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Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materia
containing spherical and cylindrical inhomogeneities
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Scale-dependent solutions are provided for the ‘‘average’’ elastic fields, when spherical and cylindrical
inhomogeneities are embedded in an infinite micropolar medium. A mean-field homogenization technique is
extended to a micropolar medium and the overall scale-dependent properties of micropolar composite are
computed and compared with the classical solution. Unlike classical elastic solutions~which are scale-
independent!, the apparent stiffness of isotropic micropolar composites increases as inhomogeneity size de-
creases, at a constant volume fraction. In transversely isotropic micropolar composites, a more complex
orientation-dependent behavior is observed: the apparent microscale stiffness for transverse shear and axial
extension increase with decreasing inhomogeneity size~as in the isotropic case!, while the transverse bulk
stiffness exhibits the opposite trend. The current work is expected to find application in the analysis of
nanocomposites, biocomposites, and foam structures.
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I. INTRODUCTION

As has been noted by several researchers, e.g., Ering1

and Lakes,2 classical elasticity becomes inaccurate when
length scales of structural constituents become comparab
the intrinsic characteristic length scale of the material mic
morphology, or nanomorphology. Granular media, mater
with microstructures, composite materials, biological me
~blood, bones, etc.!, nanoscale materials, and foams are
amples of such structures. The use of the more enriched
cropolar theory of elasticity is often warranted in such si
ations. The theory of micropolar elasticity was firm
established by Eringen and co-workers1,3–5 in several papers
and monographs. In particular, much of the work in this a
was recently summarized by Eringen.1 Several other re-
searchers have contributed to the general field of Coss
elasticity, and Refs. 6–9 also provided extensive lists of
erences, as well as overviews of the subject.

In the micromorphic representation of media, materi
are idealized at each point to possess individual deform
directors. Deformations of such materials are then c
structed by superposing the classical macroscale deforma
fields with the local~or microscale! deformations of the de
formable directors. In classical continuum mechanics, ki
matical degrees of freedom are based on macroscale ma
point translations that also uniquely define macroscale r
tions. Classical continuum media thus do not possess in
pendent rotational degrees of freedom. However, mate
points in micromorphic media can possess, in addition to
classical macroscale displacement fields, microshear,
croelongations, and microrotations~which are distinct from
the classical macroscale rotations!. Simplified versions of the
micromorphic continuum include the microstretch mediu
~that possesses microelongation and microrotational deg
of freedoms in addition to the classical ones! and the mi-
cropolar continuum~whose deformation directors only hav
0163-1829/2002/66~22!/224110~10!/$20.00 66 2241
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rotational degrees of freedom in addition to the classi
ones!. The micropolar medium is the object of this study a
has several similarities to the Cosserat media.1 The concept
of classical, micropolar, microstretch, and micromorph
~3M! media is depicted and discussed in Fig. 1. Clearly,
‘‘discrete’’ media concept embodied in 3M media is ideal f
materials at the nanoscale or where additional degree
freedom are likely to have an impact.

The micropolar medium concept was applied to biologi
materials, cellular solids, polymers, etc.,10–12 and future ap-
plications are predicted for nanoscale materials and st
tures. In particular reference to the nanoscale, some re
and interesting research13,14 indicated that independent m
crorotations or nanorotations are important deformat
mechanisms in nanostructures. As can be well apprecia
the material systems discussed above~i.e., those that can be
modeled as micropolar materials, e.g., biocomposites, ce
lar solids, and nanostructured solids! are often composites o
heterogeneous media~or can be treated as such!. Their prop-
erties are scale dependent, and an estimation of their e
tive properties is of great technological interest. Such e
mates require a knowledge of the ‘‘average’’ micropo
elastic fields caused throughout the material heterogenei
because of external loading.

Extensive work has been done in the field of microm
chanics of inclusions and inhomogeneities in classical ela
media. Some excellent reviews have been provided by M
and co-workers15–17 and Nemat-Nasser and Hori.18 In con-
trast, little attention has been paid to inclusions and inhom
geneities in a Cosserat or micropolar medium. Recently,
papers19,20 addressed the problems of spherical and cylind
cal inclusions, respectively. Mura17 defined aninclusionas a
bounded region in a matrix, with a stress-free transformat
strain or eigenstrain prescribed in the region. Aninhomoge-
neity is defined as a bounded region in a matrix, with diffe
ent material properties than those of the surrounding ma
©2002 The American Physical Society10-1
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FIG. 1. Schematic of the 3 M
concept contrasted with classica
continuum ~a!, classical~b!, mi-
cropolar ~c!, one microstretch~d!
micromorphics. Here the lowe
casex represents the undeforme
configuration while the upper cas
x represents the deformed con
figuration.
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Various examples of naturally occurring eigenstrains
thermal expansion, electromechanical or magnetomecha
strains, plastic deformation, hygromechanical swell
strain, etc. Eshelby25,26 showed that the elastic field of a
inhomogeneity could be obtained by replacing the inhom
geneity with an equivalent inclusion containing a prescrib
fictitious eigenstrain of an appropriate magnitude.

