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Size-Dependent Elastic State of
Ellipsoidal Nano-Inclusions
Incorporating Surface/Interface
Tension
Using a tensor virial method of moments, an approximate solution to the relaxed elastic
state of embedded ellipsoidal inclusions is presented that incorporates surface/interface
energies. The latter effects come into prominence at inclusion sizes in the nanometer
range. Unlike the classical elastic case, the new results for ellipsoidal inclusions incor-
porating surface/interface tension are size-dependent and thus, at least partially, account
for the size-effects in the elastic state of nano-inclusions. For the pure dilatation case,
exceptionally simple expressions are derived. The present work is a generalization of a
previous research that addresses simplified spherical inclusions. As an example, the
present work allows us, in a straightforward closed-form manner, the study of effect of
shape on the size-dependent strain state of an embedded quantum dot.
�DOI: 10.1115/1.2338052�
Introduction
The determination of elastic states of an embedded inclusion is

f considerable importance in a wide variety of physical prob-
ems. In the classical elasticity context this problem was first
olved rigorously by �1�. The latter work, both with and without
odifications, has been employed to tackle a diverse set of prob-

ems: Localized thermal heating, residual strains, dislocation-
nduced plastic strains, phase transformations, overall or effective
lastic, plastic and viscoplastic properties of composites, damage
n heterogeneous materials, quantum dots, interconnect reliability,

icrostructural evolution, to name a few. The classical solution of
n embedded inclusion neglects the presence of surface or inter-
ace energies and indeed, the effects of those are negligible except
n the size range of tens of nanometers, where one contends with

significant surface-to-volume ratio. Clearly, the influence of
urface/interface energies only extends to the nanoscale regime, as
llustrated by various mechanical and optoelectronic applications
uch as nanostructures, nanocomposites, thin films, nanoelectron-
cs, and quantum dots �2–10�. With this in mind, in a recent work,
harma and Ganti �8� extended Eshelby’s formalism to cover
ano-inclusions by incorporating coupled bulk-surface elasticity.
xplicit size-dependent expressions were presented for the elastic
tate of simplified spherical and circular shapes under radially
ymmetric loadings along with several illustrative applications.
harma and Ganti �8� conclude that for shapes that admit a con-
tant curvature �e.g., sphere, circular shape� and subjected to ra-
ial loadings, the elastic states are uniform. In the present work,
e revisit the inclusion problem to address the more generalized

llipsoidal shape. We note here also several other works that have
ecently appeared addressing surface energy effects in inclusion
roblems: Duan et al. �11� generalized the work of Sharma and
anti �8� to incorporate eigenstrains or loadings of arbitrary sym-
etry in spherical inhomogeneities. They find that interior stresses
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and strains in spherical inhomogeneities are nonuniform if the
eigenstrain or applied stresses are not radially symmetric. This
conclusion is also affirmed independently by the work of Lim
et al. �12�. Effective size-dependent properties of composites con-
taining spherical inclusions have been addressed by Duan et al.
�11� while Dingreville et al. �13� investigate the “effective” prop-
erties of nanoparticles, nanowires, and thin films.

Apart from the aforementioned works related to surface energy,
in the classical elasticity context, extensive work has been done
on the embedded inclusion problem and related issues. For the
sake of conciseness, and given the existence of several readily
available reviews on this topic, a detailed literature survey is
avoided in this work. Wherever appropriate, relevant papers are
cited contextually. The reader is referred to the following mono-
graphs, review articles, books and references therein: Mura �14�,
Nemat-Nasser and Hori �15�, Markov and Preziosi �16�, Weng
et al. �17�, Bilby et al. �18�, Mura et al. �19�, and Mura �20�.

In Sec. 2, we discuss some preliminary concepts and issues
related to surface/interface energies and inclusions. In Secs. 3 and
4, we employ the tensor virial method of moments to establish
approximate solutions of various orders to the ellipsoidal nano-
inclusion problem. Some simple expressions are deduced for the
purely dilatational problem in Sec. 5. Numerical results and the
application to quantum dots are presented in Sec. 6 followed with
a summary and the major conclusions.

2 Preliminaries and Background
In this section, the mathematical preliminaries draw on the for-

mulations of Gurtin and Murdoch �21�, Murdoch �22�, and Gurtin
et al. �23�. In the context of inclusions, a reference to the words
“surface” or “interface” is meant for the internal free surface of
cavities or adjoining region of the solid inclusion and the sur-
rounding matrix. In the present work, we shall use these words
and their variants interchangeably.

