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Abstract

The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashi
the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad ho
rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting sol
are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redu
artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly
screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is
at all time and (consistent with atomistic simulations), supersonic states are found to be admissible.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the past two decades topological defects suc
dislocations have also been brought under the a
of gauge field theories[1–4] where one thinks of them
as a consequence of broken translational symmet
although (relatively speaking), progress in this a
still remains at its infancy with several open issu
Therein, defects such as dislocations arise natural
a consequence of broken translational symmetry
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E-mail address: psharma@uh.edu(P. Sharma).
0375-9601/$ – see front matter 2005 Elsevier B.V. All rights reserved
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their existence is not required to be postulated a
ori. Thus simply by invoking local gauge invarian
(which is now universally accepted as a fundame
physical law), without recourse to ad hoc postula
the gauge field theory of defects allows dislocatio
to emerge naturally and further provides solutions
are physically meaningful (e.g., removal of divergen
of stress and the natural emergence of a core ma
redundant the artificial cut-off radius). In this work w
derive, for the first time, a formal gauge field theore
solution to the problem of a moving screw dislocatio
A salient characteristic of our gauge solution is t
spatial singularity (of stresses, strains and energie
the core of the dislocation is removed and supers
.
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states are found to be admissible. While the ina
quacy of classical elasticity to tackle admissibility
dislocations exceeding shear speeds may be partly
igated by phenomenological approaches, one is l
to admit that there is not a fundamental physical p
ciple which when brought to bear on this proble
will rectify this inconsistency (between classical el
tic prediction and the “reality”)—presumably witho
any artificial ad hoc assumptions. We believe that s
a principle is the principle of local gauge invarian
which has been the basis for explaining much of
fundamental interactions in physics[5].

In so far as supersonic dislocations are concer
while a wealth of evidence has begun to emerge
dislocations can indeed, contrary to conventional w
dom, break the (shear wave) sonic barrier[6–8], a con-
vincing mechanistic and/or field theoreticproof for the
admissibility of such moving defects is lacking. Ta
ing the example of a screw dislocation moving with
velocity “v”, say in thex-direction, classic elasticit
yields the stress and energy per unit length as[9]

(1a)σrz = µb

2π

√
(x−vt)2

1−v2/c2 + y2
,

(1b)

W = 1√
1− v2/c2

W0 = 1√
1− v2/c2

(
µb2

4π
ln

R

r0

)
.

Wherec is the shear speed of sound,W0 is the static
strain energy,R is the system size,b is the magni-
tude of burger’s vector andr0 is the artificially in-
troduced dislocation core cutoff radius. Obviously,
close analogy to special relativity,v � c is prohib-
ited. However, recent atomistic simulations have
deed shown the feasibility of this classically forb
den and non-intuitive phenomenon[6–8]. They show
that dislocations can exceed the shear wave speed
vided they are created ad initium as such, at str
stress concentration sites and are supplied high en
through large magnitudes of stress. We also note
a rather peculiar and well-knownclassical elasticity
based prediction of Eshelby[10], that thev = √

2c > c

state for a gliding edge dislocation in an isotropic l
ear elastic solid does not engender radiation emiss
Gumbsch and Gao[7] as well as Rosakis[11], at-
tempt to explain transonic and supersonic dislocat
observed in atomistic simulations[6–8] by invoking
the underlying discreteness of the lattice, nonlinear
-

fects and nonlocal effects. Their focus is on clarify
the relation between applied stress and the velo
of the moving dislocation. Needless to say the fail
of classical elasticity (spatially, close to the dislo
tion core and dynamically, when they move close
sonic speeds) is patent. The chief motivation for
present work is that while the aforementioned wo
and other contributions (including the classics by
helby Refs.[10,12]) have provided valuable insigh
into this problem, the question ofadmissibility of su-
personic states has never been rigorously addre
in particular, from a field theoretic standpoint.1 The
present work, predicated on gauge field theory, p
vides an alternative perspective on this problem.

2. Formulation

A basic framework of gauge theory of defects
solid continua has already been well formulated
Kadić–Edelen–Lagoudas[1,2] and extended by var
ous researchers[3–5]. The classical elastic Lagrangia
(for an isotropic linear material) is

(2)L0 = 1

2
ρ0ui,4ui,4 − 1

2
λ(εkk)

2 − µεij εij .