To our knowledge, the problem of aninhomogeneityin a
micropolar material has not been addressed in closed f
before. In particular, no closed-form solution for the over
properties of Cosserat materials reinforced by inhomoge
ities has appeared in the literature. There is no literature
the use of Eshelby’s25,26 celebrated equivalent inclusio
method in scale-dependent homogenization methods for
cropolar materials~unlike in classical elasticity, where mos
homogenization methods are scale-independent and
based on Eshelby’s approach!. In general, researchers hav
tended to follow the numerical route as far as applications
Cosserat elasticity to composites is concerned.

The scant work that is available in the literature on h
mogenization in Cosserat materials is discussed here. Y
and Tomita21,22 used finite-element simulations~unit-cell
method! to compute the overall properties of Cosserat ma
rials with periodically distributed voids. They present
scale-dependent effective properties. Recently Forest23 pre-
sented some fundamental work on the study of size effec
solids via the use of Cosserat elasticity. The authors of R
24 presented a finite element approach to estimate elasto
tic overall properties of Cosserat materials.

In this paper, we use Eshelby’s formalism
eigenstrains,25,26 modified appropriately to account approx
mately for interactions between inhomogeneities, to estim
22411
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average stresses in spherical and cylindrical inhomogene
embedded in micropolar materials. Extending a class
mean-field homogenization scheme,27,28 we obtain overall
scale-dependent properties for micropolar composites ba
on these average elastic fields.

II. MICROPOLAR CONSTITUTIVE LAWS AND
ESHELBY’S EQUIVALENT INCLUSION CONCEPT

Let a micropolar inclusion be enclosed in an infinite m
cropolar medium with prescribed asymmetric stress-f
eigenstrain, and eigentorsion. Both the eigenstrain (« i j* ) and
eigentorsion (k i j* ) are considered to be zero outside the d
main of the inclusion~V! and uniform within it. The govern-
ing equations for the micropolar medium within the doma
of the inclusion can be written as1,19

s i j , j50, ~1a!

mji , j1h i jks jk50, ~1b!

s j i 5Ci jkl ~«kl2«kl* !, ~2a!

mji 5Di jkl ~kkl2kkl* !, ~2b!

« j i 5ui , j2h j ikwk , ~3a!

k j i 5w i , j . ~3b!

Typical summation rules apply~unless otherwise noted!. s is
the regular stress tensor, whilem denotes the moment stres
tensor.C andD are the fourth-order elasticity tensors. In th
paper we assume micropolar centrosymmetric isotropic
0-2
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havior for all materials.u and w are the displacement an
microrotation vectors, respectively, and« andk are the strain
and torsion tensors, respectively.h i jk is the alternating ten-
sor. The elastic properties for an isotropic centrosymme
micropolar material can be written as.

Cjikl 5ld j i dkl1S m1
k

2D d jkd i l 1S m2
k

2D d ikd j l , ~4a!

D jikl 5ad j i dkl1gd jkd i l 1bd ikd j l , ~4b!

where a, b, l, g, k, and m are the six micropolar elasti
constants required to completely specify the fourth order
cropolar material property tensors.

In this work, we assume that the inhomogeneity is p
fectly bonded to the matrix. Most work in classical elas
theory of composites adopt such an assumption~see for ex-
ample, Mura17!. However, in certain cases such an assum
tion ceases to be valid and several researchers have d
oped theories for inhomogeneities that are imperfec
bonded to the matrix~within the context of classica
elasticity!.29–31 Analogous theories are not available in t
micropolar theory of inhomogeneities, and are beyond
scope of the present paper.

According to Eshelby’s formalism, the stress disturban
due to an elastic inhomogeneity embedded in an infinite e
tic matrix ~subjected to uniform far field strain«0) can be
found by using the ‘‘equivalent inclusion’’ concept. Accord
ingly, an inhomogeneity can be replaced by an inclusion w
a suitable fictitious eigenstrain prescribed within its doma
Let the inhomogeneity have a pre-existing inelastic str
~eigenstrain! «p. Then, this inhomogeneity can be replac
by an equivalent inclusion with a suitable fictitious eige
strain«* .

This fictitious eigenstrain is determined by equating
stress in the inhomogeneity to the stress everywhere wi
the equivalent inclusion (VV):

s i j 5Ci jkl ~«kl
o 1Sklmn~«mn* 1«mn

p !2«kl* 2«kl
p !

5Ci jkl
h @«kl

o 1Sklmn~«mn* 1«mn
p !2«kl

p #. ~5!

HereS is the so-called Eshelby tensor for interior points~i.e.,
for all position vectors lying completely within the inhomo
geneity!. C is the fourth-order elastic stiffness tensor for t
matrix material, whileCh is the elastic tensor for the inho
mogeneity. For an inhomogeneity of arbitrary shape,S is an
integral operator on («* 1«p). In such a case, Eq.~5! are a
set of six simultaneous integral equations that must be so
within the region of the inhomogeneity to determine the fi
titious ~and generally nonuniform eigenstrain!. In a classical
elastic medium, Eshelby’s tensor is uniform for ellipsoid
shapes~which includes spheres and cylinders!. In such a
case, Eq.~5! reduce to six algebraic equations, and the pr
lem of an ellipsoidal inhomogeneity can thus be read
solved. Unfortunately, Eshelby’s tensor is nonuniform for t
micropolar case for all geometries,19,20,32and the nonuniform
fictitious eigenstrain can be found only numerically. It shou
be noted that the integral operatorShas a very simple physi
cal meaning: for a given total eigenstrain~fictitious or other-
22411
ic

