
Entropic force between membranes reexamined
Pradeep Sharma1

Department of Mechanical Engineering and Department of Physics, University of Houston, Houston, TX 77204

L
ipid bilayers serve as model sur-
faces that are often used to un-
derstand the behavior of actual
cell membranes. Cell adhesion (1,

2), membrane fusion (1), binding-un-
binding transition (3), self-assembly, and
related phenomena govern an astounding
array of biological functions; for example,
sperm-egg fusion is the basis of mammalian
reproducion (1). These phenomena are
dictated by a complex interplay between
the various attractive and repulsive forces
that mediate between biological mem-
branes. The key role is played by a repulsive
force termed “steric hindrance,” or simply
entropic pressure, the origins of which lie
in the thermally excited fluctuations of
membranes. Nearly four decades ago, in
a landmark paper, Wolfgang Helfrich (4)
proposed both the concept and the quan-
titative nature of this force. Freund (5)
reexamines this paradigm in PNAS, and
finds that the entropic force is of a re-
markably different character than hith-
erto believed.
Ubiquitous van der Waals forces pro-

vide the weak attraction between bi-
ological surfaces; these vary as 1/c3 for
close separations and transition to 1/c6 at
larger distances (Fig. 1 A and B) (6, 7).
Here, c is the mean distance between the
interacting membranes. The notable as-
pect of the attractive force is that it is
long-ranged. A catch-all phrase, “hydra-
tion forces” (8), is used to denote the re-
pulsive force that becomes operative when
membranes are nearly touching each other;
this is quite short-ranged and drops off
exponentially with distance. The un-
derlying mechanisms of hydration forces
are still debated and a subject of active
research (9). A notable observation is that
both the van der Waals and hydration in-
teractions would be present even if mem-
branes were perfectly rigid. The origins of
a third interaction—the so-called “entropic
force”—is predicated on the fact that bi-
omembranes are (generally) quite flexible
and the energetic cost of elastic bending is
low enough that at room temperature, they
fluctuate and flap like flags in a strong wind.
A single membrane fluctuates freely. As
two membranes approach each other,
they hinder or diminish each other’s out-
of-plane fluctuations. This hindrance de-
creases the entropy and the ensuing overall
increase of the free-energy of the mem-
brane system, which depends on the in-
termembrane distance, leads to a repulsive
force that tends to push the membranes
apart. Stated differently, a finite external

pressure is required to maintain the mean
distance between the interacting mem-
branes. Helfrich (4), using a variety of
physical arguments and approximations,
postulated that the entropic force varies as
1/c3. In contrast to the other known re-
pulsive forces, this behavior is long-
ranged and competes with the van der
Waals attraction at all distances (6, 7,
10). Since Helfrich’s proposal (4), bio-
physicists have used the existence of this
repulsive force to explain and understand a
variety of phenomena related to membrane
interactions.
Although lipid bilayers and membranes

are microscopically quite complex, their
mechanical behavior (under numerous

physically relevant circumstances) can be
well-described by just a few continuum
parameters, such as bending modulus,
which sets the energy cost of bending the
membrane or an out-of-plane fluctuation.
Taking advantage of these parameters,
Freund (5), like Helfrich and many other
authors preceding him, treats membranes
as idealized elastic surfaces and uses clas-
sic statistical mechanics to infer the nature
of the entropic force caused by interaction

Fig. 1. (A) Depicts (with some artistic license) a very small patch of interacting and thermally fluctuating
lipid bilayers. The areal extent of a membrane at which a continuum analysis is valid is roughly 10–20 times
larger in scale than what is shown here. Even in absence of any fluctuations, membranes feel an attractive
long-range van der Waals force and a short-range exponentially decaying repulsive hydration force that is
attributed to the microscopic structure of lipid-water interface, although the exact physics underlying
this repulsion is still under debate (9). (B) The oft-used idealization that replaces the actual (micro-
scopically complex) membranes, as shown in A, by a pair or stack of interacting elastic sheets.
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with nearby surfaces. Freund’s analysis
concludes that across the range of in-
termembrane separations, the entropic
force varies as 1/c, a significant departure
from Helfrich’s conclusions (4) and those
of others (9). Freund’s work thus appears
to be unique in completing a mathematical
analysis of this phenomenon.
Despite four decades of work (9) that

