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Average elastic fields and scale-dependent overall properties of heterogeneous micropolar materials
containing spherical and cylindrical inhomogeneities
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Scale-dependent solutions are provided for the “average” elastic fields, when spherical and cylindrical
inhomogeneities are embedded in an infinite micropolar medium. A mean-field homogenization technique is
extended to a micropolar medium and the overall scale-dependent properties of micropolar composite are
computed and compared with the classical solution. Unlike classical elastic sol@tidnsh are scale-
independent the apparent stiffness of isotropic micropolar composites increases as inhomogeneity size de-
creases, at a constant volume fraction. In transversely isotropic micropolar composites, a more complex
orientation-dependent behavior is observed: the apparent microscale stiffness for transverse shear and axial
extension increase with decreasing inhomogeneity @sein the isotropic cagewhile the transverse bulk
stiffness exhibits the opposite trend. The current work is expected to find application in the analysis of
nanocomposites, biocomposites, and foam structures.
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[. INTRODUCTION rotational degrees of freedom in addition to the classical
ones. The micropolar medium is the object of this study and

As has been noted by several researchers, e.g., Eringemas several similarities to the Cosserat médide concept
and Lake¢, classical elasticity becomes inaccurate when theof classical, micropolar, microstretch, and micromorphic
length scales of structural constituents become comparable t8M) media is depicted and discussed in Fig. 1. Clearly, the
the intrinsic characteristic length scale of the material micro-‘discrete” media concept embodied in 3M media is ideal for
morphology, or nanomorphology. Granular media, materialgnaterials at the nanoscale or where additional degrees of
with microstructures, composite materials, biological mediareedom are likely to have an impact.
(blood, bones, ety nanoscale materials, and foams are ex- The micropolar medium concept was applied to biological
amples of such structures. The use of the more enriched minaterials, cellular solids, polymers, et€-*?and future ap-
cropolar theory of elasticity is often warranted in such situ-plications are predicted for nanoscale materials and struc-
ations. The theory of micropolar elasticity was firmly tures. In particular reference to the nanoscale, some recent
established by Eringen and co-workets’in several papers and interesting researth* indicated that independent mi-
and monographs. In particular, much of the work in this areacrorotations or nanorotations are important deformation
was recently summarized by EringérSeveral other re- mechanisms in nanostructures. As can be well appreciated,
searchers have contributed to the general field of Cosserétie material systems discussed abGwe, those that can be
elasticity, and Refs. 6—9 also provided extensive lists of refmodeled as micropolar materials, e.g., biocomposites, cellu-
erences, as well as overviews of the subject. lar solids, and nanostructured solidse often composites or

In the micromorphic representation of media, materialsheterogeneous mediar can be treated as sycfheir prop-
are idealized at each point to possess individual deformablerties are scale dependent, and an estimation of their effec-
directors. Deformations of such materials are then contive properties is of great technological interest. Such esti-
structed by superposing the classical macroscale deformationates require a knowledge of the “average” micropolar
fields with the local(or microscalg¢ deformations of the de- elastic fields caused throughout the material heterogeneities,
formable directors. In classical continuum mechanics, kinebecause of external loading.
matical degrees of freedom are based on macroscale material Extensive work has been done in the field of microme-
point translations that also uniquely define macroscale rotachanics of inclusions and inhomogeneities in classical elastic
tions. Classical continuum media thus do not possess indenedia. Some excellent reviews have been provided by Mura
pendent rotational degrees of freedom. However, materiadnd co-workerS 1" and Nemat-Nasser and Hdfiln con-
points in micromorphic media can possess, in addition to thérast, little attention has been paid to inclusions and inhomo-
classical macroscale displacement fields, microshear, mgeneities in a Cosserat or micropolar medium. Recently, two
croelongations, and microrotatioiwhich are distinct from  paper$®?° addressed the problems of spherical and cylindri-
the classical macroscale rotationSimplified versions of the cal inclusions, respectively. Muradefined arinclusionas a
micromorphic continuum include the microstretch mediumbounded region in a matrix, with a stress-free transformation
(that possesses microelongation and microrotational degresgrain or eigenstrain prescribed in the region.iAhomoge-
of freedoms in addition to the classical ohesd the mi- neityis defined as a bounded region in a matrix, with differ-
cropolar continuumwhose deformation directors only have ent material properties than those of the surrounding matrix.

0163-1829/2002/6@2)/22411310)/$20.00 66 224110-1 ©2002 The American Physical Society



P. SHARMA AND A. DASGUPTA PHYSICAL REVIEW B66, 224110 (2002

Initial . Displacement Deformation director
Conﬁgl::‘atlon - vectorsi A _y Micro
X, Final X, rotation
: Copfiguration $i
X X
X Material X
Point
> > .
X X, FIG. 1. Schematic of the 3 M
(a) (b) concept contrasted with classical
continuum (a), classical(b), mi-
cropolar(c), one microstretchd)
X, X, L micromorphics. Here the lower
Deformation director Deformation;divestor casex represents the undeformed
A A configuration while the upper case
X, X3 x represents the deformed con-
figuration.
X Micro X \
& elongation % Micro shear
> —>
X, X
(©) (d)
X, X2