i-

-

-
el-

y

e

e
s-

h
.
n

-

e
in

ed
-

l

-

wise!, this operator relates the actual strain perturbation
the eigenstrain, i.e., the perturbation strain isS: («* 1«p). In
the left-hand side of Eqs.~5!, where the stress within the
inhomogeneity is expressed in terms of the matrix mod
both the fictitious and the real eigenstrains are subtrac
since these are inelastic strains and do not participate in
elastic constitutive behavior. On the other hand, on the rig
hand side, where the stresses are expressed in terms o
inhomogeneity moduli, only the real eigenstrain («p) is sub-
tracted. The use of Eshelby’s equivalent inclusion princi
for the micropolar case is discussed in Sec. III, where
make a suitable approximation to facilitate the estimation
the average scale-dependent stresses and overall prope

III. SOLUTION

In this paper, we are interested only in the avera
stresses in the matrix and inhomogeneity, and the ove
effective properties that are scale dependent. In such a c
we propose to simplify the analysis by using volumetrica
averaged micropolar equivalents of Eshelby’s tensors. T
assumption cannot be employed to estimate local pointw
stress distributions, but often provides reasonable estim
of the average stresses in the inhomogeneity/matrix for
purpose of estimating overall properties.33 Furthermore, as
will be shown, the averaging process does not eliminate
scale dependence. This averaging process leads to the
mation of an ‘‘average’’ or ‘‘smeared’’ fictitious eigenstrai
and eigentorsion, which can then be used to compute
average stresses as well as the overall homogenized pro
ties of a micropolar composite. Further discussion of t
simplification and its implications are presented in Sec.
In this section, the average micropolar Eshelby-type tens
are derived for spherical inhomogeneities and the Mo
Tanaka mean-field homogenization scheme for class
elasticity27,28 is extended to micropolar materials. We al
present parametric examples of scale-dependent ov
properties of micropolar composites reinforced by cylind
cal inhomogeneities.

Cheng and He19,20 and Sharma and Dasgupta32 used the
Green functions of micropolar elasticity to obtain Eshelb
nonuniform tensors for spherical inclusions, circula
cylindrical inclusions, and cuboidal inclusions, respective
In micropolar materials, four Eshelby-type tensors a
needed to relate the eigenstrains and eigentorsions
the perturbations in strains and torsions, as shown in E
~6a! and ~6b!,

«mn5Kmn ji« j i* 1Lmn jik j i* , ~6a!

kmn5K̂mn ji« j i* 1L̂mn jik j i* , ~6b!

whereK, K̂, L, and L̂ are the micropolar Eshelby tensor
expressed as19

Kmn ji5I n j i ,m
S 1I n j i ,m2« lmnÎ l j i , ~7a!

Lmn ji5Jn ji ,m2« lmnĴl j i , ~7b!
0-3
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K̂mn ji5 Î n j i ,m , ~7c!

L̂mn ji5 Ĵn j i ,m . ~7d!

Here we have followed the notation of Cheng and He.19,20

More information about these tensors is summarized in
pendix A for completeness@Eqs. ~A1a!–~A1e!#. Note that
Eqs. ~6a! and ~6b!, similar to Eshelby’s integral operatorS,
relate the perturbed strain and perturbed torsion to the ei
strain and the eigentorsion, respectively, in terms of ope
tors K, K̂, L, and L̂. The actual strains and torsions a
coupled to each other due to theL and L̂ operators.

Ignoring the presence of any real eigenstrains («p), which
are of no consequence in the calculation of overall prop
ties, the micropolar version of Eshelby’s equivalent inclus
conditions@Eqs.~5!# can be written as

s i j 5Ci jkl ~«kl
o 1Kklmn«mn* 1Lklmnkmn* 2«kl* !

5Ci jkl
h ~«kl

o 1Kklmn«mn* 1Lklmnkmn* !, ~8a!

mi j 5Di jkl ~kkl
o 1K̂klmn«mn* 1L̂klmnkmn* 2kkl* !

5Di jkl
h ~kkl

o 1K̂klmn«mn* 1L̂klmnkmn* !. ~8b!

As can be seen from Eqs.~A1a!–~A1e! in Appendix A, the
four micropolar Eshelby tensors are expressed in terms o
tensorsÎ , I, J, and Ĵ. These, in turn, can be expressed
terms of derivatives of certain potentials, which are e
pressed mathematically as

c~x!5
1

4p E E E
V

rdx8, ~9a!

f~x!5
1

4p E E E
V

1

r
dx8, ~9b!

M ~x,k!5
1

4p E E E
V

e2r /k

r
dx8. ~9c!

Here,V is the domain of the inhomogeneity, which in o
case is either a sphere or a circular cylinder. The origin of
coordinate system is taken to be at the centroid of the in
sion ~for both the sphere and the cylinder!. The first two
potentials are the biharmonic and harmonic potentials w
the third is what the authors have termed an exponentia
decaying-density potential~EDD potential!.32 The symbolr
is the scalar distance between the spatial coordinates o
integration point and the physical location where the pot
tial is sought to be evaluated. The symbolk is a constant
whose value depends on the micropolar material prope
~see Appendix A!.

