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Abstract

The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near
the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion
rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that
are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the
artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving
screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed
at all time and (consistent with atomistic simulations), supersonic states are found to be admissible.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction their existence is not required to be postulated a pri-
ori. Thus simply by invoking local gauge invariance
(which is now universally accepted as a fundamental
physical law), without recourse to ad hoc postulates,
the gauge field theory of defects allows dislocations
to emerge naturally and further provides solutions that
are physically meaningful (e.g., removal of divergence
of stress and the natural emergence of a core making
redundant the artificial cut-off radius). In this work we
derive, for the first time, a formal gauge field theoretic
solution to the problem of a moving screw dislocation.
A salient characteristic of our gauge solution is that
mpondmg author. spatial singularity (of stresses, strains and energies) at
E-mail address: psharma@uh.edP. Sharma). the core of the dislocation is removed and supersonic

In the past two decades topological defects such as
dislocations have also been brought under the ambit
of gauge field theorield —4] where one thinks of them
as a consequence of broken translational symmetry—
although (relatively speaking), progress in this area
still remains at its infancy with several open issues.
Therein, defects such as dislocations arise naturally as
a consequence of broken translational symmetry and
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states are found to be admissible. While the inade- fects and nonlocal effects. Their focus is on clarifying
quacy of classical elasticity to tackle admissibility of the relation between applied stress and the velocity
dislocations exceeding shear speeds may be partly mit-of the moving dislocation. Needless to say the failure
igated by phenomenological approaches, one is loath of classical elasticity (spatially, close to the disloca-
to admit that there is not a fundamental physical prin- tion core and dynamically, when they move closer to
ciple which when brought to bear on this problem sonic speeds) is patent. The chief motivation for the
will rectify this inconsistency (between classical elas- present work is that while the aforementioned works
tic prediction and the “reality”)—presumably without and other contributions (including the classics by Es-
any artificial ad hoc assumptions. We believe that such helby Refs.[10,12]) have provided valuable insights
a principle is the principle of local gauge invariance into this problem, the question efimissibility of su-
which has been the basis for explaining much of the personic states has never been rigorously addressed,
fundamental interactions in physifs. in particular, from a field theoretic standpoinfThe

In so far as supersonic dislocations are concerned, present work, predicated on gauge field theory, pro-
while a wealth of evidence has begun to emerge that vides an alternative perspective on this problem.
dislocations can indeed, contrary to conventional wis-
dom, break the (shear wave) sonic barf@+8], a con-
vincing mechanistic and/or field theoretimof for the 2. Formulation
admissibility of such moving defects is lacking. Tak-
ing the example of a screw dislocation moving witha A basic framework of gauge theory of defects in

velocity “v”, say in thex-direction, classic elasticity ~ solid continua has already been well formulated by
yields the stress and energy per unit lengtfts Kadic—Edelen—Lagoudd4,2] and extended by vari-
b ous researchef8-5]. The classical elastic Lagrangian
O, = “— (1a) (for an isotropic linear material) is
2 [ (x—vt)< vt)2 +y 2
17 L _t Ui Alj 4 — }k(s )2 — usijei; 2
1 szl R 0= 2;00 i,4U;j 4 2 kk MEijE|j.
T 1= UZ/CZ Wo= /11— UZ/CZ< ar ro>' Hereu is the displacement ané,= 3[V ® u + (V ®
(1b) u)']. A and o are the usual Lame constants while
Wherec is the shear Speed of souridfy is the static ¢ is the infinitesimal strain tensopg is the mater-
strain energy,R is the system size) is the magni- ial density. Cartesian framework is assumed and spa-
tude of burger's vector andy is the artificially in-  tial coordinates run from 1-3, while the time co-
troduced dislocation core cutoff radius. Obviously, in ordinate is designated by “4”. The classical elastic
close analogy to special relativity, > ¢ is prohib- Lagrangian in Eq(2) is invariant under a uniform

ited. However, recent atomistic simulations have in- continuous global gauge group of transformations (the
deed shown the feasibility of this classically forbid- three-dimensional Euclidean groupy = SO(3) v

den and non-intuitive phenomen{-8]. They show 7T (3), i.e., the semi-direct product of the non-Abelian
that dislocations can exceed the shear wave speed prospecial rotation groupO(3), and the Abelian group
vided they are created ad initium as such, at strong Of translat|onsT(3) Consider the translation group
stress concentration sites and are supplied high energyonly.? Making the gauge group local (i.e., dependent
through large magnitudes of stress. We also note here

a rather peculiar and well-knowlassical elasticity 1 In the present work, we are not interested in the relation between
based prediction of Eshellj§0], that thev = +/2¢ > ¢ applied stress and speed of the dislocation which was the focus of
state for a gliding edge dislocation in an isotropic lin- Refs.[6-8]. Our emphasis is on a rigorous field theory which al-
ear elastic solid does not engender radiation emission. lows such classical forbidden phenomena to be admissible without
Gumbsch and Ga§7] as well as Rosaki§l1], at- artificial assumptions and phenomenological maneuvers.