Various examples of naturally occurring eigenstrains areaverage stresses in spherical and cylindrical inhomogeneities
thermal expansion, electromechanical or magnetomechanicambedded in micropolar materials. Extending a classical
strains, plastic deformation, hygromechanical swellingmean-field homogenization sche’{&é® we obtain overall
strain, etc. Eshel5y?® showed that the elastic field of an scale-dependent properties for micropolar composites based
inhomogeneity could be obtained by replacing the inhomo-on these average elastic fields.

geneity with an equivalent inclusion containing a prescribed

fictitious eigenstrain of an appropriate magnitude. II. MICROPOLAR CONSTITUTIVE LAWS AND

To our knowledge, the problem of anthomogeneityn a ESHELBY'S EQUIVALENT INCLUSION CONCEPT
micropolar material has not been addressed in closed form ) ) ] . o )
before. In particular, no closed-form solution for the overall ~Let & micropolar inclusion be enclosed in an infinite mi-
properties of Cosserat materials reinforced by inhomogenesropolar medium with prescribed asymmetric stress-free
ities has appeared in the literature. There is no literature ofigenstrain, and eigentorsion. Both the eigenstrayf) (and
the use of Eshelby®3?® celebrated equivalent inclusion eigentorsion ji) are considered to be zero outside the do-
method in scale-dependent homogenization methods for mmain of the inclusior{{2) and uniform within it. The govern-
cropolar materialgunlike in classical elasticity, where most ing equations for the micropolar medium within the domain
homogenization methods are scale-independent and agé the inclusion can be written &%’
based on Eshelby’s approachn general, researchers have
tended to follow the numerical route as far as applications of ij,j=0, (18
Cosserat elasticity to composites is concerned.

The scant work that is available in the literature on ho-
mogenization in Cosserat materials is discussed here. Yuan *
and Tomitd“?? used finite-element simulationéunit-cell 7ji = Ciju (x1 =~ £k (2a)
method to compute the overall properties of Cosserat mate-

mji ; + 7ijko k=0, (1b)

— . _ Lk

rials with periodically distributed voids. They presented mji = Dijia (K11~ #i), (20)
scale-dependent effective properties. Recently Forese- e = U — (3a)
sented some fundamental work on the study of size effects in LT ik Pk
solids via the use of Cosserat elasticity. The authors of Ref. _

e - Kji = @i j - (3b)
24 presented a finite element approach to estimate elastoplas- :
tic overall properties of Cosserat materials. Typical summation rules applynless otherwise noteds is

In this paper, we use Eshelby's formalism of the regular stress tensor, whitedenotes the moment stress
eigenstraing>2® modified appropriately to account approxi- tensor.C andD are the fourth-order elasticity tensors. In this
mately for interactions between inhomogeneities, to estimatpaper we assume micropolar centrosymmetric isotropic be-
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havior for all materialsu and ¢ are the displacement and wise), this operator relates the actual strain perturbation to
microrotation vectors, respectively, an@ndx are the strain  the eigenstrain, i.e., the perturbation straiSige* +&P). In
and torsion tensors, respectively; is the alternating ten- the left-hand side of Eqg5), where the stress within the
sor. The elastic properties for an isotropic centrosymmetrignhomogeneity is expressed in terms of the matrix moduli,
micropolar material can be written as. both the fictitious and the real eigenstrains are subtracted
since these are inelastic strains and do not participate in the
K elastic constitutive behavior. On the other hand, on the right-
m E) SOy, (48 hand side, where the stresses are expressed in terms of the
inhomogeneity moduli, only the real eigenstrai?) is sub-
Djiki = adji S+ ¥ i+ By (4p)  tracted. The use of Eshglby’; equivalgnt inclusion principle
for the micropolar case is discussed in Sec. lll, where we
wherea, B, N, 7, k, and u are the six micropolar elastic make a suitable approximation to facilitate the estimation of

constants required to completely specify the fourth order mithe average scale-dependent stresses and overall properties.
cropolar material property tensors.

In this work, we assume that the inhomogeneity is per-
fectly bonded to the matrix. Most work in classical elastic
theory of composites adopt such an assumptsae for ex- In this paper, we are interested only in the average
ample, Murd). However, in certain cases such an assumpstresses in the matrix and inhomogeneity, and the overall
tion ceases to be valid and several researchers have deveffective properties that are scale dependent. In such a case,
oped theories for inhomogeneities that are imperfectlywe propose to simplify the analysis by using volumetrically
bonded to the matrix(within the context of classical averaged micropolar equivalents of Eshelby’s tensors. This
elasticity.”>~** Analogous theories are not available in the assumption cannot be employed to estimate local pointwise
micropolar theory of inhomogeneities, and are beyond thetress distributions, but often provides reasonable estimates
scope of the present paper. of the average stresses in the inhomogeneity/matrix for the

