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Abstract: Existing notions of stress in a quantum mechanical framework are reviewed and discussed in a semitutorial manner suitable
for a mechanics audience. Notwithstanding early fundamental work in this area since the 1930s, the increasing availability of computa-
tional tools to perform ab initio quantum mechanical calculations with high accuracy and efficacy has renewed interest in this field

especially in the context of computational mechanics and materials science. Although some unresolved issues remain, the subject has
evolved considerably in the past two decades with various authors offering their own unique viewpoint. In the present paper, we
summarize the debate over the “definition” of stress in a quantum mechanical setting and discuss some controversial issues such as the

uniqueness of the stress.
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Introduction

The stress field in condensed matter is a distribution of internal
tractions to balance the applied external tractions and body forces
(Kosevich et al. 1986; Nye 2001; Sommerfeld 1950; Wilson
1957). Under the conditions of a homogeneous stress field within
a large macroscopic volume, the stress can be related to internal
variables such as density, temperature, and internal energy to
complete the equation of state (Wilson 1957). The stress field
which develops in response to applied deformation provides an
important link between the physical material properties and the
underlying microstructure. Deeper physical insights into a broad
range of phenomena including surface reconstructions, physics
at interfaces in solids, piezoelectricity, chemical reactivity, phase
transitions, phonon dispersion, band gap-strain coupling (in
semiconductors), defect energetics, phase transformations,
strain induced phonon splitting, and many others entail an inti-
mate knowledge of how the material will respond to deforma-
tion (Ibach 1997; Needs and Godfrey 1987; Needs et al. 1991;
Fiorentini et al. 1993; Bach et al. 1997; Filippetti and Fiorentini
1999; Alerhand et al. 1988; Narasimham and Vanderbilt 1992;
Mottet et al. 1992; Meunier et al. 1999; Meade and Vanderbilt
1989; Mavrikakis et al. 1998). A description of the stress in-
volving electronic contributions therefore has to proceed in a
quantum mechanical fashion. In this paper, we examine the exist-
ing literature that provides a quantum-mechanical footing to the
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well-known stress tensor of classical elasticity. Hereafter, we will
use the terms “quantum stress” or “‘quantum mechanical stress” to
denote the stress in a quantum mechanical framework.

There are several essentially equivalent ways to introduce the
concept of stress in continuum mechanics. Consider a region of
space () occupied by material points, loaded with a body force b.
The changes in the stored strain energy must depend upon the
displacement vector. The invariance of the elastic energy to rigid
translations, i.e., T(3) group and rigid rotations SO(3) group, re-
strict the elastic energy to be solely a function of the symmetric
part of the deformation gradients and (if needed) higher order
derivatives of the displacement fields. If further, linearity is as-
sumed, then the elastic energy may be written as

Wlu] = 3(e|Cle) (1)

Here e=symmetric infinitesimal strain tensor defined as
e=sym(Vu); C=the fourth-order elasticity tensor that param-
etrizes the changes in elastic energy due to deformation and
must be either obtained from microscopic (i.e., quantum) calcu-
lations or empirically. Given the explicit and implicit postulates
in Eq. (1), the remainder of classical linear elasticity immediately
follows from the standard variational approach for deriving field
theoretic equations. Stress in particular, which characterizes the
resistance to mechanical deformation, then follows as

o =Cle) (2)

Euler-Lagrange equations of the functional in Eq. (1) (or more
physically, balance of momentum) yield the connection between
stress and body forces:

dive+b=0 (3)

Investigations into the quantum mechanical definition of
stress were well preceded by early fundamental work on the con-
cept of quantum mechanical force (Ehrenfest 1927; Pauli 1958;
Hellman 1937; Feynman 1939a,b) and pressure (Born et al. 1926;
Finkelstein 1928; Hylleraas 1929; Fock 1930; Slater 1933, 1963,
1967). Ehrenfest’s theorem (Ehrenfest 1927), which states that the
net force on a particle is given by the expectation value of the
negative of the gradient of the potential, is such an example. We
will discuss Ehrenfest’s theorem in more detail shortly. Pauli,



Hellmann, and Feynman (Pauli 1958; Hellman 1937; Feynman
1939a,b) modified Ehrenfest’s theorem to a form appropriate
for application to forces between molecules. The consequences
of the so-called “Hellmann-Feynman” theorem are significant.
Previously, forces within molecules and associated problems in-
volving the estimation of lattice constants, calculations of phase
transitions, elastic properties, phonon dispersion, stiffness of va-
lence bonds, and others were addressed invoking the energy
formalism in an indirect manner. These usually involve calcula-
tions of energy for several neighboring configurations of the
molecule; the force is then obtained by determining the slope
of the plot of energy versus position. The Hellmann-Feynman
theorem offers a direct way to estimate the force for a given
configuration, given that only the particular configuration of in-
terest is known. The quantum mechanical virial theorem, which
states that the total pressure in a many-body quantum mechanical
system is defined by the kinetic energy and the virial of the
potential (much like its classical counterpart), also attracted atten-
tion from authors including Born, Heisenberg, and Jordan, Fock,
and several others (Born et al. 1926; Finkelstein 1928; Hylleraas
1929; Fock 1930; Slater 1933, 1963, 1967; Ross 1969). Though
several early works of varying levels of sophistication have
considered the quantum mechanical stress tensor (Pauli 1958;
Feynman 1939a,b; Schrodinger 1927; Martin and Schwinger
1959; Kugler 1967; McLellan 1974, 1984; Folland 1981), we will
mostly focus on Nielsen and Martin’s (1983, 1985a) work on the
quantum mechanical formulation of the stress tensor and subse-
quent works (Folland 1986; Ziesche and Lehmann 1987; Ziesche
et al. 1988; Godfrey 1988; Chetty and Martin 1992; Feibelman
1994; Dal Corso and Resta 1994; Passerone et al. 1999; Filippetti
and Fiorentini 2000; Pendas 2002; Rogers and Rappe 2002) that
can be considered to be offshoots or extensions of the latter. The
analysis of the local behavior of stress, i.e., a field theoretic de-
scription of the quantum mechanical stress, has been subject to
different interpretations though a general consensus seems to exist
amongst various authors as regards the macroscopic or the total
stress tensor. A related problem is the nonuniqueness of the quan-
tum mechanical stress field; indeed this issue exists in classical
mechanics too but is addressed by invoking a phenomenological
constitutive relation between stress and strain [see Egs. (1) and
(2)]. More recently, Rogers and Rappe (2002) have offered a dif-
ferential geometric formulation of the stress tensor.

The rest of this paper is organized as follows. In the second
section we recapitulate the essentials of quantum dynamics pri-
marily intended for a mechanics audience. The writers assume
throughout that the reader has at least a cursory acquaintance with
quantum mechanics and the section is simply purported to serve
as a rather pedestrian refresher. The Ehrenfest theorem is also
discussed in this section. Then we provide, intermixed with a
literature review, a discussion on the quantum definition of stress.
We conclude with a summary where we also present a personal
viewpoint on some future research avenues in this research topic.

Preliminaries

Summary of Quantum Mechanics Essentials

Quantum mechanics is presently the ab initio physical theory
which describes the motion and interaction of particles at “very
small” scales and forms the principal framework for many mod-
ern day subfields of physics, chemistry, and materials science.
Quantum mechanics, as a theory, has stood the test of time and a

century’s worth of experiments has only served the cause that
quantum mechanics is indeed the correct theory of matter. Quan-
tum mechanics, however, is known to be in direct conflict with
the predictions of general relativity when one applies it to regions
in the vicinity of black holes or when one considers the universe
as a whole. Unifying quantum mechanics and general relativity is
one of the major challenges of today but not of much conse-
quence in the present context. A striking feature of quantum
mechanics is that it denies the possibility of simultaneously as-

signing exact values to both the position and momentum of a

particle in clear contrast to the deterministic classical (Newton-

ian) physics. This is the consequence of the celebrated Heisen-
berg’s uncertainty principle. Thus, quantum behavior is inherently
probabilistic often accounting for its nonintuitive (from the clas-
sical viewpoint) predictions.

The principal postulates of quantum mechanics are the follow-

ing (Greiner 1994; Griffiths 1994):

1. The state of a particle is characterized by a complex scalar
quantity called the wave function, often represented as
W(r,t). This wave function contains all such information
about the quantum mechanical system such that, in principle,
any measurable quantity (referred to as a physical observ-
able) can be extracted from it.

2. The second postulate concerns the probabilistic or statistical
interpretation of quantum mechanics. For example, if the
wave function is expressed in terms of position then the
square of the magnitude of the wave function is the probabil-
ity density of particle’s position.