Consider an arbitrarily shaped smooth interface between an em-
bedded inclusion and surrounding host matrix, characterized by a
unit normal n. Let this interface be “attached” to the bulk �i.e.,
both inclusion and matrix� without slipping or any other disconti-
nuity of displacements across it. This implies that we consider
only a coherent interface. In contrast to the classical case where
surface energies are neglected, we now require that the interface

of the inclusion and the matrix be endowed with a deformation
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ependent interfacial energy density, �. The interfacial or surface
nergy density is positive definite. This quantity is distinct from
he bulk deformation dependent energy density due to the differ-
nt coordination number of the surface/interface atoms, different
ond lengths, angles and a different charge distribution �24�.

Within the assumptions of infinitesimal deformation and a con-
inuum field theory, the concept of surface stress and surface ten-
ion can be clarified by the �assumed linearized� relation between
he interface/surface stress tensor, �s, and the deformation depen-
ent surface energy, ���s�

�s = �oPs +
��

��s �1�

here applicable, superscripts B and S indicate bulk and surface,
espectively. Here, �s is the strain tensor for surfaces that will
esult from the projection of the conventional bulk strain tensor on
o the tangent plane of the surface or interface while �o is the
eformation independent surface/interfacial tension. The surface
rojection tensor, Ps which maps tensor fields from bulk to sur-
ace and vice versa is defined as

Ps = I − n � n �2�

ere, “I” is the identity tensor. Consider an arbitrary vector v. The
ensor or dyadic product � extends two vectors into a second
rder tensor, i.e., in indical notation, Aij =aibj. The surface gradi-
nt and surface divergence, then, take the following form �23�:

�sv = �vPs

�3�
divs�v� = Tr��sv�

ere we have also defined the surface gradient operator ��s� and
he surface divergence �divs�. “Tr” indicates the trace operation.

e shall employ both index and boldface notation as convenient.
nless otherwise stated, all tensors are referred to a Cartesian
asis and isotropy is assumed throughout.

The equilibrium and isotropic constitutive equations of bulk
lasticity are

div �B = 0 �4a�

�B = �ITr��� + 2�� �4b�

t the interface, the concept of surface or interface elasticity
21,23�, ordinarily ignored in the classical formulation is intro-
uced

��B · n� + divs �S = 0 �5a�

�s = �oPs + 2��s − �o��s + ��s + �o�Tr��s�Ps �5b�

ere, � and � are the Lamé constants for the isotropic bulk ma-
erial. Isotropic interfaces or surfaces can be characterized by sur-
ace Lamé constants �s, �s, and surface tension, �o. The square
rackets indicate a jump of the field quantities across the inter-
ace. It is to be noted that only certain strain components appear
ithin the constitutive law for surfaces due to the 2�2 nature of

he surface stress tensor �i.e., only the tangential projection of the
trains on the interface are included consequently, Ps .n=0�. In the
bsence of surface terms, Eq. �5a� reduce to the familiar normal
raction continuity equations.

Thus, while the infinitesimal strain tensor in the bulk �both
nclusion and matrix� is defined as usual in Eq. �6�, the surface
trains involve the use of projection tensor �Eq. �7��

� = 1
2 ��u + �uT� �6�

�s = 1
2 �Ps�su + �su

TPS� �7�

mplicit in Eq. �7� is our assumption of a coherent interface. An
ncoherent interface requires additional measures of strain. The
ost generalized treatment of deformation measures that allows
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projections of jump in the displacement gradient �i.e., relative
strain, twist, normal shear, tilt� and jumps in the normal and tan-
gential displacement �stretch and slip� in addition to the coherent
deformation considered in Eq. �7� has been addressed in detail by
Gurtin et al. �23�.

Consider a stress-free uniform transformation strain prescribed
within the domain of the inclusion �Fig. 1�. As per Mura’s defini-
tion of an inclusion �14� we assume �for the moment� identical
material properties for the inclusion and the matrix. The scenario
where material properties differ is referred to as the inhomogene-
ity problem �14� and will be discussed in Sec. 6.

Sharma and Ganti �8� have derived the following general inte-
gral equation for arbitrary shaped inclusion linking the actual
strain in the inclusion to the uniform transformation strain

�8�

Here G is the Green’s tensor for isotropic classical elasticity �1�.
�* is the so-called “eigenstrain” or a stress-free transformation
strain such as due to for example, phase transformation, thermal
expansion mismatch, lattice mismatch among others. The under-
lined term in Eq. �8� indicates the extra contributions due to
surface/interface energy. S is the classical size-independent Es-
helby tensor �see �1�, Appendix A and �14��. The notation, sym�.�,
represents the symmetric part of a second order tensor, A, e.g.,
sym�A�= 1

2 �A+AT�. Some further details on Eshelby’s tensor for-
malism are included in Appendix A for ready reference.