According to Eshelby’s formalism, the stress disturbanceurpose of estimating overall propert®sFurthermore, as
due to an elastic inhomogeneity embedded in an infinite elaswill be shown, the averaging process does not eliminate the
tic matrix (subjected to uniform far field straia®) can be scale dependence. This averaging process leads to the esti-
found by using the “equivalent inclusion” concept. Accord- mation of an “average” or “smeared” fictitious eigenstrain
ingly, an inhomogeneity can be replaced by an inclusion withand eigentorsion, which can then be used to compute the
a suitable fictitious eigenstrain prescribed within its domainaverage stresses as well as the overall homogenized proper-
Let the inhomogeneity have a pre-existing inelastic strainies of a micropolar composite. Further discussion of this
(eigenstrain P. Then, this inhomogeneity can be replacedsimplification and its implications are presented in Sec. IV.
by an equivalent inclusion with a suitable fictitious eigen-In this section, the average micropolar Eshelby-type tensors
straine™. are derived for spherical inhomogeneities and the Mori-

This fictitious eigenstrain is determined by equating theTanaka mean-field homogenization scheme for classical
stress in the inhomogeneity to the stress everywhere withielasticity’’?® is extended to micropolar materials. We also

Cjiki =\ 6j 6+

K
/.L+ E 6jk5i| +

[ll. SOLUTION

the equivalent inclusion\{,): present parametric examples of scale-dependent overall
properties of micropolar composites reinforced by cylindri-
ij=Ciji (ek1+ Samn(emnt mn) — €k~ &k) cal inhomogeneities.
_ h oo L p Cheng and H¥"?° and Sharma and Dasguftaised the
=Cijulei® Samn(emnt emn) ~ k- (5) Green functions of micropolar elasticity to obtain Eshelby’s
HereSis the so-called Eshelby tensor for interior poifits.,, ~ nonuniform tensors for spherical inclusions, circular-

for all position vectors lying completely within the inhomo- cyIind_ricaI inclusions,_and cuboidal inclusions, respectively.
geneity. C is the fourth-order elastic stiffness tensor for the!N Micropolar materials, four Eshelby-type tensors are
matrix material, whileC" is the elastic tensor for the inho- N€eded to relate the eigenstrains and eigentorsions to
mogeneity. For an inhomogeneity of arbitrary sha®és an the perturbations in strains and torsions, as shown in Egs.
integral operator one(* + P). In such a case, Eq5) are a (6@ and(6b),

set of six simultaneous integral equations that must be solved

within the region of the inhomogeneity to determine the fic- emn=Kmnjig}i + Lmnjik] (6a)
titious (and generally nonuniform eigenstraifin a classical
elastic medium, Eshelby’s tensor is uniform for ellipsoidal Kmn=Kmnjie s+ Lnnjic (6b)

shapes(which includes spheres and cylinderén such a
case, Eq(5) reduce to six algebraic equations, and the probyherek, K, L, andL are the micropolar Eshelby tensors,
lem of an ellipsoidal inhomogeneity can thus be readilyexpressed 48
solved. Unfortunately, Eshelby’s tensor is nonuniform for the

micropolar case for all geometrié$?°-*2and the nonuniform

= S .s —_ 1 e
fictitious eigenstrain can be found only numerically. It should Kmnnji=nji,m ™ nji,m ™ Eimaliji (73
be noted that the integral opera®has a very simple physi- R
cal meaning: for a given total eigenstrdfictitious or other- Lmnji=Inji.m— &imndiji » (7b)
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kmnji: Tnjims (70) of the EDD potential are nonuniform within the region of the
’ inclusion shapdsphere or cylindgrand thus, as remarked
[ =3 (7d) earlier, the micropolar Eshelby tensors are non-uniform, even
majeEnnLme in the case of spherdanlike in classical elasticijy This fact
Here we have followed the notation of Cheng and*f%, ~ Makes Eqs(8a) and(8b), in general, analytically intractable.
More information about these tensors is summarized in ApOn€ has to resort to numerical techniques to compute the
pendix A for completenesfEgs. (Ala)—(Ale)]. Note that fictitious non-uniform eigenstrain and eigentorsion. How-
Egs. (68) and (6b), similar to Eshelby’s integral operat@  €Ver Since we are interested in analytical estimates of the
relate the perturbed strain and perturbed torsion to the eigeffverall effective properties, we will use the volumetric aver-
strain and the eigentorsion, respectively, in terms of opera@d€s of the micropolar Eshelby tensors, to estimate the aver-
tors K, K, L, and L. The actual strains and torsions are age fields in the inhomogeneity problem. Thus E§g) and

o (8b) are replaced by
coupled to each other due to theandL operators.
Ignoring the presence of any real eigenstrai® { which
are of no consequence in the calculation of overall proper-
ties,dt_?e mEtI:Eropczge)lg versign of _ItEtshery’s equivalent inclusion =Cliiy (et (Kimn et (Liimn ko), (103
conditions[Egs. can be written as

i =Cijia (egi{ Kiimm € mnt (Lkimn) Kin— €1)

~ o] % * i *x %
3= Cij (e + Kiamng ot Lidmnkian— £51) M;; = Dijia (ki + (Kiimn) € mnt {Lkimn) Kmn— K1)

:Cir}kl(s(lzl+Kklmn‘g;n'*'l-klmn":qn)’ (8a) EDihjkI(K(k)I'{_<Rklmn>8:cnn+<|:klmn>’<:1c1n)' (10b)