3. The third postulate states that the result of a measurement on
a system yields only those values which are the eigenvalues
of the operator corresponding to that observable. The eigen-
functions corresponding to that operator form a complete set.
In other words, one can describe any state of the system by a
combination of either position eigenfunctions or momentum
eigenfunctions or energy eigenfunctions. To relate a quantum
mechanical calculation to a measurable/observable, the ex-
pectation value of the corresponding observable is calcu-
lated. The expectation value of an operator is the average of
its eigenvalues weighted with the corresponding probabili-
ties. In other words, the expectation value of an operator
yields the average of an infinite number of measurements of
the observable corresponding to the operator. In particular,

the expectation value of an operator A is defined as

A= f VAV (4)
|4

In general the wave function W=complex scalar and " de-
notes the complex conjugate of W. Note that the expectation
value given by Eq. (4) itself need not be equal to a single
measurement (eigenvalues), e.g., the centroid of a ring
(which is empty space) is the average position of all the
material points that constitute the ring.

4. The fourth postulate states that the time evolution of the
wave function W(r,?) is described by the time-dependent
Schrodinger’s equation

9 h?
ih—V(r,1) =— —V2W(r,0) + V(r,))¥(r,1) (5)
ot 2m

Schrodinger’s equation is frequently written as
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%‘If(r,t) _ %Ifl‘lf(r,t) ©6)

The operator H=Hamiltonian

A h?
H=——V?+V (7)
2m

In analogy with classical physics, the first term on the right-
hand side of Eq. (7) represents the kinetic energy of the system
and thus classical notions such as momentum, energy, and others
are represented by operators, e.g., momentum corresponds to
p=ihV. The expectation value of the momentum of a quantum
mechanical system simply entails application of Eq. (4).

An alternative but equivalent approach to describing quantum
mechanics is due to Heisenberg. Implicit to Schrédinger’s scheme
is the notion that the state functions evolve with time while
the operators, representing the dynamical variables of the sys-
tem, do not change with time (unless they contain some specific
time-dependence). In the Heisenberg description, the situation is
reversed: whereas the wave functions are time-independent,
the dynamical evolution is described by time-dependent opera-

tors. An operator L in the Schrodinger picture is transformed

into the Heisenberg picture to Ly(f) by a unitary time-dependent
transformation

Lyy(1) = ST(DLS(1) (8)

The operator S(t) is
$() = exp(— ém) )

Thus, the dynamical variable, which corresponds to a fixed linear
operator in Schrodinger’s scheme, is a moving linear operator in
Heisenberg’s equations of motion.

The equation of motion then becomes

ik di’H(t)

= Ly()Hy ~ HuL (1) (10)
Eq. (10) can be rewritten as

dl:H([)
dt

i~ .
=- g[LH(t),HH] (11)
Here the Poisson bracket [L,(1),H,] is defined as
[iH([)sI:IH] :iH(t)I:IH_I:IHiH(Z) (12)

Ehrenfest’s Theorem

Heisenberg’s equation of motion for the momentum operator
yields

dp, 1 aV(x)
— =—[p,H]= 13
5 [p, H]= o, (13)
Also we have
dx; p
—=— ,H == 14
e, =T (14)

Applying Heisenberg’s equations of motion once again to
Eq. (14), we obtain
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d*%, 1| dx; - 1] p 1 dp; 1 oV(x)
—t=—|—.H H|=—"=——"7"= (15
dr’ lﬁ|: ] lﬁ[ ] m dt m ox; (13)

In vectorial form a more elegant form emerges

d” df)
—=—=-VV(x 16
moE= s (x) (16)
The resemblance of Eq. (16) to Newton’s second law is obvi-
ous. Taking expectation values of both sides of Eq. (16) with
respect to a Heisenberg state function (which does not move with
time) we obtain the so-called Ehrenfest’s theorem (Ehrenfest
1927)

&) dp)
= =—«(VV 17
m— g ==, =~ {VVx) (17)
Strikingly, Eq. (17) has no dependence upon # and appears iden-
tical to the equation of motion of a classical particle in a potential
field. Thus, Ehrenfest’s theorem serves as an important step in
bridging classical and quantum mechanics.

Stress in Quantum Mechanics

Stress Theorem: Average Macroscopic Stress

The so-called “stress theorem” (Nielsen and Martin 1983, 1985a)
provides the average macroscopic stress for arbitrary systems of
interacting particles in the ground state. This average stress is in
fact an energy-like quantity which can be obtained by taking a
volume integral of the microscopic locally varying stress field.
The generalized quantum-mechanical virial theorem (Fock 1930)
appears to motivate the form of the average stress tensor in the
stress theorem derived by Nielsen and Martin (NM) (1983b,
1985a). As we shall observe shortly, NM’s stress theorem is but a
generalization of the quantum mechanical virial theorem.

NM’s derivation of the Stress theorem essentially follows the
same scaling argument that Fock (1930) proposed in his work on
the quantum mechanical virial theorem. Consider the following
many-body quantum mechanical Hamiltonian:

E ~ + Vine+ Vext (18)

where p,=momentum of the ith particle (i can represent
both nuclei and electrons). Please note that henceforth we will
refrain from using the caret to denote operators. For example,

the operator H will be simply written as H. While in most places
the distinction between an operator and the corresponding expec-
tation value can be made based on context, we will explicitly
mention the distinction if a potential for confusion exists. The
internal part of the potential energy denoted by V,, is intrinsic
to the system (say Coulombic interaction between particles)
while V., arises due to external influences. Out of the several
eigenstates W obtained by solving the Schrddinger’s equation,
HVY=EW, the ground state is obtained by determining a minimum
of the expectation value of the energy (W|H|W), with respect to
all the variations of W. All the observables pertain to this ground
state.

To introduce the notion of stress, the wave function W(r) in its
ground state is homogeneously scaled by means of the following
transformation on each material coordinate



r—r+er (19)

where r represents the particle coordinate and &=symmetric
strain tensor.
The scaled wave function then assumes the following form

W, (r) =det(I+ &) "> (T +¢)'r) (20)

Here I=identity tensor. The additional factor of det(I+€)~"? in
Eq. (20) is included to ensure that the new scaled wave function is
normalizable. The expectation value of the energy is

2_2¢e-(p; ) 2 (. .
(W |HW,) = J «y*m["l 2 (Pz@’;’ife (p;® P)

1

+ Vin((1+€)r) + Ve (1 + 8)l‘)]‘l’(l‘)dl‘ 21

This energy is required to be stationary with respect to variations
of applied strain, i.e.

E<«P

i

p; ® p;

i

-V (th+ Vem) Qr; \P> =0 (22)

Based on Eq. (22), NM (1985a) identify the stress exerted by the
external environment as

T=- 2 (V[V(Ve) @ 1| V) (23)

The internal stress, which develops in response, is identified as
T =Ty + Tpor (24)

where Ty, and T,,=kinetic and potential contributions, re-
spectively, to the total stress. From Eq. (22), their forms can be
inferred to be

,\I,>

= 2 (P|V,(Vip) ® 1| P)

Tkin=_2<w‘w

i m;

(25)

The averaged internal stress T in Eq. (25) is the fotal macroscopic
stress expressed only in terms of operators intrinsic to the system.
Eq. (25) is one form of the stress theorem.

When V,,,=simple pair potential (say, a Coulombic interac-
tion) of the form

), JFEIL (26)

mt E th(|r

then Eq. (25) becomes
"lj\>

T:—E<\P
(r; ® (r;

_.;Lv|

s <\1f e

2 ij i j|

P ®p;

m;

\If> (27)

The stress tensor of Eq. (27) is symmetric. The macroscopic
“stresses” in Egs. (23) and (25) have dimensions of energy,
thereby if the volume of the system () is well defined (for ex-
ample, a unit cell of a crystal), then it is typical to employ an
average stress density. The average stress density 7 (which has
the dimensions of stress or pressure as used in continuum elastic-
ity) is defined by =T/ to represent the state of stress. The

pressure, P, then is derived straightforwardly by taking the trace
of both sides of Eq. (27)

(Wp?w) 1 , o
3PQ=22 ————— = D2 (¥, — |V - D[W), (j#i)
i Zmi 2 i

(28)

An interesting aspect of Eq. (28) pointed out by NM (1985a)
is that if all the interactions obey the power law of the
form V; (x) x7", then the familiar form of the virial theorem
3PQ= 2Ekm+E ) follows

pot

PlpiWw) 1
3PQ) = 22 % - EE (q,|vij(|ri_ rj|)|q,>7 (#1)

(29)

Quantum Mechanical Stress and Force Fields

Thus far we have considered the average “macroscopic” stress
(stress theorem) and the average macroscopic force (Ehrenfest/
Hellmann-Feynman theorem) acting upon a system of particles.
However, these treatments do not bring about the field nature
of stress and force. In other words, the point-to-point spatial
variation of the stress and force fields is (obviously) lost in the
process of averaging over a macroscopic volume. If one, how-
ever, knows the spatially varying stress field, the ramifications
can be important. Spatial variations in the “planar stress” can
provide an insight into the forces operating in systems which are
not in equilibrium (NM 1985a).Filippetti and Fiorentini (1999,
2000) envision using the microscopic stress as what they refer to
as a “stress microscope” to examine the microscopic stress’s role
in explaining the physics of certain surface and interface phenom-
ena. Ramer et al. (1998) applied the microscopic stress field to
study piezoelectric effects in perovskites. While the local force
field is uniquely specified in terms of kinetic and potential opera-
tors (Pauli 1958), the stress field, on the other hand, can only be
specified to an arbitrary gauge term (explained shortly) (Feynman
1939a,b). Traditionally, the stress field o(r) is defined as any
two-tensor field whose divergence yields the force field of the
system

f(r) = div o(r) (30)