The derivatives of the harmonic and biharmonic pote
tials can be obtained from Mura.15 The derivatives of
M (xi ,k) are described in Appendix B for the spherical ca
and in Appendix D for the cylindrical case. The derivativ
22411
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of the EDD potential are nonuniform within the region of th
inclusion shape~sphere or cylinder! and thus, as remarke
earlier, the micropolar Eshelby tensors are non-uniform, e
in the case of spheres~unlike in classical elasticity!. This fact
makes Eqs.~8a! and~8b!, in general, analytically intractable
One has to resort to numerical techniques to compute
fictitious non-uniform eigenstrain and eigentorsion. Ho
ever, since we are interested in analytical estimates of
overall effective properties, we will use the volumetric ave
ages of the micropolar Eshelby tensors, to estimate the a
age fields in the inhomogeneity problem. Thus Eqs.~8a! and
~8b! are replaced by

s i j >Ci jkl ~«kl
o ^Kklmn&«mn* 1^Lklmn&kmn* 2«kl* !

>Ci jkl
h ~«kl

o 1^Kklmn&«mn* 1^Lklmn&kmn* !, ~10a!

mi j >Di jkl ~kkl
o 1^K̂klmn&«mn* 1^L̂klmn&kmn* 2kkl* !

>Di jkl
h ~kkl

o 1^K̂klmn&«mn* 1^L̂klmn&kmn* !. ~10b!

The angular brackets indicate averaging over the volume
the inhomogeneity. The average of any tensor field is defi
as

^Fi jk ...~x!&5
1

VV
E E E

V

Fi jk ...~x!dV. ~11!

Here F is any arbitrary order tensor field, whileVV is the
volume of the region of the inhomogeneityV.

The volumetrically averaged Eshelby tensors for a sph
cal inclusion in a micropolar material are not available in t
literature, and are derived by the present authors in this
tion. For the circular-cylindrical inclusion, we can easily o
tain the average Eshelby micropolar tensors since the a
ages of the EDD potential and their derivatives we
presented by Cheng and He20 in their calculation of the strain
energy for a circular-cylindrical inclusion~summarized in
Appendix D of this paper!.

Consider the spherical shape. The expressions of the
rivatives off ~harmonic potential!, c ~biharmonic potential!,
andM (xi ,k) ~EDD potential! are presented in Appendix B
The volumetric averages of these quantities are derived
detail in Appendix C. The main results are expressed her

^f ,i j &5
21

3
~dmidm j!, ~12a!

^c ,i jkl &5
21

15
@~dmkdm j!~dnldni!1~dmldm j!~dnkdni!

12~dmkdml!~gdn jdni!#, ~12b!

^M ~k!&5k21
kF~k!

V
P1 , ~12c!

^M ,i~k!&50, ~12d!
0-4
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^M ,i j ~k!&5
d i j F~k!

ikV
P22

d i j F~k!

k2V
P3i j , ~12e!

^M ,i jk~k!&50, ~12f!

^M ,i jkl ~k!&52
F~k!

k2V
~d i j dkl1d ikd j l 1d i l d jk!P4

2
F~k!

ik3V
~dklP5i j 1d j l P5ik1d jkP5i l 1d i l P5 jk

1d ikP5 j l 1d i j P5kl!1
F~k!

k4V
P6i jkl . ~12g!

Here P1 , P2 , P3i j , P4 , P5i j , andP6i jkl are volume in-
tegrals evaluated in the domain of the spherical inhomo
neity and appear in the evaluation of the volumetric av
ages. They are uniform, but scale-dependent. They
defined and evaluated in Appendix C. HereV is the volume
of the spherical inclusion andF(k) is 2k(k1a)e2a/k. The
symbol a represents either the radius of the sphere or
cylinder. Note that the volumetric averages of the odd-or
derivatives of the EDD potential vanish over a sphere.

The derivation of the average micropolar Eshelby tens
paves the way for evaluating the average stresses as we
the overall properties. Now we use the combination of E
helby’s equivalent inclusion principle@as defined in Eqs
~10a! and ~10b!# and an extended version of a classic
mean-field homogenization concept to evaluate the sc
dependent overall properties. The extended mean-field
cept for micropolar materials~based on the classical concep!
is briefly outlined here.

It is important to note here that for effective properties
need only consider either a uniform couple stressor a uni-
form force stress separately as the far-field boundary co
tion. Application of both boundary conditions simultaneous
will violate equilibrium ~or will require nonuniform body
moments, needlessly complicating the problem!. Let either a
self-equilibrating far-field stress fieldor a self-equilibrating
moment stress field be applied to a micropolar material c
taining a finite concentration of similarly oriented but ra
domly distributed inhomogeneities. Then we have

s i j
`1s i j

V5Ci jkl
h $~Ci jkl

M !21~skl
` 1skl

M !1«kl!

5Ci jkl
M $~Ci jkl

M !21~skl
` 1skl

M !1«kl2«kl* !,

~13a!

mi j
`1mi j

V5Di jkl
h $~Di jkl

M !21~mkl
` 1mkl

M !1kkl!