The angular brackets indicate averaging over the volume of
the inhomogeneity. The average of any tensor field is defined

:Dﬂkl(KEI+Rklmns*mn+|:klmnK*mn)- (8p) a5

_ o] % * r * *
m;; = Diji (kg + Kiimne mnt LkimnKmn— K1)

As can be seen from EgéAla)—(Ale) in Appendix A, the 1
four micropolar Eshelby tensors are expressed in terms of the (Fijk..(x))= V_Qf f f Fijk...0dV. (12)
Q

tensorsl, 1, J, andJ. These, in turn, can be expressed in
terms of derivatives of certain potentials, which are ex-
pressed mathematically as Here F is any arbitrary order tensor field, whil, is the
volume of the region of the inhomogenei.
1 , The volumetrically averaged Eshelby tensors for a spheri-
Y= Ef f f rax’, (93 calinclusion in a micropolar material are not available in the
Q literature, and are derived by the present authors in this sec-
tion. For the circular-cylindrical inclusion, we can easily ob-
1 1 tain the average Eshelby micropolar tensors since the aver-
d(x)= EJ J f TdX" (9b)  ages of the EDD potential and their derivatives were
a presented by Cheng and #én their calculation of the strain
energy for a circular-cylindrical inclusiofisummarized in

' rivatives of ¢ (harmonic potential ¢ (biharmonic potentia)
andM(x; ,k) (EDD potentia) are presented in Appendix B.

Here,Q) is the domain of the inhomogeneity, which in our The volumetric averages of these quantities are derived in
case is either a sphere or a circular cylinder. The origin of théletail in Appendix C. The main results are expressed here as
coordinate system is taken to be at the centroid of the inclu-
sion (for both the sphere and the cylingleiThe first two -1
potentials are the biharmonic and harmonic potentials while (Bi)= Twmi&mj)’ (129
the third is what the authors have termed an exponentially-
decaying-density potentidEDD potentia).>? The symbolr 1
's the scalar distance between the spatial coordinates of the  (y,jj1) = —[(SmkSimi) (8n10ni) + (8 Sinj) (Snicdri)
integration point and the physical location where the poten-

1 e Tk Appendix D of this paper
M (x,k) = EI f f dx’. (90 Consider the spherical shape. The expressions of the de-
Q

tial is sought to be evaluated. The symhols a constant +2( 8B (90 8n) ] (12b)
whose value depends on the micropolar material properties MM =T
(see Appendix A K (k)

The derivatives of the harmonic and biharmonic poten- (M(K))=k2+ P, (129
tials can be obtained from Mufd. The derivatives of \
M (x; k) are described in Appendix B for the spherical case,
and in Appendix D for the cylindrical case. The derivatives (M ;(k))=0, (12d
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8P (k) 8P (k) place t_he inho.mogeneity. by an inclqsion of the same geom-
M jj(k)=——P2=— 2y Pasij, (128 etry. Finally, ¢ is the strain perturbation due to the presence
of a single inhomogeneity and is the analogous torsion
(M ;1(K))=0 (12f) perturbation. In subsequent derivations, although both
! ' moment-stress and force-stress equations are included to-
®(K) gether, when evaluating effective properties, they are applied
(M jjia(k))y=— W(aij S+ Sik Sy + 81 6k Py at the far-field individually(not simultaneouslyand the fic-
titious eigenfield related to the other should be considered to
(k) be zero. In our numerical examples of computing effective
- W(ﬁk,Pg,ij + 8j1 Psik+ 6jkPsii + 6i1 Psjk stiffness of micropolar compositégo be presented in Sec.
IV), a uniform far-field force stress boundary conditions will
d (k) be considered while the far-field moment stress boundary
+ 6iPsji + 6ijPsig) + WPGijkl . (129 condition will be set to zero. Such a set of boundary condi-

tions implies thata;?=cr;’; . Decomposing the isotropic cen-

HerePy, Py, Py, P4, Psjj, andPg are volume in- trosymmetric micropolar constitutive relation into its sym-
tegrals evaluated in the domain of the spherical inhomogeMetric and antisymmetric parts, it can be shown that the
neity and appear in the evaluation of the volumetric averconstitutive relation for the force stress should be written as
ages. They are uniform, but scale-dependent. They ar&ji=Cqiknew)- Here the parentheses indicate the sym-
defined and evaluated in Appendix C. Hatds the volume ~ Metric part of the tensors with respect to those indices. In the
of the spherical inclusion an@ (k) is —k(k+a)e~ 2. The sequel, this condition will not be explicitly written, although
symbol a represents either the radius of the sphere or thd Should be understood by the reader to apply throughout the
cylinder. Note that the volumetric averages of the odd-ordefémaining equations. o
derivatives of the EDD potential vanish over a sphere. _Using, the average micropolar Eshelby tensors derived in

The derivation of the average micropolar Eshelby tensordis section, we can write
paves the way for evaluating the average stresses as well as