To this stress field o;(r) one can add a term of the form

1%
—Aj(r 31
19rk l_]k( ) ( )
where A;;(r)=arbitrary tensor field antisymmetric in j and k and

recover the same force field of Eq. (30). Thus, the stress field is
undetermined to an arbitrary gauge term if one chooses to define
it via Eq. (30). In particular, consider the curl of an arbitrary
two-tensor H(r)

JH(r)

(VX H(r)); =€ or,

(32)
€;;x=well-known Levi-Civita symbol. The term on the right-hand
side of Eq. (32) has the same properties as those required of the
term in Eq. (31). Thereby we conclude that one can add the curl
of an arbitrary dyadic field to the stress field of Eq. (30) and still
recover the same force field. This is the gauge-arbitrariness asso-
ciated with the microscopic stress field.
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NM (1985a) approach the microscopic stress tensor (MST)
by invoking Heisenberg’s equation of motion of the symmetrized
momentum density operator. The symmetrized momentum den-

ITx)

sity operator for a particle “i” is defined as

1
P;= E[Pivs(r -r)l, (33)

The notation [ ], denotes the anticommutator operator and
r=spatial coordinate. (Given two operators A and B, the anticom-
mutator operator [A, B], is defined as [A,B],=AB+BA.) The time
derivative of P;(r) is identified as the force-density operator on
particle i and NM (1985a) provide the following equation of mo-
tion for it

P, 1
a  ih

[PicH)== 7| pio S [ Vool - 1)),
m; 5

- Via(vint + Vext)S(r - ri) (34)

The equation of motion for P, Eq. (34), is a continuity equa-
tion where the momentum flux density operator has the properties
of a stress tensor operator.

The net force acting on particle i is then obtained by integrat-
ing Eq. (34) over space. The integrals of derivatives of wave
functions, which occur on integrating the kinetic energy term (the
first term on the right-hand side, representing the motion of the
particles), can be expressed in terms of functions and derivatives
of wave functions at infinity, which are zero by definition. There-
fore the kinetic energy term, on integration, yields zero for a finite
system. On integrating both sides of Eq. (34) all over space, NM
(1985a) obtain

op; _ 1

s i_h[pi’H] == VilVin + Veu) (35)
On taking expectation values of both sides of Eq. (35) for a sta-
tionary system, (dp;/dt) becomes zero and yields Ehrenfest’s
theorem

Fi=- (ViVim> (36)

F=internal force, which is canceled exactly by the external force
and F; .. .=—(V,V,, acting on particle i.

The MST o(r) can now be defined such that its divergence
results in the vector force density field. The internal stress field
developed due to internal interactions and motion of particles (in
response to external forces) then follows

V. ()'(l‘) = <2 %I:l + ViVexta(r - I.i)> (37)

i

The stress field given by Eq. (37) can be determined only unto the
inclusion of the curl of an arbitrary tensor field. Thus, the stress
field is not uniquely defined. The macroscopic stress tensor is
unaltered by the addition of this arbitrary curl tensor as the curl
term integrates to zero when Eq. (37) is integrated over all space
for finite systems, for periodic systems, and for integrals over
infinite planes. NM (1985a) believe that microscopic stress fields
in quantum theory are not physical observables, and thus one
cannot uniquely specify exact expressions for the dynamical op-
erators which correspond to the microscopic stress o(r). The
physically observable macroscopic stresses T, on the other hand,
are unaffected by the addition of this arbitrary curl. However, this
viewpoint is not shared by all authors and some controversy
exists regarding the issue of quantum stress uniqueness. Folland
(Folland 1986; NM 1988), for example, claims that since the
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MST features in a continuity-like equation for the force-density,
MSTs can be viewed as physical observables and thereby should
be unique.

If the nonuniqueness or gauge arbitrariness of the MST is
accepted then the gauge arbitrariness, in principle, allows one
to choose a stress field according to a specific situation/problem
(as convenient). Kugler (1967) proposed a form for the micro-
scopic stress tensor satisfying Eq. (37) which applies for arbitrary
interactions V. Kugler’s form of stress (added to the kinetic
contribution) is given in the following:

1
Uaﬁ(r) == 2 M([piw [piB’S(r - ri)]+]+>

1
+ 2 E<Viu(vint)v[3(|r - ri|7l)> (38)

The first term on the right-hand side representing the kinetic
contribution is due to Pauli (1958). This term, being symmetric,
does not contribute to the torque density, which is generated by
the antisymmetric part of the stress. The kinetic term contains
both a gradient term and a curl term; the curl term does not
contribute to the force density (being the divergence of the stress
tensor). The second term on the right-hand side of Eq. (38), which
denotes the potential stress, has no curl term but is asymmetric
and therefore may contribute to the torque density.

As also noted by other, Kugler’s stress definition contains
some objectionable features. Even if the interactions defined by
Vine are short-ranged, the curl-free nature of the potential term
renders the Kugler stress inherently long-range and thus nonlocal.
In particular, the long-range character of the Kugler stress derives
from the term V(lr-r]™)=(r-r;)/|r—r/>. The Kugler stress
corresponding to the interaction between two particles A and B
can be visualized as a radial flow of momentum from A to infinity,
superimposed on a radial flow from infinity to B. This makes it
possible to assign a distribution of sources at infinity which need
not bear any relation to the actual physical sources. The issue
of the long-range character of the Kugler stress may be partially
circumvented by computing stress by summing over pairs of
interacting particles thereby resulting in a dipole-like long-range
distance dependence of the form ~1/7°. Note that this form
of stress field is still long-range albeit of a somewhat weaker
form than the original form. When the interaction is Coulombic,
the Kugler’s form of stress results in severe anomalies and a
different form of the stress tensor called the Maxwell form
(Feynman 1939a,b; Jackson 1999) is employed. The latter is ap-
plicable for particles interacting via Coulombic forces. In the
static limit (in the absence of magnetic effects), Maxwell’s stress
field is given as

1 1

o) =- 4—<E(r) ® E(r) - —I|E(r)2> (39)
a 2

The operator E(r) is the electric field due to charges Z; with

positions r; according to

(r-r)
r— l'i|3

E(r) =27 (40)

Of course one has to add the kinetic contribution [given by
the first term on the right-hand side of Eq. (38)] to the stress field
of Eq. (39). The Maxwell form of stress is symmetric and is bereft
of the long-range character that plagues the Kugler’s form. NM
(1985a) illuminate this point by considering the example of a
hydrogen atom and an ion, H* and H. In particular, for the H



atom, the long-range behavior of the Maxwell stress is found to
be particularly agreeable in comparison to the Kugler’s form.
Whereas Kugler’s stress decays only as = (which is rather un-
physical), the Maxwell’s stress exhibits an #¢ dependence which
bears the expected resemblance to the van der Waal forces for
neutral atoms. NM also point out an important caveat while em-
ploying Kugler’s form for the stress field near a surface or an
interface. The Kugler stress decays slowly away from the plane of
a surface or an interface; since the Kugler’s stress is not explicitly
given in terms of relative coordinates, it is ill-defined in the limit
of an infinite plane. This characteristic nonlocality is a major
pitfall while applying the Kugler’s form of stress in the vicinity of
surfaces and interfaces. Godfrey (1988) has proposed a form of
stress which, analogous to the Kugler’s form of stress, holds for
arbitrary interactions but is devoid of the long-ranged character.
The total force on all the particles in a volume () can be
expressed as a surface integral of the microscopic stress field over
the surface S bounding (). Thus from Eq. (30), the total force is

Fou= | 2 04p(r)iigds (41)
S B

where F=total force acting on all particles in volume (), o (r)
is the microscopic stress field, and i is the normal unit vector at
the surface. The kinetic term of Eq. (41) involves only the deriva-
tives of the wave function on the surface and the potential term
involves only the evaluation of forces on particles inside the
closed surface S, since the integral of fi-V|r—r,|"'/4m is unity
if r; is inside the surface, and zero if r; is outside. Employing
the Kugler’s form of stress, the expression for total force from
Eq. (41) reads

L f ([Preolpi- 8,80 = 1)11,)dS = 2 (Ve Vi)
i tJs i

(42)

The subscript {) on the final term indicates that the summation is
restricted to particles inside the volume (). The interactions be-
tween particles that are entirely inside or entirely outside the sur-
face do not contribute to the total force on particles inside the
volume ) NM (1985a). Therefore the final term of Eq. (42) can
be determined simply by considering interactions that cross the
boundary S.