Further simplification of Eq. �8� is difficult without additional
assumptions regarding inclusion shape. Equation �8� implicitly
gives the modified Eshelby’s tensor for inclusions incorporating
surface energies. This relation is implicit since the surface stress
depends on the surface strain, which in turn is the projection of
the conventional strain ��� on the tangent plane of the inclusion-
matrix interface.

For the spherical shape, Eq. �8� can be explicitly re-written as
�8�

� = S:� * −
2��s + �s�

3KRo
�S:I�Tr�Ps�Ps� −

2�o

3KRo
�S:I� �9�

Here we note that for a sphere, curvature is the reciprocal of its
radius, �=1/Ro and K is the bulk modulus. To allow easy manipu-
lation and in order to get analytical form of Eshelby tensor, it is
necessary to resolve the fourth order tensors along the following
basis: 1

3	ij	kl and 1
2 �	ik	 jl+	il	 jk�− 1

3	ij	kl �see for example, �25��.
And using the spherical Eshelby tensor �14�, Eq. �9� can be re-

Fig. 1 Schematic of the problem
written �in spherical polar basis�
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�rr = �

 = ��� =
3K�* − 2�o/Ro

4� + 3K + 4��s + �s�/Ro
�10�

general feature of the integral Eq. �8� can be realized by noting
hat

divs �s = divs�CsPs�Ps + �oPs� �11�
he surface divergence of surface stress tensor can only be uni-

orm if the classical “bulk” strain as well as the projection tensor
s uniform over the inclusion surface. Consider the identity

divsP
s = 2�n �12�

ere � is the mean curvature of the inclusion. For a general el-
ipsoid the curvature is nonuniform and varies depending upon the
ocation at the surface. Thus, unlike for the spherical or circular
hape, even for purely symmetric transformation strains such as
ure dilation, we can expect a nonuniform strain state rendering
erhaps impossible an exact solution of Eq. �8� for the general
llipsoidal shape.

Tensor Virial Method of Moments for Approxima-
ions to the Ellipsoidal Problem

The nonuniformity of the ellipsoidal curvature makes it difficult
o solve for the elastic state via the implicit system of integral
quations listed in Eq. �8�. The direct use of the integral equation
8� is not very convenient for our purposes and thus in the remain-
er of this paper, based on some simplifying assumptions, we
xplore the so-called tensor virial method of moments �26� to
educe an approximate solution for an ellipsoidal inclusion under-
oing a uniform transformation strain.

First, we only consider the effect of surface tension �i.e., �o� and
gnore deformation dependent surface elasticity, for example, in
he result of Eq. �10�, the term 4��s+�s� /R0 would be discarded.
his assumption is reasonable for small strains and indeed, as has
een found in some technological applications, the deformation
ependent surface elasticity effects can often be small compared
o surface tension effect. Of course, in certain classes of problems,
ssential physics is lost by abandoning the deformation dependent
urface elasticity �e.g., effective properties of nanocomposites,
8,11�; dislocation nucleation in flat nanosized thin films, �3��.
owever, for several problems of technological interest, consid-

ration of �o is sufficient. Note that the recent work of Yang �27�
ay require further clarification as he proposes that the effective

ize-dependent properties of nanocomposites depend on surface
ension of inhomogeneities and fails to include the effect of sur-
ace elasticity which �according to us� is the sole contributor to
he effect Yang purports to investigate. Since the effect of surface
ension manifests itself as a residual type effect �i.e., independent
f external loading�, we can immediately employ Eshelby’s clas-
ic gendanken of cutting and welding operations �1� to put a
hysical perspective on the problem. Take the inclusion �contain-
ng a prescribed physical eigenstrain, say, a thermal expansion

ismatch strain or that due to lattice mismatch� out of the matrix
ut with a surface tension equivalent to the interfacial tension of

Fig. 2 Schema
nclusion-matrix. From a classical perspective the inclusion
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should relax to a strain equal to the physical eigenstrain. However,
in the context of coupled surface-bulk elasticity, an additional
strain ensues due to the presence of interfacial tension. Thus the
total effective eigenstrain is equal to the superposition of the ini-
tial prescribed eigenstrain �due to a physical mechanism� and the
strain state of an isolated un-embedded inclusion under the action
of a surface tension. This is shown schematically in Fig. 2. Math-
ematically