= Ne* AR
the overall properties. Now we use the combination of Es- sm”_<Km“l'>sJ' +<Lm“1'>’<l' ’ (143
helby’s equivalent inclusion principlgas defined in Egs. . . 0 N
(108 and (10b)] and an extended version of a classical #mn=(Kmnji) & + (Lmnji) 47 - (14b)

mean-field homogenization concept to evaluate the scaléyow, as per the mean-field concept, the average of all the
dependent overall properties. The extended mean-field corgress disturbances must be zero. i.e.

cept for micropolar materialdased on the classical concept

is briefly outlined here. (1-f)oi +fai=0, (153
It is important to note here that for effective properties we
need only consider either a uniform couple stresa uni- (1—f )mi'\j”+fmi(j):0. (15h)

form force stress separately as the far-field boundary condi- _ _ _ . _
tion. Application of both boundary conditions simultaneously Heref is the volume fraction of the inhomogeneities. Using
will violate equilibrium (or will require nonuniform body ~Equations(13a, (13b), (148, (14b), (158 and (15b), the
moments, needlessly complicating the problebet either a  following can be derived easily:

self-equilibrating far-field stress fieldr a self-equilibrating M_ M . N
moment stress field be applied to a micropolar material con- “ii =~ — FCiial ((Kiamkimn= Skimn) € mnt (Lkimn) Kl

taining a finite concentration of similarly oriented but ran- (163
domly distributed inhomogeneities. Then we have - N
mi'\j/I == fDi'\j/IkI [<Kklmn>klmn8:"|n+ (Limn— 5k|mn>K:‘nn]1
o+ ol =Ch{(Ch) Hog+ o) +eq) (16b)
=Cl{(Cll) Hom+ o) +en—=ei), O-i(j): (1= F)CH [ ((Kimnkimn— Samn) & nt (Lkimn Kinl,
(133 (160
m;’J?‘+ mi!j]: Dir}kl{(Di’\jAkl)il(mokol"_ mI'XII) + Kyp) mi(j): (1—f )Di’\jﬂkl[<RkImn>kImn8:nn+ <|:klmn_ 5k|mn>K:(1:rﬂ]éd)
_ M M \— e M
= Dijia{ (Difie) ™ H(mig+mig) + ki = i) Here &, is the fourth-order Kronecker tensor.
(13b) Finally, approximate average values of the fictitious

eigenstrains and eigentorsions can be computed by substitut-

Here o and o™ are the average stress disturbances in théng Egs. (16a—(16d and Egs.(13a and (13b). The final
inhomogeneity and in the matrix, respectively, due to thegxpressions are given below:

presence of the inhomogeneities; whifé® andm" are the

analogous tensors for the moment-stress. The superseript [ AC;j{f((Kximn) = Skimn) — (Kkimn)} +CMkImn]ex .
indicates far-field values, and* and «* are the fictitious

eigenstrain and eigentorsion, respectively, necessary to re- —ACji{Liimn Kmn=ACij &k » (173
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FIG. 3. Effective normalized transverse shear modulus for ran-

domly dispersed circular cylindrical voids vs the normalized lengthdomly dispersed circular cylindrical voids vs the normalized length

for the varying volume fractionf( at a fixed micropolarity
=0.5). Here the symbah is the radius of the cylindrical voids,
while g is the normalizing parametésee Appendix A

- ADijkI<|:kImn>8:1n+ [ADijkI{f(<RkImn> — Skimn)

_<Rk|mn>}+CMk|mn]Kfnn:ACijk|Kfl- (17b

for the varying micropolarity ) at a fixed volume fraction f(
=0.5). Here the symbao4 is the radius of the cylindrical voids,
while g is the normalizing parametésee Appendix A

lated as Cis1o1+ Cq209)/2. Our analytical results are consis-
tent with the numerical results presented by Yuan and
Tomita?'?? It is interesting to note that the micropolar
length-scale effect results in the stiffening of the composite

Equations(17) represent twelve equations to solve for (compared with classical predictionas the void radius de-
twelve independent components of eigenstrain and eigentof/€aSes. As expected, as the inhomogeneity (saztius in-

sion. The overall scale-dependent propert?lasan now be
evaluated easily as

e=f(e”+eN)+(1+f)(e*+eM)=C 1o*, (189
e2=C lgM+g, (18b)
eM=Cc 1M, (180

where we have used bold-faced notation.

IV. RESULTS AND DISCUSSION

creases, the micropolar solution converges to the classical
solution. To explore the effect of degree of micropolarity, the
effective transverse shear modulus is presented at a fixed
volume fraction of pores, for varying values pf(Fig. 3.
Clearly, the degree of micropolarity influences how errone-
ous the classical predictions might be.

In Fig. 4, we explore the transverse bulk modulls, 4
and the axial extensional modulugE4,) for the case of cy-
lindrical voids. They can be defined a%(i,=(Cq111
+C1129/2 and Egg=C111—2(C3329/ (Coz00+ Cop19). IN-
terestingly, as can be seen from Fig. 4, while the effective
axial extensional modulus exhibits the same trend as the ef-
fective transverse shear modul(iSgs. 2 and 3 the trans-

Results are presented for a micropolar matrix with ran-verse bulk modulus actuallyecreasesvith a decrease in the

domly distributed voidgspherical and cylindrical The cy-

lindrical voids are identically oriented, thus making the
voided material transversely isotropic in the apparent mac-
roscale behavior. We consider only uniform far-field force
stresse§no moment-stressgsand seek to find the overall
properties of the resulting porous composite. Poisson’s ratio
is fixed at 0.3. The degree of micropolarity, is introduced

in this article asp=«/2u.