Eq. (42) is particularly advantageous when one tries to evalu-
ate the force F,, when the surface is chosen such that it does
not pass through any ion core. One just needs to consider the
kinetic terms at the boundary, which involve only the valence-
electron states. To this one adds the potential terms crossing
the boundary. The potential forces from the nuclei can be com-
bined with those from the core electrons in case of spherical ion
cores, to result in an electrostatic field of point ions with charge
Zion=Zucleus— Zeore- Further, while evaluating the force, one need
not consider the complex node structure that the valence electron
wave functions possess in the core region, because the crossing
potential terms only require the total valence charge in the core
region. On the other hand, one needs to take into consideration
the core states while evaluating the total force and stress using
the volume integrals of Egs. (25) and (27). Also, when the effect
of the core electrons is replaced by a nonlocal pseudopotential,
the evaluation of nonlocal terms can be avoided if one computes
the forces and stresses using a surface sufficiently far away from
the core region where the effect of the nonlocal corrections is
negligible.

To introduce an alternate route to the macroscopic stress tensor
through the MST, NM (1985a) consider an infinite surface which
divides the entire space into two infinite regions. If one of the
regions is denoted as () then Eq. (42) will yield the net force that
the remainder of the space exerts on () in the a-direction. In
particular, assume an infinite plane Py, perpendicular to the
B-axis and intersecting the B-axis at rg, as the partitioning sur-
face. Then Eq. (42) provides a “planar stress” S,g(rg) which rep-
resents the force in the o direction transmitted across Pg

1
SaB(rB) =- E Ed:piw[piﬁ’a(r - riB)]+]+>

- E <Viot(vim)% Sgn(’"s - ”is)> (43)

Note that the planar stress is a function of ry (and not the
vector r) and thus is a constant over the surface Pg. The familiar
macroscopic stress tensor is obtained by integrating the planar
stress S,p(rg) With respect to rg. When the solid is in equilibrium
then o ,4(r) has zero divergence, which renders S,4(r) a constant
tensor. An interesting application suggested by NM (1985a) is
that if some atoms are not in their equilibrium positions, the
variations in the planar stress can provide knowledge of the forces
involved.

Density Functional Approach: Kohn-Sham Method

The expressions for the stress tensors in preceding sections ap-
pear reasonably facile at a casual glance but in fact conceal a
full many-body quantum mechanical problem in the form of
correlation functions which appear in the potential contribu-
tions. The density functional theory (DFT) (Hohenberg and Kohn
1964; Kohn and Sham 1965; Sham and Kohn 1966; Jones and
Gunnarsson 1989; Bamzai and Deb 1981) originally proposed by
Hohenberg and Kohn (1964) provides a viable computational ap-
proach to implement the quantum stress formalism. DFT also
provides a prescription to map the many-body problem onto a
single-body problem [Kohn-Sham approach (Kohn and Sham
1965)]. These simplifications are achieved by touting the single
particle density p(r) to the status of the crucial observable. This is
justified on the basis of the Hohenberg-Kohn theorem (Hohenberg
and Kohn 1964) which states that: for both nondegenerate and
degenerate ground states of many-electron systems, the energy is
a unique functional of the single particle density. Given the
ground state density, it is possible in principle to calculate the
corresponding ground state wave function. The simplification
that results is unprecedented: (1) the single particle density is a
function of only one (vectorial) variable unlike the wave function
which is a function of N variables, N being the number of
particles in the system; (2) the single particle density can be re-
lated to classical concepts; and (3) the single particle density can
be measured directly from experiments. Even for excited states,
the single particle density can be exploited to yield extensive
information about the state. Within the general umbrella of the
DFT concept, variations of different sophistication exist mostly
differentiated by how the exchange-correlation functional is
handled (to be discussed shortly). Several authors (Nielsen and
Martin 1985a; Folland 1986; Ziesche et al. 1988; Godfrey 1988;
Filippetti and Fiorentini 2000; Rogers and Rappe 2002) have em-
ployed DFT to investigate quantum stresses and have provided
expressions for the form of the stress tensor (both macroscopic
and microscopic) under its formalism.
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The Kohn-Sham method (Kohn and Sham 1965) is one of
the most popular approaches to DFT. Under the Kohn-Sham
formalism, DFT becomes an effective “single-body” theory.
Interestingly, one does not (explicitly) deal with the particle den-
sity p(r) in the Kohn-Sham approach! Rather, noninteracting
single-particle wave functions are introduced. Remember that the
extraordinary simplification that results from DFT is due to the
fact that one need not deal with wave functions any longer. How-
ever, the wave functions that feature in the Kohn-Sham approach
are special in that they are noninteracting, single-particle wave
functions.

Assuming the nuclei positions to be fixed, the total energy E
under the Kohn-Sham formalism can be written as

E =Txs + Ecoulomb + Exc (44)

where Tyxg=Kohn-Sham kinetic energy of a noninteracting
electron system (i.e., an electron gas). Ecguomn=Cclassical
Coulomb interaction energy, which can be split into ion-ion, ion-
electron, and electron-electron (Hartree part), respectively; and
Exc=exchange-correlation energy as a functional of the elec-
tronic charge density. NM (1985a) prefer to add the Kohn-Sham
kinetic energy Tks and the exchange-correlation energy Exc to-
gether and write is as a functional F[p]. This is justified on the
basis of the Hohenberg-Kohn theorem (Hohenberg and Kohn
1964).
The energy can now be written as

E= Eion—ion + Eion—eleclron + EHartree + F(P) (45)

where E, ;,,=Coulombic interaction energy between ions.
The electrostatic interaction between ions and electrons is

given by Eion-electron

Eion-electron = f P(T)E Vion-eleclron(r - Ri)d3r (46)

where Vi elecron(r—R;) =ion-electron potential and p(r)=elec-
tronic charge density. The Hartree term FEjyj,q.., represents the
self-interaction amongst the electrons and is given by

p(r)p(r ,
EHarlree ff |I'— d3 da (47)
The functional F[p] is

p2
F[P]=E \I’i‘zl
; m

i

\Pi> + Exclp] (48)
The electronic density p(r) is given by
p(r) =2 ¥ (49)

The single-orbital wave functions W; arise out of the Kohn-
Sham scheme. In particular, the many-body electronic system in
a potential v(r) is replaced by a noninteracting single-body sys-
tem in an auxiliary potential say v, (r); the corresponding
Schrodinger’s equation is solved to yield the single-particle wave
functions ;. The potential vy(r) is such that the orbitals W;
reproduce the density p(r) of the original system according to
Eq. (47).

On a related note, the diverging nature of the terms containing
Coulombic interactions in Eq. (45) is taken care of by adding
neutralizing background charge densities and treated by means of
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the Ewald transformation (Fuchs 1935). The contribution to stress
due to Coulombic interactions is most conveniently represented
by the Maxwell stress tensor.

Though the decomposition shown in Eq. (45) is formally
exact, the exact form of the exchange and correlation functionals
Exclp] is unknown. To overcome this problem, recourse is often
sought in some approximations, a common choice of which is the
local density approximation (LDA) (Hohenberg and Kohn 1964,
Kohn and Sham 1965; Sham and Kohn 1966; Moruzzi et al.
1978; Liberman 1974; Pettifor 1976a,b; Averill and Painter
1981). The LDA poses the following scenario: Each point in a
solid is associated with an electron density; an electron at such a
point experiences the same force by the surrounding electrons as
if the density of the surrounding electrons had the same value
throughout the entire space as at the point of the reference elec-
tron. [Clearly, any real system has a spatially varying electron
density. The gradient expansion approximations and the general-
ized gradient approximations incorporate gradient corrections in
order to include the effect of the spatial variation of the electron
density and hence are “usually” more accurate than the LDA
(Dreizler and Cross 1990; Parr and Yang 1989; Perdew and Yang
1986; Perdew et al. 1996)]. In LDA, F[p] may be written as a
functional of the charge density, e.g., under the Thomas-Fermi
scheme, and the evaluation of its contribution to the stress tensor
can proceed in an analytical fashion (but at the cost of loss of
accuracy). However, the usual method is to express Exc[p] in a
LDA setting as follows (Moruzzi et al. 1978; Yin and Cohen
1982)

EXC[P]=JP(F)“3XC(P(F))d3r (50)

where Yx(p)=exchange-correlation energy per electron in a ho-
mogeneous electron gas of density p. Such a local approximation
is generally good for metals.