5Di jkl
M $~Di jkl

M !21~mkl
` 1mkl

M !1kkl2kkl* !.

~13b!

Here sV and sM are the average stress disturbances in
inhomogeneity and in the matrix, respectively, due to
presence of the inhomogeneities; whilemV andmM are the
analogous tensors for the moment-stress. The superscr`
indicates far-field values, and«* and k* are the fictitious
eigenstrain and eigentorsion, respectively, necessary to
22411
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place the inhomogeneity by an inclusion of the same geo
etry. Finally,« is the strain perturbation due to the presen
of a single inhomogeneity andk is the analogous torsion
perturbation. In subsequent derivations, although b
moment-stress and force-stress equations are included
gether, when evaluating effective properties, they are app
at the far-field individually~not simultaneously! and the fic-
titious eigenfield related to the other should be considere
be zero. In our numerical examples of computing effect
stiffness of micropolar composites~to be presented in Sec
IV !, a uniform far-field force stress boundary conditions w
be considered while the far-field moment stress bound
condition will be set to zero. Such a set of boundary con
tions implies thats j i

`5s i j
` . Decomposing the isotropic cen

trosymmetric micropolar constitutive relation into its sym
metric and antisymmetric parts, it can be shown that
constitutive relation for the force stress should be written
s j i 5C( j i )(kl)« (kl) . Here the parentheses indicate the sy
metric part of the tensors with respect to those indices. In
sequel, this condition will not be explicitly written, althoug
it should be understood by the reader to apply throughout
remaining equations.

Using, the average micropolar Eshelby tensors derive
this section, we can write

«mn5^Kmn ji&« j i* 1^Lmn ji&k j i* , ~14a!

kmn5^K̂mn ji&« j i* 1^L̂mn ji&k j i* . ~14b!

Now, as per the mean-field concept, the average of all
stress disturbances must be zero, i.e.,

~12 f !s i j
M1 f s i j

V50, ~15a!

~12 f !mi j
M1 f mi j

V50. ~15b!

Here f is the volume fraction of the inhomogeneities. Usin
Equations~13a!, ~13b!, ~14a!, ~14b!, ~15a! and ~15b!, the
following can be derived easily:

s i j
M52 f Ci jkl

M @~^Kklmn&klmn2dklmn!«mn* 1^Lklmn&kmn* #,
~16a!

mi j
M52 f Di jkl

M @^K̂klmn&klmn«mn* 1^L̂klmn2dklmn&kmn* #,
~16b!

s i j
V5~12 f !Ci jkl

M @~^Kklmn&klmn2dklmn!«mn* 1^Lklmn&kmn* #,
~16c!

mi j
V5~12 f !Di jkl

M @^K̂klmn&klmn«mn* 1^L̂klmn2dklmn&kmn* #.
~16d!

Hered i jkl is the fourth-order Kronecker tensor.
Finally, approximate average values of the fictitio

eigenstrains and eigentorsions can be computed by subs
ing Eqs. ~16a!–~16d! and Eqs.~13a! and ~13b!. The final
expressions are given below:

@DCi jkl $ f ~^Kklmn&2dklmn!2^Kklmn&%1CMklmn#«mn*

2DCi jkl ^Lklmn&kmn* 5DCi jkl «kl
` , ~17a!
0-5
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2DDi jkl ^L̂klmn&«mn* 1@DDi jkl $ f ~^K̂klmn&2dklmn!

2^K̂klmn&%1CMklmn#kmn* 5DCi jkl kkl
` . ~17b!

Equations~17! represent twelve equations to solve f
twelve independent components of eigenstrain and eigen
sion. The overall scale-dependent propertiesC̄ can now be
evaluated easily as

«̄5f~«`1«V!1~11 f !~«`1«M !5C̄21s`, ~18a!

«V5C21sM1«, ~18b!

«M5C21sM, ~18c!

where we have used bold-faced notation.

IV. RESULTS AND DISCUSSION

Results are presented for a micropolar matrix with ra
domly distributed voids~spherical and cylindrical!. The cy-
lindrical voids are identically oriented, thus making th
voided material transversely isotropic in the apparent m
roscale behavior. We consider only uniform far-field for
stresses~no moment-stresses!, and seek to find the overa
properties of the resulting porous composite. Poisson’s r
is fixed at 0.3. The degree of micropolarity,p, is introduced
in this article asp5k/2m.

The transversely isotropic results for the cylindrical ca
are presented first. Figure 2 depicts the variation of the
fective transverse shear modulus~in the 1-2 plane, transvers
to the axis of the cylindrical voids! with respect to normal-
ized length scale, for different void volume fractions at
fixed degree of micropolarity (p50 corresponds to the clas
sical elasticity case!. The overall effective transverse she
modulus is normalized with that of the matrix and the resu
are plotted with respect to the normalized length param
(a/g). Here g is the characteristic length parameter d
scribed in Appendix A whilea is the radius of the sphere o
the circular cylinder. The micropolar shear modulus is cal

FIG. 2. Effective normalized transverse shear modulus for r
domly dispersed circular cylindrical voids vs the normalized len
for the varying volume fraction (f ) at a fixed micropolarity (p
50.5). Here the symbola is the radius of the cylindrical voids
while g is the normalizing parameter~see Appendix A!.
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lated as (C12121C1221)/2. Our analytical results are consis
tent with the numerical results presented by Yuan a
Tomita.21,22 It is interesting to note that the micropola
length-scale effect results in the stiffening of the compos
~compared with classical predictions! as the void radius de
creases. As expected, as the inhomogeneity size~radius! in-
creases, the micropolar solution converges to the class
solution. To explore the effect of degree of micropolarity, t
effective transverse shear modulus is presented at a fi
volume fraction of pores, for varying values ofp ~Fig. 3!.
Clearly, the degree of micropolarity influences how erron
ous the classical predictions might be.