Hereu is the displacement and,ε = 1
2[∇ ⊗ u + (∇ ⊗

u)T ]. λ and µ are the usual Lame constants wh
ε is the infinitesimal strain tensor.ρ0 is the mater-
ial density. Cartesian framework is assumed and
tial coordinates run from 1–3, while the time c
ordinate is designated by “4”. The classical ela
Lagrangian in Eq.(2) is invariant under a uniform
continuous global gauge group of transformations
three-dimensional Euclidean group):G = SO(3) �
T (3), i.e., the semi-direct product of the non-Abeli
special rotation group,SO(3), and the Abelian group
of translations,T (3). Consider the translation grou
only.2 Making the gauge group local (i.e., depend

1 In the present work, we are not interested in the relation betw
applied stress and speed of the dislocation which was the foc
Refs. [6–8]. Our emphasis is on a rigorous field theory which
lows such classical forbidden phenomena to be admissible wit
artificial assumptions and phenomenological maneuvers.

2 In the Edelen–Kadić–Lagoudas theory, breaking of the ro
tional symmetry, i.e.,SO(3) group results in formation of discli
nations. Only dislocations are of concern here and thus solely
AbelianT (3) group is considered. See also Ref.[13].
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Eq. (3) shows that if the translations (T) are inho-
mogeneous, the invariance of the elastic Lagrang
(Eq. (2)) is lost. The Lagrangian can be once ag
made invariant under the action of this group by
troducing compensating fields (the so-called ga
fields, ϕ) and defining the so-called gauge covari
derivative (superscriptG)

(3a)
G∇ ⊗u → ∇ ⊗ u + ϕ,

(3b)ϕ′ → ϕ − ∇ ⊗ T(x).

Thus, in the spirit of Yang–Mills minimal couplin
type approach[5], espoused by Edelen–Kadić–Lagou-
das[1,2], the definitions,ε → E andBi4 = ui,4 + φi4
where,E = 1

2[∇ ⊗ u + (∇ ⊗ u)T +ϕ +ϕT ] in Eq.(4)
lead to restored invariance under the inhomogene
action of the translational group.

(4)
Ltotal = 1

2
ρ0Bi4Bi4 − 1

2
λ(Ekk)

2 − µEijEij +LG .

The termLG is appended in Eq.(4) to indicate that the
newly introduced gauge fields (which are now inc
porated in the new definition of “strain”,E to restore
translational invariance), by themselves must also c
tribute to the total Lagrangian. This new term m
only be a function of the gauge fields and additio
ally be constructed by using scalar functions that
invariant under thelocal translational group[3], i.e.,

(5){LG | G(x)LG → LG}.
This requirement lends naturally to the following co
struction

(6a)LG = −1

2
s1F

i
abF

i
ab + 1

2
s2J

i
aJ

i
a,

(6b)Fk
ij = φkj,i − φki,j , J i

j = φi4,j − φij,4.

Here s1 and s2 are two coupling constants which r
spectively correspond to the static and dynamic ga
Lagrangian. In absence of these coupling consta
gauge fields play no role and we revert to class
elastodynamics.

A null Lagrangian may always be added to the
tal Ltotal in Eq. (4). Such an operation does not al
the field equations (i.e., the Euler–Lagrange equatio
but allows one to correctly incorporate the bound
conditions[2]. We write the null Lagrangian as

(7)LN = σ 0Bij − P 4Bi4.
ij i
Where, σ 0
ij is classical stress andP 4

i is classical
momentum= ρδijuj,4 while Bi4 = ui,4 + φi4, and
Bij = ui,j + φij + δij . Following Kadíc and Edelen
[1], we select the pseudo-Lorentz gauge condit
φij,j = s2

2s1
φi4,4. Further now, an appeal to the Eule

Lagrange equations or a variational argument prov
the following governing equations:

(8a)

(
∇2 − s2

2s1
∂2

4

)
φij = κ2

(
φij + φji + λ

µ
φkkδij

)
,

µui,jj + (µ + λ)uj,ji +
(

µ − ρ
s1

2s2

)
φij,j

(8b)+ µφji,j + λφkk,i = ρui,44,

(8c)φi4 − s2

ρ0

(
∇2 − s2

2s1
∂2

4

)
φi4 = 0.

The difference between(8a)–(8c)and the governing
equations given by[1] and [2] are that the latter d
not incorporate the null Lagrangian that is specific
the current problem. In subsequent work, Edelen
corrected and clarified this[14].