The exchange-correlations stress field contribution at r can be
written as

oxc(r) = [Fxc(p(r)) — pxc(p(r) Jp(r)I (51)
where
MXC(P) = M (52)
P

As one can see from Eq. (51), the stress due to exchange-
correlation is purely dilatational. Indeed, this happens to be a
general property of the local-density approximation.
Thus the total macroscopic stress within a LDA approximation
consists of:
1. The kinetic contribution of noninteracting electrons of the
form

1
-2 (¥lp @ pl¥)

e i

[compare with Ty;, of Eq. (25)].
2. The ion-electron Coulombic stress

(r-R)®(r-R)
Ir - Ry

- —e22 f Lro(r)V,, (r-R,)

and the ion-ion Coulombic stress



1 R,-R) ® (R,-R;
—_622 ZZ( i /) ( 31 J)
R~ R||

i#j

3. The Hartree stress

f Jd%rd%”p(r)p(r )(r r‘ ) (81.(|r3 r )

and
4. The exchange-correlation stress

f Er{¥xc(p(r) = pxc(p(r)Ip(r)I

Filippeti and Fiorentini (2000) have exploited NM’s expres-
sions for the macroscopic stress in LDA and following Chetty and
Martin’s formalism for the energy density (Chetty and Martin
1992), have derived expressions for field-like quantities repre-
senting the microscopic stress.

The total kinetic stress, which we encountered previously, can
be expressed in two equivalent forms:

1. A symmetric form given as follows

Tk xin = 622 ka‘”kf d3r(V\If::k(r) ® VW i(r)) (53)

vk

where f,, and w,,=occupation numbers and k-point weights,
respectively.
2. An asymmetric form as follows

Tkskin=— 622 Sokwi f d3’”\1’ik(1‘)(v ® VW (r))

vk
(54)

The symmetric form given by Eq. (53) is easier to handle as
it does not involve second derivatives of the wave functions.
Now, one can define a microscopic kinetic stress field as

UKs,kin(r)

2
= 32 faon VW) © Wulr) + ] (59

The exchange-correlation total stress is given as

Txc(r) = (f d3r[‘3xc(0(1‘)) - MXC(P(T))]I) (56)

Then, the microscopic stress field corresponding to
exchange-correlation is easily identified as

oxc(r) =[Vxc(p(r)) — pxclp(e)]I (57)

Due to the long-ranged nonlocal nature of Coulombic interac-
tions, it does not seem possible to assign a “stress density” for a
particular point, but as mentioned earlier, the form represented by
Maxwell’s stress tensor is often chosen for convenience. Interest-
ingly, Rogers and Rappe (2002) point out that the energy-
momentum tensor for electromagnetism, which corresponds to
the Maxwell stress in the nonrelativistic limit and in the absence
of magnetic fields, has been mathematically proven to be unique
in the gravitational literature (Collinson 1969; Lovelock 1974;
Kerringhan 1982). Thus, the Coulombic contribution is without
any gauge arbitrariness and is rigorously equal to the Maxwell
stress!

The Maxwell stress density operator o,(r) is given by
Eq. (39). The electric field E(r) of Eq. (39) is given by

E(r)=-V f FRAILEE (58)

r—r']

The issue of the divergence of the Coulombic terms is taken
care of by introducing the total charge density p instead of the
electronic charge density p as follows:

pP=p,+p (59)

The ionic charge density p,(r) is represented by [Filippetti and
Fiorentini (2000)] as the sum of ion-centered Gaussians

Z; 2,2
pau(r) == X, =P RITE: (60)
;om R

c

where R =Gaussian radius and R; denotes the position of the
nuclei.

Further Ewald-like contribution to the stress tensor arises out
of the strain derivative of the ion-charge density

2
O oad®) =~ (Vp,(1) © E(r) (61
If one considers only Coulombic interactions in the system,
Eq. (60) completes the analysis for the stress densities. However,
Filippetti and Fiorentini (2000) have considered the plane-wave
pseudopotential method where one needs to separately analyze
non-Coulombic interactions due to the pseudopotential.

The plane-wave pseudopotential method is based on the ex-
pansion of the electronic wave functions in terms of a plane-wave
basis. The total energy, derived from DFT, is minimized with
respect to the coefficients of the plane-wave basis set. Quite a
few iterative diagonalization methods exist which can signifi-
cantly reduce the computational cost of the minimization proce-
dure (Car and Parinello 1985; Payne et al. 1992). As is intuitive,
the smoothly varying valence electron wave functions can be
expanded in terms of less number of plane waves as against
the rapidly varying core-electron wave functions which would
necessitate a large number of plane waves. Thus, the effect of
the nucleus and the core electrons is replaced by a pseudopoten-
tial which is typically derived from a free atom all-electron
calculation.

The local pseudopotential contribution to the total stress is
given by

f d*rp<r>2 vloc,(r R) (62)

[TERD

where V). ;=local part of the pseudopotential at atom ;.
This in turn can be written as

— E d3rp(r)(V/ <(l‘ -R ))“_RM (63)
loc,j | —R. |
J J

Here

V ( ) aVIoc !(x)
]()CJ

From Eq. (62), Filippetti and Fiorentini (2000) define a micro-
scopic stress tensor corresponding to the local pseudopotential as
follows:

‘9[ Vloc,j(r) + Vion-electron,j(r)]
oe

o0 =p0 (64)
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Filippetti and Fiorentini (2000) mention that the interaction
between the electronic and the Gaussian-ion charge densities
occurring in Eq. (56) is unphysical and is an artifact resulting
from the assumption in Eq. (59) that the ionic charge density
is a sum of ion-centered Gaussian. To resolve this issue the
contribution from the Gaussian ionic charges has been added in
Eq. (63).

The nonlocal pseudopotential contribution to stress is impor-
tant only in the core region of the atoms (Filippetti and Fiorentini
2000). This can be represented as a superposition of ionic cen-
tered contributions as follows:

o (r) = 2 PR(r-R) (65)
J
The stress contribution from the jth ionic site P; is given by
aVNL, :
P=2 fuoud W e Yok (66)
vk

where Vy j=nonlocal part of the pseudopotential. Thus under a
pseudopotential approximation, the microscopic stress tensor
o (r) reads as

(1) = Ogs kin(T) + 0 (1) + Tx(T) + Opyq(r) + (1) + Oy (1)
(67)

All the terms (except the exchange-correlation terms) are first
evaluated in Fourier space and then transformed back into real
space. The computational effort is comparable to that required to
calculate the macroscopic stress tensor.

DFT Approach via Reduced Density Matrices

Ziesche et al. (1988) present formulas for the stress tensor of
finite clusters as well as infinite crystals using reduced density
matrices within the many-body Schrodinger equation [as well as
the single-particle Kohn-Sham (Kohn and Sham 1965) approach].
Using the one-particle density matrix and the pair distribution
matrix, Ziesche et al. (1988) define a local stress tensor with the
divergence equal to the forces acting upon the nuclei.

Ziesche et al. (1988) introduce the following charge densities
and charge density operators. The nuclear density denoted by
p,(r) and the nuclear pair distribution p,(r;;r,) is given by

pu(r) =2 Zd(r-R)

(68)
pu(Ty31) = E ZiZjS(rl -R)d(r; - Rj)
i#j

The corresponding electronic density operator p(r) and the elec-
tronic pair distribution operator p(r;;r,) are given by

p(r)= 3 ()

(69)
p(ry3ry) = > 8(r, - 1)3(r, - 1)

i)
Note that the pair distributions do not include the self-interaction
terms as i#j in Egs. (68) and (69). Now the potential energy
operator V constituting the many-body Hamiltonian can be writ-
ten as
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V= Eion—ion + Eion-electron + Eelectron-electron (70)

The individual components are explained in the following.
Ei,.ion Tepresents the nuclear-nuclear interaction potential

energy
Pu(r 1))
1cm ion = ffd%‘ld% 2 (71)

Here rj,=|r;—r,|.