In Fig. 4, we explore the transverse bulk modulus (K12)
and the axial extensional modulus (E33) for the case of cy-
lindrical voids. They can be defined as:K125(C1111
1C1122)/2 and E335C111122(C3322)

2/(C22221C2211). In-
terestingly, as can be seen from Fig. 4, while the effect
axial extensional modulus exhibits the same trend as the
fective transverse shear modulus~Figs. 2 and 3!, the trans-
verse bulk modulus actuallydecreaseswith a decrease in the

-
h

FIG. 3. Effective normalized transverse shear modulus for r
domly dispersed circular cylindrical voids vs the normalized len
for the varying micropolarity (p) at a fixed volume fraction (f
50.5). Here the symbola is the radius of the cylindrical voids
while g is the normalizing parameter~see Appendix A!.

FIG. 4. Effective normalized axial extensional elastic modu
and transverse bulk modulus for randomly dispersed circular cy
drical voids vs the normalized length for fixed micropolarity (p
50.1) at a fixed volume fraction (f 50.1). Here the symbola is the
radius of the cylindrical voids, whileg is the normalizing paramete
~see Appendix A!.
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void radius. While the trend in effective shear modulus h
been reported previously,21,22 the authors believe that resul
for the decrease in the transverse bulk modulus are repo
here for the first time. These results point out, in addition
the customary length scale effect, a more comp
orientation-dependent length scale effect. The other tra
verse property is the axial shear stiffness which we found
follow the same trend as the transverse shear modulus~and
hence is not plotted!.

Discussion of a subtle point is in order here. As is cle
from Eqs. ~4a! and ~4b! the micropolar constitutive elasti
behavior is characterized by two tensorsC ~which includes
classical constants and a micropolar constantk! and D
~which contains micropolar constants,a, b, andg!. Qualita-
tively, the effect of micropolarity on tensorD is the same as
on tensorC, however, in reality~experimentally! one can
only measure the ‘‘apparent’’ classical shear or bulk modu
for a given solid and indeed these are physically the m
intuitive quantities. The micropolar stiffness we plot in Fig
2–5 represents the modulus that will be determined b
conventional elastic experiment with the micropolar effe
entering mainly through the constantk. For evaluating the
effective constantsa, b, andg, moment stress boundary con
ditions need to be applied instead of force stresses. The
fective properties can then be evaluated via Eq.~17b!. How-
ever, little additional understanding is obtained from such
exercise since experimentally, the determination ofa, b, and
g is extremely difficult while the determination of effectiv
C-tensor values~which include the effect ofk! is straightfor-
ward. Hence, onlyC-tensor results are plotted in this work

The effective isotropic stiffness properties of a micropo
material containing spherical voids is shown in Fig. 5. In t
case, due to the symmetry of the inhomogeneity, the ef
tive properties are isotropic and only an increase in the pr
erties with a decrease in the inhomogeneity size is obser

As emphasized earlier, when evaluating the apparent
fective shear modulus of an isotropic micropolar solid~trans-
verse shear for a material containing cylindrical voids!, a
stiffening is observed~compared to the classical solution!

FIG. 5. Effective normalized shear modulus for randomly d
persed spherical voids. The micropolarity (p) is fixed at 0.5 while
the volume fraction (f ) of the spherical cavities is fixed at 0.1. Th
symbol a is the spherical void radius andg is the normalizing
parameter defined in Appendix A.
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when the inhomogeneity size is decreased below a cer
characteristic length. This is the so-called scale effect. T
effect is absent in classical elasticity as no length scale en
the constitutive behavior. Indeed, virtually all the homoge
zation concepts in classical elasticity rely exclusively
scale-independent parameters~e.g., volume fraction! to as-
sess the overall properties. Physically, the length scale e
in micropolar solids arises due to the micro-rotations~i.e. the
entrance of strain gradients into the constitutive behavi!.
The stiffening effect~or softening effect in the case of tran
verse bulk modulus! observed also has a simple interpre
tion. Loading of a composite can be considered to be equ
lent to supplying energy to the composite. Within th
classical framework, almost all the applied energy is de
cated to the classical deformations~i.e. translation of the ma-
terial points!. In the case of a micropolar solid, depending
orientation complexity two scenarios can occur:~i! only part
of the energy is spent on classical deformation while a pa
expended on micro-rotations. Thus the apparent classica
formations~which are measurable in laboratory! will appear
smaller and hence the composite will appear stiffer.~ii ! For
certain deformation types~i.e., equal biaxial deformation in
the plane of transverse isotropy!, the additional microscale
degrees of rotation facilitate deformation and thus the co
posite appears softer for that particular deformation mo
One should note that this orientation-dependent softening
fect is not observed in an overall isotropic micropol
composite.

