmn�Pm;nðx
0ÞgdV 0. ð41Þ

Eqs. (40) and (41) are integral equations that must be solved to determine the
polarization and strain states of an unbounded body containing an inhomogeneity under
the extended theory of electromechanical coupling that incorporate flexoelectricity. In
classical elasticity (for ellipsoidal shape), the strain is uniform within the inhomogeneity
and thus allows one to take the strain field out of the integral sign effectively converting the
integral equation into an algebraic one. This is not possible in our case as both strain and
polarization are inhomogeneous (even for ellipsoidal shape) let alone for non-centrosym-
metric shapes that are relevant in the present context. Thus, a suitable approximation must
be found to solve Eqs. (40) and (41) and evaluate the average polarization.

A perturbation type approach (cf. Markov, 1979 in the context of micropolar solids) can
be used to solve these integral equations. As a first approximation we may assume that the
actual strain (polarization field) to be the average uniform strain (polarization field). This
approximation is merely the first term in the perturbation series involving the difference
between the matrix-inhomogeneity moduli—the next order approximation, as it turns out,
was found to be negligible (see Appendix B). Subject to this assumption, Eqs. (41) and (40),
respectively, become

�ijðxÞ � �
1
ij þ

1
2

Z
V 0

G1
jk;liðy

0 � x0Þ þ G1
ik;ljðy

0 � x0Þ
n o

f½Cklmn�h�mnigdV 0

þ 1
2

Z
V 0

G2
jk;liðy

0 � x0Þ þ G2
ik;ljðy

0 � x0Þ
n o

f½Dklmn�hPm;nigdV 0,

PiðxÞ ¼ P1i þ

Z
V 0

G3
ki;lðy

0 � x0Þ½Dklmn�h�mnidV 0 þ

Z
V 0

G4
ki;lðy

0 � x0Þ½Bklmn�hPm;nidV 0.

ð42a2bÞ

Further, taking average values over V on both sides in these equations, we obtain

h�iji � �
1
ij þ

1
2

Z
V 0

G1
jk;liðy

0 � x0Þ þ G1
ik;ljðy

0 � x0Þ
n o

dV 0
� �

½Cklmn�h�mni

þ 1
2

Z
V 0

G2
jk;liðy

0 � x0Þ þ G2
ik;ljðy

0 � x0Þ
n o

dV 0
� �

½Dklmn�hPm;ni,

hPii ¼ P1i þ

Z
V 0

G3
ki;lðy

0 � x0ÞdV 0
� �

½Dklmn�h�mni

þ

Z
V 0

G4
ki;lðy

0 � x0ÞdV 0
� �

½Bklmn�hPm;ni. ð43a2bÞ

Further algebraic manipulations lead to following expressions in terms of the material
constants, potentials (Eqs. (17a–c)) and the average strains:

�ij

� �
� �1ij þ Oð1Þiklj þ

dikO
ð2Þ
lj þ djkO

ð2Þ
li

2
� Oð3Þiklj

( )* +
Cklmn½ � �mnh i, (44)
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where

Oð1Þiklj ¼ Að1Þf;iklj �
Bð1Þ

2
c;iklj þ Cð1ÞM1

;iklj þDð1ÞM2
;iklj,

Oð2Þlj ¼ Eð1Þf;lj þ F ð1ÞM3
;lj þ Gð1ÞM4

;lj ,

Oð3Þiklj ¼
Eð1Þ

2
c;iklj � F ð1Þl23 þ Gð1Þl24

� �
f;iklj þ F ð1Þl23M

3
;iklj þ Gð1Þl24M

4
;iklj

	 

and

Pih i � P1i þ Oð4Þkil þ dkiO
ð5Þ
l � Oð6Þkil

D E
Dklmn½ � �mnh i, (45)

where

Oð4Þkil ¼ Að2Þf;kil þ Cð2ÞM1
;kil þDð2ÞM2

;kil ,

Oð5Þl ¼ F ð2ÞM3
;l þ Gð2ÞM4

;l ,

Oð6Þkil ¼ F ð2Þl23M
3
;kil þ Gð2Þl24M

4
;kil

	 

� F ð2Þl23 þ Gð2Þl24
� �

f;kil .