tembt to explain transonic and rsonic dis| tion 2 |n the Edelen-| Kadi-Lagoudas theory, breaking of the rota-
emptto explal ansonic and supersonic dislocations y;, symmetry, i.e.SO(3) group results in formation of discli-

observed ir_‘ ato_miStiC SimU|atiori§_8]_ by invol_<ing nations. Only dislocations are of concern here and thus solely the
the underlying discreteness of the lattice, nonlinear ef- Abelian7 (3) group is considered. See also Ré8].
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on space-time) spoils this global gauge invariance. Where, aio. is classical stress ana!’l.4 is classical

Eqg. (3) shows that if the translationsT] are inho- momentum= pd;;u ;4 while Bis = u; 4 + ¢;s, and
mogeneous, the invariance of the elastic Lagrangian B;; = u; j + ¢i; + &;;. Following Kadt and Edelen
(Eg. (2)) is lost. The Lagrangian can be once again [1], we select the pseudo-Lorentz gauge condition,
made invariant under the action of this group by in- ¢;; ; = z*s‘—21¢,-4,4. Further now, an appeal to the Euler—
troducing compensating fields (the so-called gauge Lagrange equations or a variational argument provides
fields, ¢) and defining the so-called gauge covariant the following governing equations:
derivative (superscripf)
> 52 .o 2 A

G <V - —34>¢ij =« <¢ij +ji + —¢kk5ij>, (8a)
VOU—>VRUu+e, (3a) 251 I
¢ = 9-VOTX. (3b) pui,jj+ (o + Muj,ji + (M - p%)@/,/
Thus, in the spirit of Yang—Mills minimal coupling 2
type approackb], espoused by Edelen—Kaei_agou- FRPjij APk = pui.ag, (8b)
das[1,2], the definitionse — E and Bija = u; 4 + ¢ia ) 2 (g2 _ 52 42\,  _
where E = %[V QU+ (VR U)T +0 +¢T] in Eq(4) Ois (V 251 34)¢14 0. (8C)
Ieaq to restored inva}riance under the inhomogeneousne gifference betwee(8a)—(8c)and the governing
action of the translational group. equations given byl] and[2] are that the latter do

1 1 P not incorporate the null Lagrangian that is specific to
Liotal = 5 p0BiabBia — S Erk)” — ukEij Eij + Lg. the current problem. In subsequent work, Edelen has

2
. : . (4) corrected and clarified th[g4].
The termLg is appended in Eq4) to indicate that the We now proceed to specialize the general equa-

newly introduced gauge fields (which are now incor- o ingicated above for a moving screw dislocation.
porated in the new definition of “strainE to restore The symmetry of the screw dislocation problem in-

translational invariance), by themselves must also con- yicates the following constraints on the displacement
tribute to the total Lagrangian. This new term must 5.4 gauge fields:

only be a function of the gauge fields and addition-

ally be constructed by using scalar functions that are u = u(r)es, (9a)
invariant under théocal translational grouf3], i.e., 0 = 03163 ® €1 + P2 D &, (9b)
{Lg|GXOLg — Lg}. ®) {e1, &, &3} is the Cartesian basis. Given these symme-
This requirement lends naturally to the following con- try constraints, we obtain
struction s
2 2
1 o 1 .. Vz——88>3=/< 31, 10a
Lg= _ESlFfszéb"‘ ESZJiJiv (6a) < 251 fa1 =931 (102)
i N
Fl=tiji— g, Ji=diaj—dija (6b) <V2 — 2—513434) ¢32= K32, (10b)
Heres; ands, are two coupling constants which re- 52 5
spectively correspond to the static and dynamic gauge ¢34 — — (V2 — 2—a§>¢34 =0, (10c)
Lagrangian. In absence of these coupling constants, 51
gauge fields play no role and we revert to classical u¢31=o031— 0391, (10d)
elastodynamics. (32 = 032 — 0“:92 (10e)

A null Lagrangian may always be added to the to-
tal Liotal in EQ. (4). Such an operation does not alter To solve this system of equations, we set= 2s51/s2
the field equations (i.e., the Euler-Lagrange equations) and invoke the Lorentz transformation, i.e., adopt a
but allows one to correctly incorporate the boundary frame of reference which is moving along with the dis-
conditions[2]. We write the null Lagrangian as location with identical speed:

Ly = oi(;Bij — Pl-4B,-4. (7 x'=(x—v)B, (11a)
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v=0.25ac v=0.5ac

V=C v=ac

Fig. 1. Three-dimensional plot of the stress fields of a moving screw dislocation for various velocities based on our results predicated on gauge
field theory. The snapshots are for instance 0. The spatial coordinates are normalizedcbwhile the stress ), = o;; /a,oz is normalized
with respect to the classical stress.