�*T�x� = �*P�x,physical cause� + �I�x,�o,�� �13�
Here we have indicated the major functional dependence of each
type of eigenstrain. The superscripts “T,” “P,” and “I” stand for
“total,” “physical,” and “isolated” respectively. In summary, if we
are able to evaluate �I, Eshelby’s classical tensor type concept can
be employed to determine the elastic state of the inclusion incor-
porating surface energy, i.e.,

��x� = Ŝ�x�:�*T�x� �14�

Here Ŝ is an Eshelby tensor type integral operator which defaults
to Eshelby’s classical tensor �S� for uniform eigenstrains. For an
inhomogeneous eigenstrain, the actual strain is then determined

by the action of the integral operator, Ŝ. This distinction is neces-
sary since even though �in this work� the physical eigenstrain is
assumed to be �as often is� uniform, the contribution of surface
tension is nonuniform, except in the case of a sphere and infinitely

long circular cylindrical shape. Further details on Ŝ are found in
Appendix A. Note that the size dependence enters via the simu-
lated eigenstrain, �I. For spherical and cylindrical shapes, the cal-
culation of this strain is trivial. For example, in the spherical in-
clusion case, the isolated strain �in spherical polar basis� is merely
�rr

I =�


I =���

I =−2�o /3KRo. Substituting this into �13� and using
Eshelby’s tensor �Appendix A� reproduces Eqs. �9� and �10� and
the result of Sharma and Ganti �8� provided that the surface elas-
ticity constants, ��s ,�s�→0 in their formula, are set to zero which
then also coincides with the result of Cahn and Larche �28�.

For an ellipsoidal inclusion, even the isolated solution is not so
trivial. We construct an approximate solution using the tensor
virial method developed by Chandrasekhar �26,29�.

Consider an isolated �i.e., un-embedded� triaxial ellipsoid made
from the same material as the inclusion �Fig. 3�. Further, let it

of the solution

Fig. 3 Schematic of the problem for the isolated ellipsoidal

particle under a surface tension
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Downl
ontain an eigenstrain identical to that of the inclusion, �*P. Now,
o incorporate surface energy �as per the discussion of the preced-
ng paragraph�, let the isolated ellipsoidal particle also be under
he influence of a surface tension numerically equivalent to the
nterfacial tension of inclusion-matrix. A coordinate system with
n origin at the ellipsoid centroid coincident with the principal
xes of the ellipsoid �a1 ,a2 ,a3� is adopted.

In the absence of any external body forces and in static equi-
ibrium, the equation of motion for the isolated ellipsoidal particle
an be written as

div �I = 0 �15a�

�I = C:�I �15b�

here we note that �I can be found by simply inverting Eq. �15b�.
e take the first moment of Eq. �15a� to obtain

�
V

xi

��ik
I

�xk
dV =�

V

��x j�ik
I �

�xk
dV −�

V

�ij
I dV = 0 �16a�

⇒�
S

x j�ik
I�−�dSk −�

V

�ij
I dV = 0 �16b�

auss’s theorem is used to obtain the surface integral in Eq. �16b�.
superscript ��� sign indicates that the referred quantity is ap-

licable at distances infinitesimally close to the bounding surface
ut located in the interior. Since the inclusion is isolated, the ��
uantities are identically zero. Recall that for uniform surface ten-
ion, the jump in the normal tractions is proportional to the sur-
ace tension �Eq. �5a��, i.e.,

��I . n� = − �I�−� . n = − �on div n �17�

rom which we obtain the relation

�
V

�ij
I dV = − �o�

S

x j div ndSi �18�

onsistent with the notion of taking a first order moment, we
ssume that �I is uniform within the ellipsoidal particle. Then, as
learly apparent, Eq. �18� furnishes us a method to find the “av-
rage” strain of an isolated inclusion under the action of surface
ension and eigenstrain via a �relatively� simpler surface integral
n the right hand side. Note that, effectively, Eq. �18� approxi-
ates the nonuniform boundary condition at the inclusion-matrix