Eq. (44) represents a system of six simultaneous algebraic equations in components of
/eS while Eq. (45) provides the three components of polarization field /PS.
Now, Eqs. (43a–b) involve integration over volume V0 of the transformed inclusion. Thus

the shape of the inhomogeneity has strong bearing over the polarization and strain fields. As
discussed in Section 3, separating the shape effect in the form of a characteristic shape function
ŵðqÞ the strain and polarization fields (Eqs. (43a–b)) in Fourier space becomed�ij

� �
� �1ij �

1
2

qlqi
cG1

jk þ qlqj
cG1

ik

	 
D E
½Cklmn�d�mnh ibw qð Þ,

dPih i � P1i þ iql
cG3

ki

	 
D E
½Dklmn�d�mnh ibw qð Þ. ð46a2bÞ

Substituting Eqs. (17a–c) in Eqs. (43a–b), we obtain the following analytical expressions
for strain and polarization

ceh i � I � dC 1ð Þ qð Þ
D E

C½ �bw qð Þ
	 
�1

e1

andcPh i � P1 þ
dC 2ð Þ qð Þ
D E

D½ �ceh ibw qð Þ. ð47a2bÞ

Here I is the fourth-order identity tensor and

dG 1ð Þ
iklj qð Þ ¼ qlqj �

Cð11Þqiqk

q2 þ l21q
4
�

2C 01ð Þ �1þ qiqk

� �
q4

þ
Cð12Þ � Cð22Þqiqk

q2 þ l22q
4

 !
, (48)

dG 2ð Þ
kil qð Þ ¼

iql qkqiC
ð21Þ 1þ l22q

2
� �

þ �1þ qkqi

� �
Cð22Þ 1þ l21q

2
� �� �

q2 1þ l21q
2

� �
1þ l22q

2
� � . (49)

Eqs. (47b) along with Eq. (47a) must be solved numerically using spectral method
(Trefethen, 2000) as described in Section 3. It is important to note that the unit cell used in the
numerical spectral calculations is periodic. The relative sizes of the inhomogeneity and the unit
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cell define the volume fraction of the composite (e.g. in Fig. 4b, ratio of volume of tetrahedron
((1
6
)abc) to volume of unit cell (d3) defines the volume fraction). Changing the inhomogeneity

size for the fixed size of unit-cell allows us to account for various volume fractions.

6. Numerical results

The homogenization scheme developed in the previous section is applied to the orthogonal
polyhedral shape inhomogeneity in Fig. 4b. Currently the availability of flexoelectric
properties for different materials is a major bottleneck. Askar et al. (1970) list the isotropic
material properties derived from a lattice dynamical model for alkali halides, in particular
NaCl and KCl. Obviously these materials are not the best choice for a composite system
however our purpose in this work is merely illustrative hence we will employ properties that
correspond to these materials with the caveat that in the future (once properties for other
dielectric solids have been determined) more practical systems will be investigated. In
principle all dielectric combinations will lead to similar qualitative results. Currently efforts
are in progress to evaluate flexoelectric material properties via quantum mechanical Berry
phase calculations for various technologically relevant dielectrics.

Numerically calculated values for the z-component of the polarization (normalized with
respect to quartz) for different volume fractions are shown in Fig. 7 as a function of the
inhomogeneity size. Inhomogeneity size is indicated by the dimension of one of the sides of
tetrahedron. As expected, the average polarization vanishes as the size of the
inhomogeneity is increased (corresponding to smaller and smaller strain gradients).

Qualitatively, the following can be inferred: assume that the volume fraction of the
second phase is negligibly small. Then, the average strain gradients will also be small and
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Fig. 7. The z-component of the polarization (normalized with respect to quartz) as a function of inclusion size for

a tetrahedral inhomogeneity depicted in Fig. (4b). Note that amongst the four different volume fractions

considered (2.0%, 4.0%, 10.0% and 15.84%), maximum polarization is observed for a volume fraction of 10%.
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one will obtain negligible overall piezoelectric behavior. Now consider the other extreme:
the volume fraction is very high. Once again, due to large fraction of one phase, strain state
will become increasingly homogeneous and overall electromechanical coupling will once
again be small. Thus it can be expected that the induced polarization be extremely small for
low concentrations of either of the constituents while it will increase and reach a maximum
at some intermediate volume fraction. This simple qualitative argument alludes to the fact
that for a given topology arrangement and material combination there exists an
‘‘optimum’’ volume fraction for which a maximal overall electromechanical coupling will
be observed. The effect of the volume fraction on the z-component of polarization is
explicitly shown in Fig. 8. We note that for the given inhomogeneity, the maximum
allowed volume fraction is 16.67%, at which the inhomogeneity edge is of the same length
as that of the matrix unit cell. This opens up the prospects for search of optimum size of
the inclusion and the optimum volume fraction of the composite.
Given the properties we have chosen—see Appendix A, due to low elastic and dielectric

contrast and relatively low flexoelectric coefficients a maximum of 10% of Quartz
polarization is achieved. Considering that solely non-piezoelectric materials are used, these
numbers are tantalizing and may be easily improved upon (and calculated using the
developed model in our paper) for other materials.