The transversely isotropic results for the cylindrical case
are presented first. Figure 2 depicts the variation of the ef-
fective transverse shear modulirs the 1-2 plane, transverse
to the axis of the cylindrical voidswith respect to normal-
ized length scale, for different void volume fractions at a
fixed degree of micropolarityn=0 corresponds to the clas-
sical elasticity cage The overall effective transverse shear

0.94 1

-\dngitudinal Elastic Modulus

0.9 d=-operrirmrrT

0.92

Normalized Transverse Moduli

0.8 1 f=0.1
0.3¢ | Classical Results p=0.1
0.34
0.82 '/\TTransverse Bulk Modulus
0.8 T T v T T "
0 10 20 30 40 50 60

Normalized Length (a/g)

FIG. 4. Effective normalized axial extensional elastic modulus

modulus is normalized with that of the matrix and the resultsyng transverse bulk modulus for randomly dispersed circular cylin-
are plotted with respect to the normalized length parametedrical voids vs the normalized length for fixed micropolarity (
(a/g). Here g is the characteristic length parameter de-=0.1) at a fixed volume fractionf& 0.1). Here the symbd is the
scribed in Appendix A whilea is the radius of the sphere or radius of the cylindrical voids, whilg is the normalizing parameter
the circular cylinder. The micropolar shear modulus is calcu{see Appendix A
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17 when the inhomogeneity size is decreased below a certain
@ characteristic length. This is the so-called scale effect. This
3 0.95 4 _ effect is absent in classical elasticity as no length scale enters
- _;'f:;':;:‘;t’l‘::;n the constitutive behavior. Indeed, virtually all the homogeni-
= zation concepts in classical elasticity rely ex_cluswely on
2 e _\‘\ scale-independent para_metésg.,_ volume fractionto as-
g sess the overall properties. Physically, the length scale effect
N o8] in micropolar solids arises due to the micro-rotatidines. the
s entrance of strain gradients into the constitutive behavior
§0.75 | The stiffening effector softening effect in the case of trans-
z verse bulk modulysobserved also has a simple interpreta-
07 tion. Loading of a composite can be considered to be equiva-

o 10 20 N30 19 dsa Gl;h 71; 80 90 100 lent to supplying energy to the composite. Within the
ormalized Length (a/g) classical framework, almost all the applied energy is dedi-
cated to the classical deformatiofi®. translation of the ma-

FIG. 5. Effective normalized shear modulus for randomly dis- ~~". . . . .
terial pointg. In the case of a micropolar solid, depending on

persed spherical voids. The micropolarity) (is fixed at 0.5 while . . . - .
the volume fraction {) of the spherical cavities is fixed at 0.1, The Oriéntation complexity two scenarios can ocdliy:only part

symbol a is the spherical void radius ang is the normalizing  ©f the energy is spent on classical deformation while a part is
parameter defined in Appendix A. expended on micro-rotations. Thus the apparent classical de-

formations(which are measurable in laboratpryill appear

void radius. While the trend in effective shear modulus hasmaller and hence the composite will appear stiffiey. For
been reported previousk:22the authors believe that results certain deformation type§.e., equal biaxial deformation in

for the decrease in the transverse bulk modulus are reportdj€ Plane of transverse isotropythe additional microscale
here for the first time. These results point out, in addition to€grees of rotation facilitate deformation and thus the com-

the customary length scale effect, a more comple>P°Site appears softer for that particular deformation mode.
orientationdependent length scale effect. The other trans©ONe should note that this orientation-dependent softening ef-
verse property is the axial shear stiffness which we found td€Ct IS not observed in an overall isotropic micropolar

follow the same trend as the transverse shear modaig ~ COMPOSite. . . .
hence is not plotted It is also pertinent here to discuss the validity of our as-

Discussion of a subtle point is in order here. As is clearSUmption regarding the use of averaged Eshelby tensors. In

from Egs. (4a) and (4b) the micropolar constitutive elastic the case when local inhomogeneous stresses within and in

behavior is characterized by two tens@swhich includes the vicinity of the inhomogeneity are required, our approxi-
classical constants and a micropolar constantand D mation of first averaging the Eshelby tensors over volume

(which contains micropolar constants, 8, andy). Qualita- becomes inaccur.ate. Howeyer, we are mainly i_ntergsted in
tively, the effect of micropolarity on tens@ is the same as the overall effective properties and in such a situation our
on tensorC, however, in reality(experimentally one can gpproach is somewhat Ju_stlfled. Perf_ectly bonded ellipsoidal
only measure the “apparent” classical shear or bulk moduludnclusions are characterized by uniform Eshelby’s tensor

for a given solid and indeed these are physically the mos‘f"ithi_” the frameworl_< of classical elasticity. Nonuniformity
intuitive quantities. The micropolar stifiness we plot in Figs. Of this tensor can arise due to several reasons. For example,