nterface in Eq. �5a� in an “average” sense. Implicit in this as-
umption is the notion that the average inclusion strain in the
llipsoidal inclusion is representative of the actual nonuniform
train that one would obtain from a rigorous solution of the inte-
ral equations in Eq. �8�. Equation �18�, which is the heart of the
rst moment approximation, is exact in three cases: �i� For inclu-
ions with constant, curvature, i.e., spherical and circular shape
ii� the trivial case when surface tension is absent, �iii� for large
inclusion” size where curvature is effectively negligible. Clearly,
he first moment approximation is expected to be inaccurate when
llipsoidal aspect ratios become extreme, e.g., flat crack like in-
lusion, and as such should be avoided. Since we are constructing
n approximation for an ellipsoid as the associated fields depart
arginally from the uniform case �sphere�, our solution is not

xpected to satisfy the two-dimensional asymptotic limit when the
llipsoid degenerates to a circular cylinder �for which also the
xact analytical solutions are known�. To approximate an elliptical
ylinder, our analysis must be repeated in a two-dimensional
ramework �although in that case, complex analysis tools may be
ore efficient possibly leading to exact solutions�.
Using a Lemma by Rosenkilde �30,31�—see Appendix B, the
urface integral in Eq. �18� can be further simplified to

50 / Vol. 74, MAY 2007
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�o�
S

x jnk,kdSi = �o�
S

�	ij − nin j�dS = 2Mij �19�

Note that the rightmost integrand in Eq. �19� is just the surface
projection tensor. The derivation of Eq. �19� and other ellipsoidal
surface integrals involving higher order moments of div n are
given in Appendix B. We can then write the surface contributed
eigenstrain of the ellipsoidal inclusion in the following simple
manner:

�I = −
2

V
�C�−1M �20�

The tensor M tensor can be reduced to

Mii = ��a1a2a3�2�o�Aj + Ak� �i � j � k� �21a�

Ai =�
0

�
dt

��ai
2 + t2�

, �2 = �a1
2 + t2��a2

2 + t2��a3
2 + t2� �21b�

Summation convention has been suspended in Eq. �21�. Our
choice of coordinate system coincident with the principal axes of
the ellipsoid and the ellipsoidal symmetry in general restrict non-
trivial terms to only the diagonal ones. The Ai integrals are similar
to the ones that appear in Eshelby’s �1� classical work �but not the
same�. They are easily cast in terms of elliptical integrals

A1 =
sin2 � cos2 
F�
,�� + cos2 �E�
,�� − �a3/a2�sin � cos �

a1
3a2 sin3 � cos2 


A2 =
cos2 
F�
,�� − �a3/a2�E�
,�� + �a3/a2�sin2 
 sin � cos �

a1a2
3 sin3 � cos2 
 sin2 


�22�

A3 =
E�
,���a3/a2�2F�
,��

a1a2a3
2 sin3 � sin2 


Here, the following ordering of semi-axes has been assumed, a1
�a2�a3. E and F are the incomplete elliptical integrals of the
first and second kind, respectively

E�
,�� =�
0

�
d�

�1 − sin2 � sin2 


F�
,�� =�
0

�

�1 − sin2 � sin2 
d� �23�


 = sin−1 a1

a2
��a2

2 − a3
2�

�a1
2 − a3

2�
, � = sin−1 a3

a1

Equations �22� are obtained by substituting t
=a3 sin � /�sin2 �−sin2 � in Eq. �21�.

Obviously, for simpler shapes such as spheres, circular cylin-
ders and spheroids, these elliptical integrals �E and F� degenerate
to well-known elementary expressions �e.g., �32��. The final �in-
terior� strains and stresses of the embedded ellipsoidal inclusion
can be conveniently expressed as

� = S:�*T = S:	�*P −
2

V
C−1M


�24�

� = C:�S − I�:	�*P −
2

V
C−1:M


Note that we have used the Eshelby tensor �S�, not the operator

�Ŝ�, since in the first moment approximation, the total eigenstrain

is uniform.
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Higher Order Virial Moments
In the previous section a first order virial moment of the equa-

ions of motion led to the approximation of uniform strain in the
llipsoidal particle under the influence of a surface tension and
onsequently uniform strain in the embedded inclusion. Succes-
ively higher order moments of the equations of motion can be
aken to obtain more accurate approximations. To obtain a non-
rivial set of self-sufficient equations, the desired strain must be a
olynomial of degree one m−1 where m is the order of the mo-
ent, e.g., in the previous section, a first order moment was taken

onsistent with a uniform strain �zero order polynomial�.
The equations of motion �Eq. �15a�� are now multiplied by xjxm

nd integrated over the volume. Analogous to Eq. �16�, we arrive
t

�
S

xjxm�ik
I�−�dSk −�

V

�xm�ij
I + xj�im

I �dV = 0 �25�

onsistent with the second order virial moment, we shall assume
he isolated elastic state to be a polynomial of degree �m−1�,
hich in the present case is a linear function of position, i.e.,

�ij
I = �ij

2 = �ij
1 + aijkxk �26�

ere, the coefficients ajik are constants to be determined with the
id of Eq. �25�. The first term in Eq. �26�, �ij

1 , is determined �as in
he preceding section� by means of the first order viral moment
quation.