Eion-clecron a1d  Egjecron-cleciron=NnUClear-electron and electron-
electron potential energy operators, respectively. It is useful to
point out that the XC contribution of the potential energy to the
total energy is embedded in the Egecroncleciron t€rm. The
E ectron-clectron t€rM can be split into a Hartree contribution and an
XC contribution [see Eq. (45)]

Pr pn(rl p(ry) +p,(ry)p(r))

ffd’; 3
T2
e2ffd3rld3r2—p(rl;r2) (72)
T2

The net potential energy operator V can be written in terms of
the total pair distribution operator as

1 r;;r
V= 562 f J (131’14173}"2u (73)
12

E

ion-electron =

E

electron-electron — 5

where

v(ry5r;) = p,(rysrs) = (p,(r)p(ry) + p(rp,(ry) + p(ry;ry)

One can similarly think of a net density operator v(r) such that

v(r) =p,(r) - p(r) (74)

The expectation values of the operators p(r) and p(r;;r,) are
subject to the following normalization conditions:

fd3r<p(r)>=N

(75)
J &ri{p(r;r;)) = (N = 1){p(r))
The one-particle density matrix p(r,r’) is defined as
pler) =0 1)!(,1,,2;%% 7
Xj EryV(r,0,;r,05; ... ;Ty,0y)
XU (r',01:05,05; ... ;Ty,Oy) (76)

The following relation holds

p(r.,r) =(p(r)) (77)

The kinetic and potential energies can be written in terms of these
density distributions as

2
= f d3r2p—n%<p<r>>

(78)



1 r,;r
V=Eeszd3rld3rzu
Iz

The net electrostatic force on all particles at a point r is given by

t=3¢ [ [ drnotee)

X[8(r —r)Ey(r) + 8(r -1y E,(r)] (79)
Here E(r) is defined as

r—r;

; (80)

E,r)=

Ir—r

Because (v(r,;r,)) is symmetric with respect to r; and r,,
Eq. (79) reduces to

f(r)=¢’ f ri(v(r;r)))E,(r) (81)
The net force density at a point r given by Eq. (81) can be split
into two components, (1) f*(r)=force density on the nuclear sub-

system and (2) £ (r)=force density on the electronic subsystem.
The expressions for f*(r) and f(r) are given as

f(r) =€’ f &rip,(r;rE(r) + ep,(r)E~(r) (82a)

f'(r)=¢’ J dri{p(r;r))E,(r) - e(p(r))E*(r)  (82b)
The following definitions for E™(r) and E*(r) hold
E(r)=-e¢ j d3’"1<P(r1)>E1(r)

(83)
E+(r)=eJd3rlpn(r)E1(r)

As the nuclei are viewed as discrete classical particles, f*(r)
consists of & functions

f'(r)= X F3(r-R) (84)

where the following definitions hold

E(r) =E~(r) + E*(r) (85a)
F(r) = Z,-e[E(r) - zier"—&] (85b)
|I‘ - Rl| r=R;

Note that in Eq. (85a), the nuclear self-interaction term has been
subtracted in order to calculate the force density. From the
Hellmann-Feynman theorem the force on the classical nucleus in
ground state at R, is

imz_<ﬁ>=_<‘9—v>=m (86)
JR; JR; JR;

Thus F;=Hellmann-Feynman force on the classical nucleus at R;
whereas f*(r)= “Hellmann-Feynman force density.”

In the ground state, no net force or torque may act on the
subsystem of the classical nuclei. This can be mathematically
written as

f &ret(r) =0 (87a)

f &rer X fHr)=0 (87b)

Equation (87b) can also be interpreted as follows: if the dyadic
product r ® f*(r) has an antisymmetric part then this antisymmet-
ric part must integrate out to zero when the integration is carried
over the cluster.

With the preceding formulation, Ziesche et al. (1988) proceed
to the local momentum balance in order to introduce the local
stress tensor. The kinetic contribution to the stress is evaluated by
first introducing the real momentum flux density II(r) as follows
(Pauli 1958; Schrodinger 1927; Ziesche and Lehmann 1987)

L +p) _(®@"+p
H(I’) = ® p(r’r )|r=r’ (88)
m, 2 2
The kinetic contribution o, (r) is
L(p"+p) _@"+p ,
0-kin(r) == 2 ® 2 P(r,r )|r:r’ (89)

Eq. (89) can also be rewritten as

ﬁ2
On(r) =7 (V' =V) @ (V' - V) p(r,r") | (90)

The divergence of o,(r) can be shown to be the negative of the
electron force density f(r)
div oy, (r) == £7(r) (91)

For the potential contribution define n;,(r) such that

1
M12(1) = = 7—[E () ® Ex(r) + Es(r) @ E; (r) ~ (E, (1) - Eo(r)I]

(92)

—,(r)=Maxwell tensor of two interacting point charges placed
at r; and r, minus the self-interaction terms. The potential stress
O (1) is defined as

O'pm(l') == %ezf f &ridry(v(ry;r))M o(r) (93)

The divergence of —n,(r) yields
div(=mp(r)) =[3(r —r)E;(r) +3(r —r)E(r)]  (94)
Using Egs. (93) and (94) one can obtain

div o, (r) = = f(r) (95)
Adding Egs. (91) and (95) we have
div o (r) =f*(r) (96)

Ziesche et al. (1988) define o (r) as the local stress tensor
0'([') = o-pot(r) + O-kin(r) (97)

As one can see from Eq. (96), the local stress tensor is asso-
ciated only with the nuclear force density. These forces exactly
compensate the forces induced by the external potential; if the
external potential is zero then the force density of Eq. (96) is also
Zero.

Further, multiplying both sides of Eq. (96) dyadically by r we
obtain
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or)=V(er)®r)-ff(r)y®r (98)

Now integrating Eq. (98) over a volume () results in
J d3r0'(r)=f dS(o(r) ®r) —f Prfr)er  (99)
0 s 0

For a finite cluster, if () is taken as all of space, then the surface
integral vanishes because the stress tensor o (r) falls off rapidly
outside the cluster. What follows is the relation for the total stress

Tiin+ Tpo = 2 R, @ F, (100)

The tensors Ty, and T, =kinetic and potential contributions to
the global stress tensor, respectively

Tkin(r)=fd3r0kin(r)=_fd3r(pjp) p(r,r’)| oy

e

2
®
tte)= [ i [ [ narotnm e

riz
(101)

From the Hellmann-Feynman theorem of Eq. (86), Eq. (101) can
be rewritten as

d
—F 102
Y (102)

1

Tkin + Tpot = 2 Ri ®

In Eq. (102) we have, in effect, recovered the Stress theorem
which NM (1985a) obtained via the scaling argument. If 7 is the
global stress density and (), is the volume of the cluster then

9

E 103
R (103)

7Q,.= E R, ®

In the thermodynamic limit, when the cluster tends to an infi-
nite crystal ({),— ) then the foral quantities (which refer to the
whole volume for a finite cluster) now refer to a unit cell volume
0y=Q./N,, where N, is the number of unit cells. For example,
the kinetic global stress tensor T};, and the potential global stress
tensor T, have to be divided by N, before evaluating the ther-
modynamic limit as shown in the following

Tkin/Nc = J d3r0kin(r)s Tpot/Nc = f d3r0pot(r) (104)
O Q

0 0
The average stress density takes the form

d
TQO=Eai®ﬁ—s (105)

1

where e=energy per unit cell and a; are the lattice vectors.
Using the scheme shown in Eq. (98) and after some further

manipulations, Ziesche et al. (1988) arrive at the following ex-

pression for the average stress density in the thermodynamic limit

I3

p +p

e

- ezf d3r1f d3r2(v(r1;r2))
QO oc—QO
1

x[ (®‘9 ®‘9>]1 (106)
—|symlr,® —-r,@ —||—
2 Y ar, 0 ary) |y

)p(r,r’)dS

!

7Qy= —Re f sym(r ® p)<
So

r=r
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The first term on the right-hand side of Eq. (106) corresponds
to the momentum flux across S, the surface of the unit cell. The
second term denotes the Coulombic interactions between particles
inside the volume of the unit cell €}, and the particles outside the
unit cell.

Returning to Eq. (97), the kinetic part of the local stress
O in(r) is associated with the single-particle density while the
potential contribution o, (r) is associated with the pair distribu-
tion densities. The electronic pair distribution can be written in
terms a sum of a product of Hartree terms (single-particle densi-
ties) and the XC term pyc(r;;r,) shown in the following

p(ry;ry) = p(ry)p(rs) + pxc(ry;ry) (107)

This separation enables o
(Hartree) and XC parts.
The Hartree part o gye.(r) is given by

Tralr) == (@)= 2 016 (108)

por(I) to be separated into single-particle

where o ,,(r)=Maxwell stress due to total electrostatic field E(r)
from Eq. (85a). o, ,(r)=the self-interaction terms

o ()= (Eim ®E,-(r)—§Ei(r>21) (109)

Zi
n
The XC contribution to @ ,,(r) can be written as

1
O'pot,xc(r) =- Eezf j d3”1d3”2<v(1'1;1“2)>"112(1') (110)

Finally, the stress field can be written as

(T(l') = O-kin(r) + O-Hartree(r) + Gpot,XC(r) (1 1 1)

Amongst the terms which constitute the stress field o (r), the
single-particle term o g e.(r) admits the simplest evaluation as it
involves only the electron density p(r) and the nuclear density
pu(r). The kinetic term o, (r), however, entails the knowledge
of the one-particle density matrix p(r,r’) which is a many-
body term. Prescriptions to calculate the density matrix have been
proposed by Hybertsen and Louie (1986, 1987), Godby et al.
(1986, 1987), and others (Horsch et al. 1987; Kulikov et al. 1987,
Mazin et al. 1984). Experimental determination of p(r,r’) is also
possible. However, an appropriate discussion of these methods is
beyond the scope of this paper. The exchange-correlation term is
the most difficult to deal with as not much is known about the
density pxc(r;;r,). Ziesche et al. (1988) have subsequently pro-
vided expressions for the stress in a LDA setting for practical
considerations.