2-5 represents the modulus that will be determined by the inc[usion shgpe can give rise to nonunifc_)rmity. Eshelby’s
conventional elastic experiment with the micropolar effect!€nSOr is nonuniform for polyhedrals, even in classical elas-
entering mainly through the constast For evaluating the ticity. Slldmg mcluspns in genergl hav_e nor_1un|f_0rm Eshelby
effective constants, 8, andy, moment stress boundary con- ten_sors. Fmally, as in our study mclusm_ns in micropolar ma-
ditions need to be applied instead of force stresses. The eférial (even ellipsoidal ongshave nonuniform Eshelby ten-
fective properties can then be evaluated via @gb. How- ~ S0rs- _
ever, little additional understanding is obtained from such an_ Our simplifying assumption can be stated as follows.
exercise since experimentally, the determinatioa,0B, and ~ GIVen an inclusion problem such that Eshelby’s tensor is
yis extremely difficult while the determination of effective SPatially nonuniform, we assume that
C-tensor valueswhich include the effect ok) is straightfor-
ward. Hence, onlyC-tensor results are plotted in this work.

The effective isotropic stiffness properties of a micropolar (S ek =(Sijk) ek (19
material containing spherical voids is shown in Fig. 5. In this

case, due to the symmetry of the inhomogeneity, the effecl- fi | . h .
tive properties are isotropic and only an increase in the prop!! (erms of Integral equations, we can recast these equations

34
erties with a decrease in the inhomogeneity size is observed® follows:

As emphasized earlier, when evaluating the apparent ef-
fective shear modulus of an isotropic micropolar s¢trdns-
vgrse_she_ar for a material containing cyl|nd_r|cal VO s Sijkl(x):f Gij (x,Y)dy, (209
stiffening is observedcompared to the classical solutjon v
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APPENDIX A: EXPRESSIONS FOR TENSORSI, 1, J,

AND J IN EQ. (7) (REF. 20)
Several researchers have used this approximatioit>

Nozaki and Tay® used this approximatiofand the mean-

field conceptto compute effective properties of a composite i =2Bug2d iin+ 5(5'n¢ —Sind )
reinforced by convex polygons. Since Eshelby’s tensor is not . At !
uniform for polyhedrals or polygonals, Rodfnquestioned —2Bug? ;1(x.9)

Jdjn A

the accuracy of Nozaki and Taya’s analy&sd by exten-
sion, of several previous works dealing with inclusion prob-
lems characterized by a nonuniform Eshelby tepsbr a
recent paper Nozaki and Tayaused the boundary element
method to demonstrate that despite the fact that certain
shapes(rectangular, pentagonal, etcdhave highly nonuni-
form stress fieldglike in our case for micropolar materia)s
the assumption in Eq27) provides a fair approximation for 1 1
overall properties. A similar verification of the accuracy of Jnii= = 5= {venik® jk T Benikd ikt + 5—{venikM jk(X,9)
this approximation for our problertellipsoidal inhomogene- 2 2

ities in micropolar materiajsvould require the development + BenpM ik (%,9)}, (A1b)
of micropolar computational toolg.g. micropolar finite el- '
ement or boundary element methpeavhich is beyond the
scope of the present paper. i

K

+ +
B(,u >

K
+ﬂ} 5inM j(x,9)

+iB

N| X

w—

)— ﬁ} 5aM(x0),  (Ala)

nji:E{Kgijkﬁb,kn_(zM"' K)€nikd jk— (21— K) Enjkd ik}

1
V. SUMMARY —m{(zﬁ«"‘ K)&ijkM n(X,9)
In this paper, Eshelby’s equivalent inclusion method was
employed to approximately estimate the average micropolar ~(2pt)enicM k(x,9)
elastic fields of spherical and cylindrical inhomogeneities. Eijk
For this purpose, the average micropolar Eshelby tensors _(ZM_K)SnjkM,ik(ng)}+TM,kn(X,h)

were derived explicitly. A classical mean-field homogeniza-
tion scheme was extended to micropolar materials and used (2p+K)eijn

in conjunction with the “averaged” stresses in the inhomo- + T apg? (x,9), (Alo)
geneity, to obtain overall scale-dependent stiffness of mi-

cropolar composites containing cylindrical and spherical in-

homogeneities. Numerical results for selected stiffness 1 B, (2M+K)(7+IB)M %)
components were presented for micropolar materials with " 4u NN 4uk R

voids, by applying appropriate uniform far-field force 1

stresses. The present closed-form solution for randomly dis- — —{ @M (X, h) + (y+ B) 8 M jjn(x,h)}
tributed voids agrees qualitatively welor similar volume 2k ’ ’

fractiong with the numerical finite element results presented

by Yuan and Tomit&d??for micropolar materials containing — M{Wsmm (%,9)+ B8, Mi(x,9)},
periodically spaced cylindrical voids. Isotropic materials are 4prg ! :

found to stiffen as the length scale decreased. As an example, (Ald)
the apparent shear modulus is parametrically explored. In

transversely isotropic materials, the size effect on overall

properties may have an orientation dependence and may s _ Ap

= 8D —Snh — O
cause stiffening for some stiffness components, but softening ™' A+2u Piin AN+2u b~ Oind i~ b

for some others. All effective properties are found to mono- (Ale)
tonically approach the classical elasticity solution as the nor-

malized radius increases, or as the degree of micropolaritidere, B=x/[ u(2u+ )], 9?>=(2u+ «)y/(4uk), and h?
decreases. =(a+ B+ y)I(2k).
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APPENDIX B: EDD DERIVATIVES
FOR SPHERICAL INHOMOGENEITIES