Straightforward manipulation yields

�
V

��ij
I xm + �im

I xj�dV = − 2�Mijm + Mimj� �27�

here we have used �Appendix B�

�o�
S

xjxk div ndSi = 2Mijk + 2Mikj �28a�

Mijk =
�o

2 �
S

�	ij − ninj�xkdS �28b�

he reduction to Eq. �28b� is important since it immediately al-
ows us to note that the integrand is manifestly an odd function.
he ellipsoidal shape possesses three planes of symmetry and
onsequently an odd function must integrate out to zero on its
urface. Thus, the second order virial moment approximation de-
enerates to the first moment approximation of the previous sec-
ion, i.e., aijk=0. This of course implies that the “average” strain
omputed in the previous section is correct up to �first� linear
rder. Thus, at least a third order moment �or a quadratic approxi-
ation in the strain� is required to introduce a nonuniform strain

n the elastic solution of an isolated ellipsoidal particle �and hence
mbedded inclusion�.

In closure of this section, we point out the evident fact that due
o the lengthy and tedious expressions involved, implementation
s somewhat inconvenient beyond the first order approximation.

A Purely Dilating Ellipsoidal Inclusion
For the pure dilatational case ��*P=�pI�, exceptionally simple

xpressions can be derived which we now proceed to outline. We
nly address the uniform strain approximation �i.e., first order
irial moment�. Consider Eq. �24� which provides the strain tensor
or an embedded inclusion incorporating surface/interface ener-
ies via the second order tensor, M. Taking trace on both sides we

btain
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Tr��� = Tr�S:�*T� = Tr�S:�*P� − Tr	S:
2

V
C−1M
 �29�

At this point we appeal to a general result derived by Milgrom-
Shtrikman �33� which specifies that the trace of classical Eshel-
by’s tensor is a constant for all shapes, i.e., in other words, the
dilatation within an inclusion is independent of shape. Equation
�29� then transforms to

Tr��� = �1 + �

1 − �
��p − Tr	 2

V
 1

2�
SijpqMpq +

2� − 3K

18�K
SijmmMqq�


�30�
This can be further simplified to

�31�
The first term in Eq. �31� is simply the Milgrom-Shtrikman �33�
trace valid for all shapes and as apparent solely a function of
Poisson ratio of the matrix. The second term which involves M
can be made more explicit by using Eq. �21a�

Tr�M� = 2��a1a2a3�2�o�Ai + Aj + Ak� = A�o �32�

where we have used the definition of surface area �A�. Further,
decomposing, M into a trace and trace-free part, i.e., M
= 1

3 Tr�M�I+M� final result then takes a simpler form

�33�
A for a triaxial ellipsoid is usually expressed as

A = 2�c2 +
2�b

�a2 − c2
��a2 − c2�E�
� + c2
�

�34�

sn�
,k� =�1 −
c2

a2 ; k =
a

b
�b2 − c2

a2 − c2

Here E is the complete elliptical integral of the second kind and
inversion of the Jacobi elliptic function sn is required. Volume is
simply �4�a1a2a3 /3�. The form of our results presented in Eq.
�33� is especially convenient in that one can judge the departure
form “shape isotropy” �i.e., spherical shape� by the magnitude of
M� �which is identically zero for a sphere�. One can verify �once
again� that upon substituting A /V=3/R0 and M�=0 the spherical
inclusion result of Sharma and Ganti �8� is recovered provided
one ignores the deformation dependent terms in their expression.
The new results for dilatation depart from the classical Milgrom-
Shtrikman trace since A /V and M� are both shape-dependent.
Size-dependency, obviously, also enters through M� /V and A /V.

6 Numerical Results and Applications to Shape and
Size Effects in Band Gap of Quantum Dots

The incorporation of surface size-effects in the inclusion prob-
lem extends all previous application areas of Eshelby’s inclusion
problem to the nanoscale. The present solution, now also allows
study of shape effects beyond trivial shapes such as spherical or
circular.