more or less have found agreement with
the results of Helfrich, what leads
Freund (5) to this different conclusion?
Helfrich (4, 6) views the membrane as
consisting of many small elements that
fluctuate independently, not unlike how
atoms in an ideal gas behave. Drawing
further on this analogy and treating the
membrane as an ideal gas of valleys and
bumps, a pressure ∼1/c3 against the
confining medium can be extracted. There
are other assumptions buried in the various
arguments presented by Helfrich; for ex-
ample, (i) each independent fluctuating
element is considered to have an area that
is proportional to c2; (ii) recognizing that it
is difficult to handle the statistical me-
chanics of the point-wise hindrance condi-
tion, |h(x, y)| ≤ c, a weaker constraint is
used: 〈h2〉 ≤ c2. In other words, the hin-
drance is imposed on the average rather
than point-wise. Although the latter argu-
ment is a simplification designed to extract
analytical insights (a time-honored tradi-
tion), the notion that each element fluc-
tuates independently is rooted in the idea
that wavelengths below a certain value
are energetically very costly, and therefore
hardly affect the membrane interaction.
The assumption that the area of each in-
dependent fluctuating element is related to
the intermembrane distance is harder to
justify, something that Freund (5) aban-
dons from the outset.
It is precisely with the assumptions

mentioned above (and a few that I did not
articulate) where Freund (5) departs
from Helfrich (4). I have already in-
dicated that in Freund’s work the number

of elements making up the membrane are
considered to be completely unrelated to
intermembrane distance. In his analysis,
the elements that constitute the mem-
brane do not fluctuate independently;
rather, the elastic deformable membrane
responds in its entirety to the external
disturbances. Finally, rather than limiting
the root mean square fluctuation ampli-
tudes to lie below |c| in an average sense,
this constraint is imposed at every single
point of the membrane.
In Freund’s (5) analysis, each small

piece of the membrane can fluctuate up to
c, but it need not. The actual statistical
distribution of the fluctuation amplitudes
is determined by minimizing the free en-
ergy. The final outcome is a set of equa-
tions that must be numerically evaluated
but yield a rather simple asymptotic re-
lation (for c → 0), but that is seen to be
valid across a wide range of intersepara-
tion distance: f ∼ n2/c. Here, f is the re-
sultant entropic force and n2 can be
identified with the number of degrees-of-
freedom representing the system. If a rep-
resentative periodic membrane patch of
edge length L is considered, then n = L/λ
(i.e., it scales with membrane size). λ is
a normalizing length scale but with a
meaningful physical interpretation: this
is a length scale that is large compared
with molecular size, and therefore the use
of both a continuum analysis and classic
statistical mechanics is justified. A nota-
ble feature of this asymptotic result is that
the mean pressure f/n2 ∼1/c is in-
dependent of membrane size, which is
what we expect for periodic fluctuations.
As was initially pointed by Helfrich (4),

because of reflective symmetry, the prob-
lem of a pair of interacting membranes
may be replaced by a single membrane
confined between two rigid walls. One
may, however, consider a softer constraint,
for example, parabolic confinement instead
of the rigid walls (square confinement).
Freund has addressed this problem in

a prior work (11). Parabolic confinement is
easier to handle analytically, although care
must be taken to interpret what exactly is
meant by intermembrane distance. Freund’s
analysis of the softer confinement corrob-
orates his present calculations (5) and
provides some additional insights: in the
analysis of fluctuating and interacting
membranes, it is tempting to consider only
the lowest modes because shorter wave-
lengths are far less probable as a result of
their higher energetic cost. Freund (11)
finds that nature of the confinement
pressure strongly depends on inclusion
of higher modes.
Although a clichéd statement (which

does not make it any less true), the test of
any new theory comes from careful ex-
periments. However, experiments that
purport to isolate the entropic force are
easier said than done. Early on, some el-
egant synchrotron X-ray studies were done
by Safinya et al. (12, 13), who concluded
that Helfrich’s theory is qualitatively cor-
rect. Another notable experimental work is
that of Richetti et al. (14). Freund suggests
that in the range of intermembrane dis-
tances examined in some of the aforemen-
tioned experiments, the distinction
between 1/c and 1/c3 lies within the error
bars. Freund’s thought-provoking re-
examination of the widely studied entropic
force between membranes will hopefully
encourage design of further experimental
work that will probe his specific assertions.
What are the physical implications of the
unique force-law proposed by Freund?
I expect the quest for an answer to this
question to be an interesting avenue for
future research in membrane physics.
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