Nonuniqueness of Quantum Stress Fields

As stated earlier, if we define the stress field via a continuity
equation, i.e., as a two-tensor such that its divergence results in
the corresponding force field, one can add to the stress tensor the
curl of an arbitrary dyadic field and still recover the same force
field. Whereas we have seen some authors [like Filippetti and
Fiorentini (2000); Ziesche et al. (1988)] provide certain forms for
the stress fields, these representations are by no means unique.
The results obtained by applying these fields to material systems
can be thought of as being representative at best.

While agreeing to the conclusion that invoking the force
related definition will always result in a nonunique stress field,
Folland (1986, 1988) suggests that any term constituting the ex-
pression for the stress field should entail a physical interpretation



and thus only physically motivated terms should be added to the
expression of the stress field (as against any arbitrary curl of a
two-tensor). In particular, Folland opines that the MST operator
should be considered as corresponding to a physical observable
(of itself) rather than as a mathematical artifact to aid in calcula-
tion of forces, macroscopic stresses, and the like. Folland’s
biggest motivation for viewing the MST as corresponding to a
physical observable seems to be its appearance in a continuity-
like equation [Eq. (34)] in complete parallel with the mass-
density continuity equation shown in the following

g[m(r)] +V-P(r)=0 (112)

Folland further states that a physically motivated expression for
the stress field can be additionally constrained by requiring it to
be mathematically well-behaved and vanishing at a rate greater
than 1/7? for finite systems. The latter constraint ensures that at
large distances the stress falls down to zero for a finite system;
also with this constraint the integral of the microscopic stress over
the volume of the system will remain finite. Perhaps, considering
a model with more structure (such as a relativistic model) and
approaching the stress field via a route other than the typically
employed force or energy formalism may throw more light on this
issue.

The nonuniqueness of the stress field can manifest itself both
in the potential contribution and the kinetic contribution. Godfrey
(1988) has shown that the kinetic contribution to the stress field is
ambiguous only unto a single arbitrary real number.

The kinetic contribution to the stress is realized by considering
the quantum mechanical momentum flux density [see Egs.
(88)—(90)]. The quantum mechanical momentum flux density
takes the form (Pauli 1958; Schrédinger 1927)

2

I(r) =- A lim (V=V’") ® (V=V)¥ (r)¥(r’) (113)

m

er' —r

Note that Egs. (88)—(90) and Eq. (112) are essentially equiva-
lent. Because, Eq. (112) represents a flux-like quantity, additional
terms can be added to it such that its divergence remains unal-
tered. For example, the following form may also be employed

2
I(r) = 2ﬁ— lim <sym(V ®V')- %I(V + V’)z)‘l’*(r)‘lf(r) (114)

er' —>r

However, Godfrey (1988) argues that under the restrictions of
II(r) being a single-particle operator involving only ¥, ¥*, and
their derivatives, the most general flux density G(r) that can be
added to I(r) while retaining its physical significance is given by

2

G(r)=— lim[AV @ V+A'V' @ V' + BV @ V' +B'V' @ V
m

+I(CV -V +DV>+ D'V'H]¥ (r)¥(r') (115)

Only one arbitrary constant, say A, remains after applying the
condition that G(r) is divergence-free. Further requiring that
II(r) remain a momentum flux density under the Galilean trans-
formation W(r) — W (r)exp(ip-r/#) results that the constant A be
real. This reduces G(r) to

2
G(r) :AZ—(V ® V-IV)W (r)¥(r) (116)

This particular form of G(r) is symmetric. Hence, Godfrey

(1988) concludes that the kinetic stress is arbitrary only unto a
single real number A.

In addition Godfrey (1988) proposes a potential stress-density
operator which results in short-ranged configurational stresses
when the interactions are short-ranged themselves. Remember
that there are inherent shortcomings in both Kugler’s and the
Maxwell forms of stress. Whereas Kugler’s form exhibits
disagreeable long-range character, the Maxwell form holds
only when the interactions are Coulombic. Whereas Godfrey’s
form for the potential stress holds for arbitrary interactions (like
Kugler’s form) it is without the inherent long-ranged character of
Kugler’s form.

The configurational stress is obtained by Godfrey (1988) by
applying an inhomogeneous scaling of the wave function. In par-
ticular, for the case of interaction via pair potentials Godfrey
obtains the following form for the configurational stress tensor

0 pol(r) = — % lim (V-V') ® (V- V")

™ r’ —r

XE( ! 1r

+
ij |1'—1'i| |1" j|

J < Vi =

- %12 3(r—r)Viu(r—r;) (117)

For a system of N particles at the origin, the long distance limit
becomes

2

O polr) == ;V_W[(V ® V)(%)th(z”) + w

2Vi'm(2r)}

r— ®© (118)

This stress field is clearly short ranged. Another form of the con-
figurational stress operator is

1 1
R . lim (sym(V V') - EI(V + V')Z)

r'—r

1 1
<3 (e ) X Ve el

+ 1
ij |1'_1'i| |1'_
1
- 512 3(r—1)Vil[r — 1)) (119)
ij

The similarity between the forms of momentum flux density op-
erator in Egs. (112) and (113) and the forms of the potential stress
operator in Eqgs. (116) and (118) is manifest.

For the special case of Coulombic interactions Eq. (118) re-
duces to the Maxwell stress

1

1 1
et 3 (o) o7

L]

Mol (el am
2 \r—r,-|' Ir-r)| (120)

The diagonal terms on the right-hand side of Eq. (119) are a
cause of concern. They diverge as #~* near a particle which may
result in their expectation value being infinite in regions of finite
particle density. These terms occur as a result of including self-
energy in the interaction energy as a part of Godfrey’s analysis.
They suggest omission of these diagonal terms for the case of
Coulombic interactions. This operation does not alter the physical
significance of the configurational stress in any way.
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The total stress (kinetic plus potential) is then proposed as

G o(r) =1I(r) = lim L(V,V’){— %W*(r)\lf(r’)

r'—r

+{LJJd3r1d3r2\lf*(r1)\lf*(r2)<;+ ,1 )
8m =1y  [r'—r
X Vip[r =1y +[r’ —er)‘I'(rz)‘I'(rl)H (121)

The operators W can be normal-ordered to remove the self-
interaction stresses mentioned earlier. The operator L(V,V') can
be a linear combination of the following operators in any ratio A:
B such that A+B=1

L'(V,V)=-sym(V® V) - II(V+V')?  (122a)

LX(V,V)=3(V-V) ® (V-V') (122b)

Adapting from Mitsura’s (1985, 1987) original work on classical
inhomogeneous fluids, Rogers and Rappe (2002) have formulated
the quantum stress field within a differential geometric setting.
This formulation is established following the well-known rela-
tionship between the strain tensor field and the Riemannian metric
tensor field. As we shall see presently, using this geometric ap-
proach Rogers and Rappe (2002) were able to identify the origin
of the nonuniqueness of the stress field to the lack of a unique
relationship between the kinetic energy and the metric tensor.

Before broaching the issue of uniqueness as discussed by
Rogers and Rappe, the requisite geometrical framework is first
constructed. The infinitesimal squared shortest distance between
two points on a Riemannian manifold can be written as
ds*=g;dr'dr/, where g =metric tensor. When an infini-
tesimal distortion is applied of the form, dr''=dr'+du’ then
the squared distance changes to ds'?=g;dr''dr'/. With a new
metric gj,, defined as g;=g,;(3}+du’)(d)+du), the distance
can still be computed in terms of the predistorted positions as
ds'zzgl-'jdridrj.

The strain field is now introduced into the picture as
ds'?—ds*=2g;dr'dr!. The new metric g/; can now related to the
strain g;; and the original metric g;; as

8i=28;+8 (123)
The stress field o/ can then be defined via the virtual work
relation

SE = f Vgo'ise,d°r (124)

where g=det(g). Using Eq. (123), an explicit form of the stress
field is

.1 dE 2 dE
0'U=—,_—=—,_— (125a)
Vg de; \gdgi;
2 8F
oy=— (125b)
Vg dg

Note that in Eq. (124b) g" is the inverse of g;;.

Metric tensor fields can be classified into two categories: (1)
flat metrics, which cause the Riemannian curvature to vanish at
each point in space. The simplest example of a flat metric is the
familiar Euclidean space R’; and (2) non-Euclidean metrics,
which result in a nonzero curvature.
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The Riemannian curvature R;,,=four-tensor which expresses
the curvature of a Riemannian manifold as

Rixym = %(akalg im + 00811 = O 0m&it = ;018 m)
+ gnp(FZlFfm - Zmrf)l (126)
The T, in Eq. (125) are the Christoffel symbols

;‘k = %8”(‘%80‘ + i~ g (127)

It trivially follows that the Riemannian curvature tensor for a
flat manifold is zero.

Now, the material system under consideration can be consid-
ered to be a collection of particles and fields in a flat manifold
M that can be mapped diffeomorphically to the Euclidean space
R3. Any physical distortion is constrained to keep the particles
embedded in the manifold M. Therefore any applied strain should
correspond to flat metric tensor fields [via Eq. (122)].