In the previous sections, identical material properties were as-
sumed for the matrix and the inclusion. The differing elastic con-

stants can be taken care of easily through Eshelby’s equivalent
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nclusion principle �1,14� when the eigenstrain is uniform �which
s the case in our first order moment approximation�. The equiva-
ent inclusion principle was extended to the polynomial case by
endeckyj �34� and thus can in principle be used for higher order
oment approximations if desired although we hasten to point out

hat one must contend with yet more tedious expressions. First
ome general results are presented for inclusions followed by dis-
ussion of our results for quantum dots �inhomogeneities�. The
aterial parameters used for the quantum dot are summarized for

onvenience in Table 1 �Appendix C� and the physical eigenstrain
s identified with the lattice mismatch between the quantum dot
nd the surrounding matrix. When discussing the applications to
uantum dots, the differing properties of the inclusion and the
atrix are taken into account using Eshelby’s equivalent condition

1,14�

CIS:��f + �p −
2

V
�CI�−1M� − ��p −

2

V
�CI�−1M��

= CMS:��f + �p −
2

V
�CI�−1M� − ��f + �p −

2

V
�CI�−1M��

�35�

ere superscripts “I” and “M” indicate inhomogeneity and matrix,
espectively. Equation �35� allows the determination of the ficti-
ious eigenstrain, � f, necessary to simulate the perturbation due to
iffering elastic constants of the matrix and the inhomogeneity.

Table 1 Properties used in numerical calculations

Property Value

Eg
� �eV� 1.94 �36�

ac+av �eV� 8.3 �36�
�M �GPa� 67
KM �GPa� 102
KH �GPa� 168
�H �GPa� 95
�o �J /m2� 1.33

Fig. 4 „a…–„d…: Effect of shape on s

inclusions
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6.1 General Results. In this section, we assume an inclusion
undergoing a dilatational transformation strain. The effect of as-
pect ratio is studied by for both prolate �a1=a2�a3� and oblate
�a1=a2�a3� geometry. Obviously our results are generic enough
to tackle arbitrary ellipsoidal shapes; prolate and oblate cases are
illustrated for a clearer insight into the shape effects.

Percentage deviation of the dilation from the spherical shape is
shown for both prolate and oblate spheroids in Figs. 4�a�–4�d�.

The results are plotted with respect to spheroid size �a1� and
aspect ratio �r=a3 /a1�. As can be appreciated the presence of
surface tension renders the solution difficult to normalize hence
for a better perspective, results are plotted for three different para-
metric values of the eigenstrain �P* �0.02, 0.04, and 0.06�. In Figs.
4�a� and 4�b�, three aspect ratios �a3 /a1=r=1.5,2.5,5� are shown.
Clearly, the effect of shape depends on both size and the magni-
tude of the physical eigenstrain. Keeping in mind the rather typi-
cal value of surface tension we chose �1.33 J /m2�, consider the
case of 2% mismatch strain which is about the norm for quantum
dots/substrate systems grown using the Stranski-Krastanov
method. For this case, even up to 2 nm inclusion size �at an aspect
ratio of 5�, the departure from the spherical shape �i.e., Milgrom-
Shtrikman trace� is no more than 10%. Shape effects, however,
get rapidly appreciable below 2 nm reaching almost 30% for an
inclusion size of 1 nm. For larger mismatch eigenstrains �4% and
6%, respectively� the shape effects are indeed small barely reach-
ing 6% deviation from the spherical shape at a mismatch of 6%
and aspect ratio of 5. Figures 4�c� and 4�d� yields similar conclu-
sions albeit different magnitudes.

There is a weak dependence of dilation on shape. One though
does expect a quite a stronger effect on the principal strains which
is illustrated for prolate inclusions in Fig. 5. It can be seen the
strains inside the inclusion exhibit a strong nonhydrostatic effect.
The equivalence of �11 and �22 is due to the obvious symmetry of
the geometry.