It is also pertinent here to discuss the validity of our a
sumption regarding the use of averaged Eshelby tensor
the case when local inhomogeneous stresses within an
the vicinity of the inhomogeneity are required, our appro
mation of first averaging the Eshelby tensors over volu
becomes inaccurate. However, we are mainly intereste
the overall effective properties and in such a situation
approach is somewhat justified. Perfectly bonded ellipso
inclusions are characterized by uniform Eshelby’s ten
within the framework of classical elasticity. Nonuniformit
of this tensor can arise due to several reasons. For exam
the inclusion shape can give rise to nonuniformity. Eshelb
tensor is nonuniform for polyhedrals, even in classical el
ticity. Sliding inclusions in general have nonuniform Eshel
tensors. Finally, as in our study inclusions in micropolar m
terial ~even ellipsoidal ones! have nonuniform Eshelby ten
sors.

Our simplifying assumption can be stated as follow
Given an inclusion problem such that Eshelby’s tensor
spatially nonuniform, we assume that

^Si jkl «kl* &>^Si jkl &^«kl* &. ~19!

In terms of integral equations, we can recast these equat
as follows:34

Si jkl ~x!5E
V
Gi jkl ~x,y!dy, ~20a!

-
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^« i j &5
1

V E
V
E

V
Gi jkl ~x,y!«kl* ~y!dx dy

5
1

V E
V
Si jkl ~x!«kl* ~y!dx5^Si jkl «kl* &5^Si jkl &^«kl* &.

~20b!

Several researchers have used this approximation.29,33,35

Nozaki and Taya35 used this approximation~and the mean-
field concept! to compute effective properties of a compos
reinforced by convex polygons. Since Eshelby’s tensor is
uniform for polyhedrals or polygonals, Rodin34 questioned
the accuracy of Nozaki and Taya’s analysis~and by exten-
sion, of several previous works dealing with inclusion pro
lems characterized by a nonuniform Eshelby tensor!. In a
recent paper Nozaki and Taya33 used the boundary elemen
method to demonstrate that despite the fact that cer
shapes~rectangular, pentagonal, etc.! have highly nonuni-
form stress fields~like in our case for micropolar materials!,
the assumption in Eq.~27! provides a fair approximation fo
overall properties. A similar verification of the accuracy
this approximation for our problem~ellipsoidal inhomogene-
ities in micropolar materials! would require the developmen
of micropolar computational tools~e.g. micropolar finite el-
ement or boundary element method!, which is beyond the
scope of the present paper.

V. SUMMARY

In this paper, Eshelby’s equivalent inclusion method w
employed to approximately estimate the average microp
elastic fields of spherical and cylindrical inhomogeneiti
For this purpose, the average micropolar Eshelby ten
were derived explicitly. A classical mean-field homogeniz
tion scheme was extended to micropolar materials and u
in conjunction with the ‘‘averaged’’ stresses in the inhom
geneity, to obtain overall scale-dependent stiffness of
cropolar composites containing cylindrical and spherical
homogeneities. Numerical results for selected stiffn
components were presented for micropolar materials w
voids, by applying appropriate uniform far-field forc
stresses. The present closed-form solution for randomly
tributed voids agrees qualitatively well~for similar volume
fractions! with the numerical finite element results presen
by Yuan and Tomita21,22 for micropolar materials containing
periodically spaced cylindrical voids. Isotropic materials a
found to stiffen as the length scale decreased. As an exam
the apparent shear modulus is parametrically explored
transversely isotropic materials, the size effect on ove
properties may have an orientation dependence and
cause stiffening for some stiffness components, but soften
for some others. All effective properties are found to mon
tonically approach the classical elasticity solution as the n
malized radius increases, or as the degree of micropola
decreases.
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APPENDIX A: EXPRESSIONS FOR TENSORS Î , I , J,
AND Ĵ IN EQ. „7… „REF. 20…

I n j i52Bmg2f ,i jn1
k

m
~d jnf ,i2d inf , j !

22Bmg2M ,i jn~x,g!

1H BS m1
k

2D1
k

2mJ d inM , j~x,g!

1H BS m2
k

2D2
k

2mJ d jnM ,i~x,g!, ~A1a!

Jn ji52
1

2m
$g«nikf , jk1b«n jkf ,ik%1

1

2m
$g«nikM , jk~x,g!

1b«n jkM ,ik~x,g!%, ~A1b!

Î n j i5
1

4m
$k« i jkf ,kn2~2m1k!«nikf , jk2~2m2k!«n jkf ,ik%

2
1

4m
$~2m1k!« i jkM ,kn~x,g!

2~2m1k!«nikM , jk~x,g!

2~2m2k!«n jkM ,ik~x,g!%1
« i jk

2
M ,kn~x,h!

1
~2m1k!« i jn

4mg2 M ~x,g!, ~A1c!

Ĵn j i52
g1b

4m
f ,i jn1

~2m1k!~g1b!

4mk
M ,i jn~x,g!

2
1

2k
$ad i j M ,kkn~x,h!1~g1b!d i j M ,i jn~x,h!%

2
~2m1k!