All flat metrics can be expressed as

8ij =0+ du;+ dju; (128)

where u;=vector field continuous over M. Then the constrained
strain results in Eq. (123) being written as

8E:J y"g(yij(ﬁiauj+ ﬁjaui)d3r (129)

The flat metric can be chosen to represent Cartesian space in
which case Vg=1. Then, Eq. (128) becomes

dE= f o (3d3u; + 3du)d’r (130q)

= J (3,078 + 9;0du,)d’r (1300)
Eq. (129)) contains the divergence of the stress field, which we
have seen results in the stress field being ambiguous. This prob-
lem of nonuniqueness arises because of the introduction of the
constraint on the metric in Eq. (127). Thus, as Rogers and Rappe
point out, the first criterion that must hold for the virtual-work
relationship given by Eq. (123) to specify a unique stress field is
that the metric must be freely varied, without any constraints. If
this criterion holds, then the Riemannian curvature no longer re-
mains zero at all points in the manifold M. This can be physically
achieved by introducing “defect” (analogous to gravitational point
sources) sources that would then generate a curvature in the
background manifold M. Such non-Euclidean metrics occur in
continuum theory of solids in the context of dislocations and dis-
clinations. In the presence of such defects, the displacement field
u is no longer smooth and the following relation no longer holds:

(39— 3,0)u, =0 (131)

The defect density can be represented by a two-tensor ) which is
defined as

n=V X (VXeg) (132)

where € =strain field. When ,;;=0, then the strain field obeys the
familiar strain-displacement compatibility relationship

€ =sym(Vu) (133)

The defect density can be related to the Riemannian curvature
Ry through the Ricci curvature R;;= g””R,I-mj and the scalar cur-
vature R=g"R;; as follows:



My =R - %8;‘_;'R =Gy (134)

G;; is called the Einstein curvature. However, at the quantum
level, it is not clear as to what constitutes a defect in an electron
gas and offers (perhaps) a tantalizing avenue for future research.

Keeping the first criterion in mind, we now recognize that the
quantum mechanical stress is the energetic response of the system
to a generalized non-Euclidean metric. Therefore, the quantum
mechanical energy also must be unambiguously defined for non-
Euclidean metrics. This constitutes Rogers and Rappe’s (2002)
second criterion for the virtual-work theorem to uniquely specify
a stress field. A generalized Hamiltonian can be constrained in
several ways so that it bears a unique relationship with the metric
tensor. First, the energy can be required to transform as a covari-
ant scalar for all geometries. Second, the generalized Hamiltonian
should yield the appropriate flat-space result when evaluated with
a Euclidean metric. Third, the Hamiltonian should correspond to a
fully renormalizable quantum-mechanical theory. However, as we
shall see these constraints do not suffice in order to specify a
unique Hamiltonian. The ambiguity manifests itself in the kinetic
energy.

The Hamiltonian for an arbitrary non-Euclidean manifold for a
spin-zero W can be written in a very general manner as

Hzf \"g<5g‘/&i‘lf W +aR+BRY W +yRY9W ﬁ]-\I’)aGr

(135)

o, B, and A=arbitrary coupling constants to the various curvature
terms.

With the Hamiltonian being constrained in the above-
mentioned ways, one might consequently expect a reduction in
the number of arbitrary coupling constants in Eq. (134). Under
the requirement that the Hamiltonian correspond to a fully renor-
malizable theory, the constant y has to be set to be zero as it can
be shown via a dimensional analysis that the inclusion of the
curvature term multiplied to vy results in the theory being non-
renormalizable. From Eq. (134) one can observe that since the
wave function does not feature at all in the aR term, this term is
like a background term which will exist even in the absence of
any matter in the system. Consequently, the constant « can be set
to zero as well.

However, as Rogers and Rappe concede, no such constraints
exist for the value of (. Therefore, the quantum stress field is
undetermined to the arbitrary factor of (. Interestingly, similar
unresolved issues exist in the gravitational and constrained-
dynamics literature.

Rogers and Rappe further extend this formulation to DFT
within a LDA approximation. To begin, the total charge density
can be written as

)= Lotr-R) () (136)

The factor of 1/\@ in Eq. (136) ensures proper normalization
of the delta function. The energy of the system for arbitrary
Riemannian spaces is given by

E = Txs + Ecouomd + Exc = 2 )\t(f VeV, W dr - 1) (137)
t

As we have seen before, Txg=single-particle Kohn-Sham kinetic
energy

Tys= f \E(%E, g1, 0¥, + BRp(r))d3r (138)

where Ecguomb=Cclassical Coulombic interaction energy
Ecoutomb = f \E<PV— Siﬂg"/'FiFj)d% (139)
Here F=-VV, where V=potential generated by the charge distri-

bution p. In LDA, the exchange-correlation energy functional be-
comes

Exc= f Vep(r)dxc(p(r))d’r (140)
Here dyc=exchange-correlation density encountered before. The

last term of Eq. (137) occurs due to orthonormality constraint on
the orbitals. The stress field is obtained from Eq. (124) as

. 1 1 .
0= 2 GV O, + A+ 2 FiF+ g,.j<52 PRGOS
t t

- SLkaFk+ p(r)Vxcp(r) = 2 VW (\, + V)) (141)

The ambiguity in the kinetic stress is denoted as A;;.
For Euclidean space, i.e., g;;=9,;, the explicit form of A;; looks
like

ij»

Aij = B(azajp(r) - 6,-j(9k(5’kp(l‘)) (142)

Note that this form of A;; is similar to the ambiguity identified by
Godfrey (1988) in Eq. (115).

The complete stress field in Euclidean space under the LDA
approximation can finally be written as

; 1
0;=- E W, 0, + B(ﬁir?jp(r) - 8ijﬂk(;'kp(l')) + EFiFj
t

; 81-]-62 AWV, = L EF S0+ )
0Fxc
x(ﬁxc(p(r)) - ap(r))) (143)

The Coulombic contribution to the stress field is given by
(1/4m)FF;=3,,(1 /8w)FF*. Note that this exhibits the same form
as the Maxwell stress tensor. More important, this form of the
potential stress tensor is unique and rigorous proofs to this effect
exist in the gravitational and constrained dynamics literature
(Rogers and Rappe 2002). Thus, there is no arbitrariness associ-
ated with the potential contribution of stress. Only the kinetic part
of stress is ambiguous and can be specified to one arbitrary real
constant. The diagonal terms in the kinetic stress of Eq. (143)
(which contribute to the pressure) contain symmetric and anti-
symmetric kinetic-energy densities. On varying 3 through 0 to
—1/4, the kinetic energy density changes from being completely
symmetric to being completely antisymmetric. We have encoun-
tered similar forms before in Egs. (53) and (54).

Summary
In conclusion, we have reviewed and discussed several works and

issues pertaining to quantum mechanical notions of stress.
Though some early fundamental work on the meaning of force
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and pressure was accomplished when quantum mechanics was
still a fledgling theory, recent authors have sought to dig deeper
into the meaning of the stress tensor at a quantum mechanical
scale. This renewed interest is mostly due to increased availability
of tools and techniques which facilitate efficient ab initio calcu-
lations to study various stress-mediated phenomena.

The issue of uniqueness of the locally varying quantum stress
field is still open for discussion. Godfrey (1988) and Rogers and
Rappe (2002) have nailed the origin of this ambiguity to the ki-
netic stress tensor. Folland claims that the MSTs are physical
observables and hence the expressions for the corresponding
operators should be uniquely defined. His claims are largely based
on the fact that MSTs feature in continuity-like equations. In par-
ticular, Folland (1986, 1988) suggests that only those terms to
which a physical meaning can be assigned constitute the stress
tensor expression. A further extension of Rogers and Rappe’s
(2002) geometric formulation looks particularly promising in re-
gards to resolving this issue.

Though we have hardly discussed any work concerning appli-
cations of the quantum mechanical stress, we mention that several
works have applied this concept to material systems using DFT.
Nielsen and Martin (1985b), in particular, applied the pseudo-
potential method to Si, Ge, and GaAs semiconductors and re-
ported lattice constants, elastic constants, optical I" phonon
frequencies, anharmonic (pressure-dependent) elastic constants,
etc. Filippeti and Fiorentini (2000) applied their stress field to
study certain interface and surface phenomena; issues which
cannot be reconciled solely on using the average stress tensor.
Ramer et al. (1998) used a stress field constrained to being a
smooth fit to the ionic forces and applied it to the study of per-
ovskites. Rogers and Rappe (2002) used their geometrically
formulated DFT stress field to explain the energetics of two
phases of solid molecular hydrogen. They report that the ambigu-
ity in the kinetic stress does not affect the qualitative nature
of their results. An appropriate form of the stress field can indeed
prove to be a powerful tool to understanding and predicting phys-
ics of stress-mediated phenomena.
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