7. Conclusion and summary

In summary, the universal strain gradient—polarization coupling also known as
flexoelectricity—may be employed to create apparently piezoelectric nanocomposites
without using piezoelectric materials. Even for a rather poor choice of materials (due to
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Fig. 8. The z-component of the polarization (normalized with respect to quartz) as a function of volume fraction

of the composite with tetrahedral inhomogeneity of non-piezoelectric material in non-piezoelectric matrix.
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limited data availability) we find that close to 10% of Quartz electromechanical performance
can be obtained in the size regime of 4–5nm. We expect that future work will focus on
evaluation of the flexoelectric coefficients of various technologically relevant dielectrics and
consequently optimum design of a new class of piezoelectric meta-materials. Currently the
authors are attempting to use Berry-phase quantum mechanical approach to evaluate the
flexoelectric coefficients and will be reported in future publications. On the theoretical side,
there is a need for the further development of rigorous homogenization schemes for the new
classes of coupled electromechanical equations discussed in the present work.
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Appendix A

The coefficients C(ij) in the Green’s functions defined in Eqs. (13a–c) are:

Cð01Þ ¼
c44 þ c12

2c44 c12 þ 2c44ð Þ
; Cð02Þ ¼

1

2c44
; Cð11Þ ¼

d2
11

aþ ��10

� �
c211

,

Cð12Þ ¼
d2
44

ac244
; Cð21Þ ¼ �

d11

aþ ��10

� �
c11

; Cð21Þ ¼
d44

ac44
ðA:1Þ

while

Ia ¼
expð�R=laÞ � 1
� �

R
. (A.2)

In the above equation l1 and l2 are new length scale parameters which are defined in
terms of the material coefficients as

l21 ¼
b11 �

d11�f 11ð Þ
2

c11

aþ ��10

� � ; l22 ¼
b44 þ b77ð Þ �

d44�f 12ð Þ
2

c44

a
. (A.3)

Material Constants for NaCl and KCl are (Askar et al., 1971):

NaCl KCl

c12 1012 dyn
�
cm2 0.148 0.105

c44 0.149 0.105
D12 107 dyn�cm=C 0.470 0.392

D44 �0.170 �0.178
B12 104 dyn�cm4

�
C2 �1.6� 10�7 �25.6� 10�7

B44 0.344 0.600
B77 0.344 0.600
A 1019 dyn�cm2

�
C2 1.74 2.43

l21 10�16 cm2 0.527 0.873

c44 3.943 4.926
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and

c11 ¼ c12 þ 2c44; d11 ¼ d12 þ 2d44; b11 ¼ b12 þ 2b44.

Appendix B. Higher-order approximation for e(x0)

We assumed e(x0) and P(x0) to be constant within the inhomogeneity so that e(x0) ¼ /eS
and P(x0) ¼ /PS. This is the first-order approximation. A series expansion of the strain
field can be a better approximation. Let

�ij x
0ð Þ ¼ �ij

� �
þ �aijkx0k þ

�bijklx
0
kx0l þ � � � ,

Pi;j x
0ð Þ ¼ Pi;j

� �
þ paijkx0k þ

pbijklx
0
kx0l þ � � � , ðB:1Þ

where �aijk,
paijk,

�bijkl ,
pbijkl ;y are constants to be determined by solving following

algebraic equations: Choosing up to second term, we can write Eqs. (41) and (40),
respectively, as

�ijðxÞ � �
1
ij þ

1
2

Z
V 0

G1
jk;li y

0 � x0ð Þ þ G1
ik;lj y

0 � x0ð Þ

n o
Cklmn½ � �mnh i þ �aijkx0k

� �� �
dV 0

þ 1
2

Z
V 0

G2
jk;li y

0 � x0ð Þ þ G2
ik;lj y

0 � x0ð Þ

n o
Dklmn½ � Pm;n

� �
þ paijkx0k

� �� �
dV 0,

PiðxÞ � P1i þ

Z
V 0

G3
ki;l y

0 � x0ð Þ Dklmn½ � �mnh i þ �aijkx0k
� �

dV 0

þ

Z
V 0

G4
ki;l y

0 � x0ð Þ Bklmn½ � Pm;n

� �
þ paijkx0k

� �
dV 0. ðB:2Þ

The polarization field with this higher-order approximation can be calculated following
the same approach as described in Section 5. Our numerical analysis for the second-order
approximation shows that only a minor improvement is obtained for the given material
properties. This conclusion may change if the elastic or dielectric contrast is large.
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