'=(t—vx/c)B, (11b) The solution to Eq(13)is straightforward and we omit
r_ further details for the sake of brevity. We obtain (after
Y=y, (11c) :
1 transformation back to the natural frame of reference)
B= (11d)

/ 2/ ub
1-v¥/s Org =

[1 — KF/K]_(KV/)],
. . . . 2y’
All variables referred to in the moving frame will be

identified by an apostrophe, e.gq, or V. With this )2 = (x_—”t)z + 2. (14)
notation, we have 1-v%/g
12,1 2. Here K, is modified Bessel's function of second kind

Vi 9a =k Pan. (122) ¢ order 1. Integration of the stress fields and the de-
V¢35 = k¢, (12b) rived strains yields the following expression for energy
V2%, = k24, (12c) per unit length

2 2 s R0 ; ; 2
Here,x is 21/s1 and«g is £2, YVhICh have units of _ &{_} tC4 }Kz(r/)zKl(Kr/)z + Koler')
reciprocal lengths squared Whl)&% defines a length A 2 2
scale relating to dynamic properties. Using a fairly 1, .5, , wr!
standard argument, we note that the dislocation field x [2— Sk ) Kakr )} + '”(7) } (15)
is static with respect to the moving frame. Thus, the ;
classical stresses satisf§]: V'2049 = V'2049 = 0. Here,C is the Euler constant.

The dynamic gauge fielgl; , of (12c)can be solved

Transforming to cylindrical polar coordinates, we ob- ;
similarly and gives

tain finally
(1—«2V'?%)0/y =0/] (13)  $3a=CKolkar). (16)

r0 = 0rg-
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Fig. 2. Three-dimensional plot of the stress fields of a moving screw dislocations for various velocities as predicted by classical elasticity. The
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y 05 .05

snapshots are for instance= 0. The spatial coordinates are normalizeddowhile the stress’, = o;; /or,oZ is normalized with respect to the

classical stress.

We should keep in mind the assumption that the
dislocation field is static with respect to the moving
frame. Hence, momentum of dislocation should be 0,
which impliesB/# = P/# = 0 and thu = 0 becomes
the only physically reasonable option for Ed6).

3. Resultsand discussion

While the conclusions of our mathematical results
are manifestly clear fronfigs. 1-3 upon setting,
¢ = a®c? (wherea is a constant), a cursory glance at
Egs.(14) and (15)ndicates that transonic and super-
sonic states will be admissible provided> 1. This
factora also arises in the context of dispersion curves

is striking which exhibits divergences both temporally
and spatially.

The energy of the moving dislocation is also plotted
(in Fig. 3) and compared with the classical prediction
clearly indicating the admissibility of transonic and
supersonic dislocations on energetic grounds. For il-
lustrative purposes we have choser 1.5 although
the precise numerical choice (considering the intent of
this Letter) is irrelevant as long as> 1.

Some aspects of our results and their interpreta-
tion warrant further discussion. We emphasize here
that, using a gauge field theoretic approach and con-
sequently without any adoption of unnecessary pos-
tulates (that are not already accepted in fundamental
physics), we have shown that speeds greater than c are

(of the gauge field of defects) and has already been not forbidden.

shown to be>1 by Kadit—Edelen-Lagoudafl,2].
Their work implies that: is a material constant.

Fig. 1 clearly illustrates the lack of any singulari-
ties atv = ¢ while stress field completely vanishes at
v = ac. The contrast with classical elasticitiig. 2)

These results, however, by no means provide any
insights into the relation between applied stress and
the velocity of the dislocations. Indeed, such an is-
sue can only be addressed by incorporating both the
effect of underlying lattice and nonlinearities. Within
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Fig. 3. Normalized energy versus normalized velocity. Our gauge solution and the classical predictions are contrasted.

a classical field theoretic standpoint, these were ad- scale that appears in both phenomenological nonlocal
dressed by Gumbsch and GBEG and Rosakig11]. elasticity theories and gauge field theory (i.ex)Lin
Obviously, the incorporation of such effects in the the static case. Both these theories introduce a length
gauge field approach outlined in the present work is scale parameter in the static solutions of mechanical
the logical future step. In closing, we note here that deformation which is rightfully acknowledged to be a
the gauge field theory naturally incorporates nonlocal material level constant (and is currently the subject of
effects. In fact, Eq(13)is reminiscent of the so-called much experimental and atomistic determination, see
phenomenological nonlocal elasticity theorji#s,16] Refs.[16,17] and references therein). In the present
However, we hasten to point out that it is unclear to case, which is a dynamical problem, the material con-
the present authors whether the use of the actual phe-stanta plays a similar role and “renormalizes” the
nomenological nonlocal elastodynamical thefit$] shear speed of sound.

for the present problem will lead to the result shown
here[17]. As already alluded to earlier, given the pur-
pose of the present work, the actual value of the con-
stanta is immaterial as long as one acknowledges the
result of Edelen—KadiLagoudad1,2] that it must

be >1. Their context was dispersion curves of gauge  Helpful comments and suggestions from A. Mathur
elastic continuum, while we have solved the specific (Johns Hopkins University) and R. Sharma (Massa-
problem of a moving screw dislocation to prove that chusetts Institute of Technology) are gratefully ac-
a > 1 implies that transonic and supersonic states are knowledged. Discussions with N. Bhate (General
admissible (which is not the same as “probable”) and Electric R & D) are appreciated. Partial support is
the theoretical maximum speed dg. The material acknowledged from Texas Institute for the Intelligent
parametew is analogous to the characteristic length Bio-Nano Materials and Structure for Aerospace Ve-
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