4mkg2 $gd inM , j~x,g!1bd jnMi ~x,g!%,

~A1d!

I n j i
s 5

l1m

l12m
c ,i jn2

l

l12m
d i j f ,n2d inf , j2d jnf ,i .

~A1e!

Here, B5k/@m(2m1k)#, g25(2m1k)g/(4mk), and h2

5(a1b1g)/(2k).
0-8
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APPENDIX B: EDD DERIVATIVES
FOR SPHERICAL INHOMOGENEITIES

The derivatives ofM (xi ,k) can be written as~Ref. 19!:

M ,i~x,k!5xi

F~k!

ikr
j 1~ ir /k!, ~B1a!

M ,i j ~x,k!5d i j

F~k!

ikr
j 1~ ir /k!2xixj

F~k!

k2r 2 j 2~ ir /k!,

~B1b!

M ,i jm~x,k!52~xi ,d jm1xjd im1xmd i j !
F~k!

k2r 2 j 2~ ir /k!

2xixjxm

F~k!

ik3r 3 j 3~ ir /k!, ~B1c!

M ,i jmn~x,k!52~d i j dmn1d imd jn1d ind jm!
F~k!

k2r 2 j 2~ ir /k!

2~xixjdmn1xixmd jn1xixnd jm1xjxmd in

1xjxnd im1xnxmd i j !
F~k!

ik3r 3 j 3~ ir /k!

1xixjxmxn

F~k!

k4r 4 j 4~ ir /k!. ~B1d!

Here j v is the spherical Bessel function of orderv. It can be
written in terms of the Bessel function of first kind~of half-
integers!, Jv11/2, i.e.,

j n~z!5
1

Az
Ap

2 Jn11/2~z!. ~B2!

APPENDIX C: P INTEGRALS USED IN EQ. „12…
„FOR SPHERICAL INHOMOGENEITY …

Using Eq. ~11! and ~14!, all of the averages can be ex
pressed in terms of the following integrals:

P1~k!5E E E
V

sinh~r /k!

r
dV, ~C1a!

P2~k!5E E E
V

j 1~ ir /k!

r
dV, ~C1b!

P3i j ~k!5E E E
V

xixj j 1~ ir /k!

r
dV, ~C1c!

P4~k!5E E E
V

j 2~ ir /k!

r 2 dV, ~C1d!
22411
P5i j ~k!5E E E
V

xixj j 3~ ir /k!

r 3 dV, ~C1e!

P6i jkl ~k!5E E E
V

xixjxkxl j 4~ ir /k!

r 4 dV. ~C1f!

More details of the evaluation of average Eshelby’s te
sors are omitted for the sake of brevity, but it is noted th
integrals involving odd combinations of position vector a
erage to zero~i.e., xi , or xixjxk, etc.! When the integrand
contains even combination of position vector~i.e., xixj ), all
combinations in which the indices are not identical also
erage to zero. As an example, integrals ofxixjxk multiplied
by any combination ofr or the Bessel function is zero~odd
combination!, while xixj is zero wheneveriÞ j ~even com-
bination!. This greatly simplifies the derivation.

The integration has been performed, and the results a

P1~k!54p@ak cosh~a/k!2k2 sinh~a/k!#, ~C2a!

P2~k!54p ik2@sinh~a/k!2Shi~a/k!#, ~C2b!

P3i j ~k!5
4pk2

3
@2a cosh~a/k!14k sinh~a/k!

23kShi~a/k!# if i 5 j 50 if iÞ j ,

~C2c!

P4~k!5
2p

a2 @k$3k„2a cosh~a/k!1k sinh~a/k!…

1a2 shi~a/k!%#, ~C2d!

P5i j ~k!5
22p

3a2 @ ik2
„215ak cosh~a/k!

1~2a2115k2!sinh~a/k!13a2 shi~a/k!…#

if i 5 j 50 if iÞ j , ~C2e!

P6i jkl ~k!5
2p

5a2 @k2
„a~2a21105k2!cosh~a/k!2k~22a2

1105k2!sinh~a/k!215a2k sinh~a/k!…#

if i 5 j 50 if iÞ j . ~C2f!

Here Shi indicates the sinh integral.

APPENDIX D: DERIVATIVES OF EDD, HARMONIC, AND
BIHARMONIC FUNCTIONS FOR CYLINDRICAL

INHOMOGENEITIES

The average of derivatives ofM (xi ,k) can be written as
~see Ref. 20!

^M ~x,k!&5k22k2J1S a

kDK1S a

kD , ~D1a!
0-9
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M ,3~x,k!50, ~D1b!

^M ,i~x,k!&50, ~D1c!

^M ,i j ~x,k!&52J1S a

kDK1S a

kD d i j , ~D1d!

^M ,i jk~x,k!&50, ~D1e!

^M ,i jkl ~x,k!&52
~d i j dmn1d imd jn1d ind jm!

4k2 J1S a

kDK1S a

kD .

~D1f!

J and K are the modified Bessel functions of the first a
second kinds, respectively. The average of derivatives of
andc can be written as15

^f ,i j &52d i j TI , ~D2a!

^c ,i jkl &52d i j dkl@TK2aI
2TIK #

2~d ikd j l 1d jkd i l !@TJ2aI
2Ti j #,
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