The derivatives oM (x; ,k) can be written agRef. 19:

d(k)
M’i(x,k)zxiwjl(w/k), (Bla

(D(k) (k)
M,ij(ka) 6” ; ]1(|I'/k) XIXJ k2 2 JZ(lr/k)
(B1b)

d(k) .
M ijm(X,K) == (Xi , 8jm+ X) Sim + Xmij) 122 [2(ir [K)

®(k) .
_Xinmels(lr/k). (Blo

(k)
M ijmn(X,K) == (ij mnt GimSjn+ dinOjm) 12,2 12(ir/K)
_(Xin5mn+XiXméjn+Xan5jm+Xij5in

(k)

O(k)
+xjxn5im+xnxm5ij)ng(lr/k)

O(k)
+xixjxmon14(|r/k). (B1d)

Herej, is the spherical Bessel function of order It can be
written in terms of the Bessel function of first kiidf half-
integers, J, 1,0, i.€.,

1
(2= V2, 12). (B2)

APPENDIX C: P INTEGRALS USED IN EQ. (12
(FOR SPHERICAL INHOMOGENEITY )

Using Eq.(11) and (14), all of the averages can be ex-

pressed in terms of the following integrals:

Pl(k):f f fwdv, (Cla
9)

Pa(k)= f f f B gy, (C1h
QO

paij(k):f f fwdv (C19
Q

P,(K)= f f f jzr“z”k)dv, (C1d
9)

PHYSICAL REVIEW B 66, 224110 (2002

XiXjj 3tk
Psij(k — 3 dv, (Cle

XiXi XX atir/k)
PGijkI(k):J' f J'%dv- (C1)
Q

More details of the evaluation of average Eshelby’s ten-
sors are omitted for the sake of brevity, but it is noted that
integrals involving odd combinations of position vector av-
erage to zerdi.e., Xj, Or XjX;X, etc) When the integrand
contains even combination of position vectoe., xx;), all
combinations in which the indices are not identical also av-
erage to zero. As an example, integralsxpf;x, multiplied
by any combination of or the Bessel function is zer@dd
combination, while x;x; is zero whenever+j (even com-
bination. This greatly simplifies the derivation.

The integration has been performed, and the results are

P,(k)=4m[akcosia/k)—k?sinh(a/k)], (C2a

P,(k)=4mik?[ sinh(a/k)— Shia/k)],  (C2b

Ak? .
P3ij (k)= T[_ acosha/k) + 4k sinh(a/k)

—3kShia’k)] if i=j=0 if i#]j,
(C20

P.(k)= i—Z[k{3k(—acosr{a/k)+ k sinh(a/k))

+a2shia/k)}], (C20)

Psij (k)= 332

+(2a%+ 15k?)sinh(a/k) + 3a2? shi(a/k))]
if i=j=0 ifi#j, (C2e

2 2 2 2 2
Peijkl(k):§[k (a(2a*+105«*)cosha/k) —k(22a

+105%?)sinh a/k) — 15a°k sinh(a/k))]
if i=j=0 if i#j. (C2f)

Here Shi indicates the sinh integral.

APPENDIX D: DERIVATIVES OF EDD, HARMONIC, AND
BIHARMONIC FUNCTIONS FOR CYLINDRICAL
INHOMOGENEITIES

The average of derivatives ®f (x; k) can be written as
(see Ref. 2D

a a
<M(x,k)):k2—k2Jl(E) K1<E), (D1a)
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M s(x,k)=0, (D1b) T,=T,=2m, T3=0, (D2b)
(M i(x,k))=0, (D10
T
a a TlZZ?a (D33
<M,ij(xyk)>:_~]1<E)Kl K Sij » (D1d)
<M’ijk(x'k)>_o' (ble 3T11:£;_72T_T12:T22:T11: (D3b)
S;i Ompt OimOin+ Oin O a a
(M ijia (X,k))=— (% Omn anzln in%ym) 1k Kq Kl
(D1f) T13=Tp3=T33=0, (D30
J and K are the modified Bessel functions of the first and
second kinds, rgspectively. The average of derivativeg of aéTzsz a§T13= Tl,a§T33= 0. (D3d)
and ¢ can be written &s
<¢,ij>= 5Ty, (D2a) Note that capital subscripts are used to indicate that there is
to be no summation over repeated indic@s=a,=a is the
(W) =— 66l Tk — a’T k] radius of the circular cylindeag is of course unbounded, but
[as is apparent from E4D3d)] the limit, when its square is
— (88 + ) Ty—alTy; 1, multiplied by the “T” parameters, is bounded.
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