We now proceed to specialize the general eq
tions indicated above for a moving screw dislocati
The symmetry of the screw dislocation problem
dicates the following constraints on the displacem
and gauge fields:

(9a)u = u(r)e3,

(9b)ϕ = ϕ31e3 ⊗ e1 + ϕ32e3 ⊗ e2,

{e1, e2, e3} is the Cartesian basis. Given these symm
try constraints, we obtain

(10a)

(
∇2 − s2

2s1
∂4∂4

)
φ31 = κ2φ31,

(10b)

(
∇2 − s2

2s1
∂4∂4

)
φ32 = κ2φ32,

(10c)φ34 − s2

ρ0

(
∇2 − s2

2s1
∂2

4

)
φ34 = 0,

(10d)µφ31 = σ31 − σ 0
31,

(10e)µφ32 = σ32 − σ 0
32.

To solve this system of equations, we set,ς = 2s1/s2
and invoke the Lorentz transformation, i.e., adop
frame of reference which is moving along with the d
location with identical speed,v:

(11a)x′ = (x − vt)β,
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on gauge
Fig. 1. Three-dimensional plot of the stress fields of a moving screw dislocation for various velocities based on our results predicated
field theory. The snapshots are for instancet = 0. The spatial coordinates are normalized byκ while the stressσ∗

rz = σrz/σ
0
rz is normalized

with respect to the classical stress.
e

f

irly
eld

the

b-

it
ter
ce)

d
de-
rgy
(11b)t ′ = (t − vx/ς)β,

(11c)y′ = y,

(11d)β = 1√
1− v2/ς

.

All variables referred to in the moving frame will b
identified by an apostrophe, e.g.,φ′

31 or ∇′. With this
notation, we have

(12a)∇′2φ′
31 = κ2φ′

31,

(12b)∇′2φ′
32 = κ2φ′

32,

(12c)∇′2φ′
34 = κ2

dφ′
34.

Here,κ2 is 2µ/s1 andκ2
d is ρ0

s2
, which have units o

reciprocal lengths squared whileκ2
d defines a length

scale relating to dynamic properties. Using a fa
standard argument, we note that the dislocation fi
is static with respect to the moving frame. Thus,
classical stresses satisfy[9]: ∇′2σ ′0

32 = ∇′2σ ′0
31 = 0.

Transforming to cylindrical polar coordinates, we o
tain finally

(13)
(
1− κ−2∇′2)σ ′ = σ ′0.
rθ rθ
The solution to Eq.(13)is straightforward and we om
further details for the sake of brevity. We obtain (af
transformation back to the natural frame of referen

σrθ = µb

2πr ′
[
1− κr ′K1(κr ′)

]
,

(14)(r ′)2 = (x − vt)2

1− v2/ς
+ y2.

HereK1 is modified Bessel’s function of second kin
of order 1. Integration of the stress fields and the
rived strains yields the following expression for ene
per unit length

W = µb2

4π

{
−1

2
+ C + 1

2
κ2(r ′)2K1(κr ′)2 + K0(κr ′)

(15)×
[
2− 1

2
κ2(r ′)2K2(κr ′)

]
+ ln

(
κr ′

2

)}
.

Here,C is the Euler constant.
The dynamic gauge fieldφ′

34 of (12c)can be solved
similarly and gives

(16)φ′
34 = CK0(κdr ′).
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Fig. 2. Three-dimensional plot of the stress fields of a moving screw dislocations for various velocities as predicted by classical elas
snapshots are for instancet = 0. The spatial coordinates are normalized byκ while the stressσ∗

rz = σrz/σ
0
rz is normalized with respect to th

classical stress.
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We should keep in mind the assumption that
dislocation field is static with respect to the movi
frame. Hence, momentum of dislocation should be
which impliesB ′4

i = P ′4
i = 0 and thusC = 0 becomes

the only physically reasonable option for Eq.(16).

3. Results and discussion

While the conclusions of our mathematical resu
are manifestly clear fromFigs. 1–3, upon setting
ς = a2c2 (wherea is a constant), a cursory glance
Eqs.(14) and (15)indicates that transonic and sup
sonic states will be admissible provideda > 1. This
factora also arises in the context of dispersion cur
(of the gauge field of defects) and has already b
shown to be>1 by Kadíc–Edelen–Lagoudas[1,2].
Their work implies thata is a material constant.

Fig. 1 clearly illustrates the lack of any singula
ties atv = c while stress field completely vanishes
v = ac. The contrast with classical elasticity (Fig. 2)
is striking which exhibits divergences both tempora
and spatially.

The energy of the moving dislocation is also plot
(in Fig. 3) and compared with the classical predicti
clearly indicating the admissibility of transonic a
supersonic dislocations on energetic grounds. Fo
lustrative purposes we have chosena = 1.5 although
the precise numerical choice (considering the inten
this Letter) is irrelevant as long asa > 1.

Some aspects of our results and their interpr
tion warrant further discussion. We emphasize h
that, using a gauge field theoretic approach and
sequently without any adoption of unnecessary p
tulates (that are not already accepted in fundame
physics), we have shown that speeds greater than
not forbidden.

These results, however, by no means provide
insights into the relation between applied stress
the velocity of the dislocations. Indeed, such an
sue can only be addressed by incorporating both
effect of underlying lattice and nonlinearities. With
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Fig. 3. Normalized energy versus normalized velocity. Our gauge solution and the classical predictions are contrasted.
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a classical field theoretic standpoint, these were
dressed by Gumbsch and Gao[7] and Rosakis[11].
Obviously, the incorporation of such effects in t
gauge field approach outlined in the present wor
the logical future step. In closing, we note here t
the gauge field theory naturally incorporates nonlo
effects. In fact, Eq.(13) is reminiscent of the so-calle
phenomenological nonlocal elasticity theories[15,16].
However, we hasten to point out that it is unclear
the present authors whether the use of the actual
nomenological nonlocal elastodynamical theory[16]
for the present problem will lead to the result sho
here[17]. As already alluded to earlier, given the pu
pose of the present work, the actual value of the c
stanta is immaterial as long as one acknowledges
result of Edelen–Kadić–Lagoudas[1,2] that it must
be >1. Their context was dispersion curves of gau
elastic continuum, while we have solved the spec
problem of a moving screw dislocation to prove th
a > 1 implies that transonic and supersonic states
admissible (which is not the same as “probable”) a
the theoretical maximum speed isac. The material
parametera is analogous to the characteristic leng
-

scale that appears in both phenomenological nonl
elasticity theories and gauge field theory (i.e., 1/κ) in
the static case. Both these theories introduce a le
scale parameter in the static solutions of mechan
deformation which is rightfully acknowledged to be
material level constant (and is currently the subjec
much experimental and atomistic determination,
Refs. [16,17] and references therein). In the pres
case, which is a dynamical problem, the material c
stant a plays a similar role and “renormalizes” th
shear speed of sound.
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[1] A. Kadić, D.G.B. Edelen, A Gauge Theory of Dislocations a
Disclinations, Springer, Berlin, 1983.

[2] D.G.B. Edelen, D.C. Lagoudas, Gauge Theory and Defec
Solids, North-Holland, Amsterdam, 1988.

[3] M.C. Valsakumar, D. Sahoo, Bull. Mater. Sci. 10 (1988) 3.
[4] M. Lazar, J. Phys. A: Math. Gen. 36 (2003) 1415.
[5] L. O’Raifeartaigh, The Dawning of Gauge Theory, Prince

Univ. Press, Princeton, 1997.
[6] Y.W. Zang, T.C. Wang, Q.H. Tang, Acta Mech. Sinica

(1995) 76.
[7] P. Gumbsch, H. Gao, Science 283 (1999) 65.
[8] H. Koizumi, H.O.K. Kirchner, T. Suzuki, Phys. Rev. B 6
(2002) 214104.

[9] J.P. Hirth, J. Lothe, Theory of Dislocations, Wiley, New Yor
1982.

[10] J.D. Eshelby, Proc. Phys. Soc. London A 62 (1949) 307.
[11] P. Rosakis, Phys. Rev. Lett. 86 (2001) 95.
[12] J.D. Eshelby, Proc. Phys. Soc. London A 69 (1956) 1013.
[13] P. Sharma, S. Ganti, Proc. R. Soc. London A (2005), in pre

V.A. Osipov, J. Phys. A: Math. Gen. 24 (1991) 3237;
V.A. Osipov, Phys. Rev. B 51 (1995) 8614.

[14] D.G.B. Edelen, Int. J. Eng. Sci. 34 (1996) 81.
[15] M.Y. Gutkin, E.C. Aifantis, Scr. Mater. 35 (1996) 1353.
[16] A.C. Eringen, Nonlocal Continuum Field Theories, Spring

New York, 2002.
[17] Y. Chen, J.D. Lee, A. Eskandarian, Int. J. Eng. Sci. 41 (20

61.


	Gauge field theoretic solution of a uniformly moving screw dislocation and admissibility of supersonic speeds
	Introduction
	Formulation
	Results and discussion
	Acknowledgements
	References