6.2 Shape Effects in Quantum Dots. We next employ the
present results to study the effect of quantum dot shape on the
size-dependent strain and consequently its band gap. Quantum
dots �QD� are of immense technological importance and are typi-

-dependent dilatation of ellipsoidal
ize
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ally embedded in another semiconductor material with differing
lastic constants and lattice parameter. The ensuing elastic relax-
tion within the QD is well known to impact their opto-electronic
roperties �35�. Acknowledging that quantum dots are often “fab-
icated” in the sub 10 nm regime, in our previous work �8�, we
eported significant shifts in band structure and optoelectronic
roperties for very small spherical quantum dots when one incor-
orates size-effects due to surface energies. While in most semi-
onductors the band structure is sensitive to all strain components,
he major influence comes from the dilatation. From a classical
oint of view �based on classical elasticity theory�, quantum dot
ptoelectronic properties have generally been considered rela-
ively insensitive to shape �e.g., Andreev et al. �36��—although
ne can argue that this conclusion is a consequence of the several
implifying assumptions that typically made while proceeding to
nalytically calculate strain-band gap coupling. In light of Figs. 4
nd 5 and the work of Sharma and Ganti �8� we can conclude that
hile size-effects due to surface effects may be significant at very

mall sizes, shapes effect is of secondary importance. A simple
rst order calculation can provide a numerical order to the shape
ffect1

E� + Esurf�Ro,a3/a1� + Ecl = E� + �ac + av���kk − �kk
*T�

+ O�nondilatational terms� �36�

here Esurf is the band gap shift due to the size and shape depen-
ent contribution from surface energy induced strains while Ecl is
he corresponding shift due to classical size-independent and �in
he dilatational case� shape independent strain and finally E� is the
nstrained bulk crystal band gap. Here �ac+av� represents the
ilatational deformation potential where, as indicated, we have
gnored anisotropic terms both in elastic calculations as well as
lectronic calculations. Note that for the purposes of band struc-
ure calculations, the eigenstrain must be subtracted from the com-
atible strain. We take as an example, the technologically impor-
ant In32GaN quantum dot system embedded in a GaN matrix. We
x the size of the quantum dot at a1=a2=1 nm to maximize the
hape effect. We then obtain �E �net band gap shift due to shape
t a1=a2=1 nm, r=1, and r=5� of about 52 meV which is well
eyond the strict tolerances for many optoelectronic devices �35�.
t a more realistic quantum dot size of 5 nm, we obtain an error

1A more rigorous calculation say using the multi-band k.p. method or tight bind-
ng approach is required for accurate electronic band structure calculation. For our

ig. 5 Effect of shape on size-dependent principal strains of
llipsoidal inclusion, a1=a2<a3, r=a3 /a1. „a… r=5 „b… r=2.5 „c… r
1.5.
urposes, the approximation in Eq. �36� is sufficient to illustrate our point.
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of 7 meV which is small and most likely in the “noise” regime
given the uncertainties in the determination of various other pa-
rameters of quantum dots �size, shape, material properties, etc.�
that may have greater influence on the band structure than the
variation in shape which we discuss.

7 Summary and Conclusions
In summary, we have extended a previous work on incorpora-

tion of surface/interface energies in the elastic state of inclusions
to the ellipsoidal shape. In addition to the size dependency, the
present formulation, also allows the possibility of a limited inves-
tigation of shape effects in various physical problems that typi-
cally employ the inclusion solution. Exact solution does not ap-
pear to be feasible for the problem addressed in this work and
hence an approximate solution was constructed using the tensor
virial method of moments. Although we employed only first order
approximation in our numerical results, higher order approxima-
tions can be easily derived if such accuracy is required. In a sense,
the present solution now incorporates shape effects into the scal-
ing laws for inclusions that are valid at the nanoscale. In addition,
exceptionally simple expressions were derived for the pure dila-
tational problem which is relevant for several physical applica-
tions. The discarding of deformation dependent surface elasticity
prohibits use of the present results for calculations of effective
properties of composites. The present work shares with its preced-
ing companion article �8� much of the same limitations. For ex-
ample, we have presented a completely isotropic formulation
while interfacial/surface properties can be fairly anisotropic. In
addition, we have assumed a perfectly coherent interface. In deal-
ing with nano-inclusions it is important also to consider the degree
of coherency, a complete investigation of which is left for future
work.

Note added in proof. Our statement that residual stresses do not
impact effective properties is only true under specific instances,
however our statement regarding Ref. �27� stands. For further
clarification on this issue, one may consult Huang and Sun �37�.
The first author is grateful to Professor Z. P. Huang for educating
him on this.
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Appendix A: Eshelby’s Classical Tensor
In classical isotropic elasticity, the strain field for the inclusion

problem is given by �1,14�

�ij�x� =
1

8��1 − v�
��kl,klij − 2v�kk,ij − 2�1 − v���ik,kj + � jk,ki��

�A1�

Where, � and � are bi-harmonic and harmonic potentials of the
inclusion shape ���. They are given as

�ij�x� = �ij
*�

�

�x − y�d3y �A2�

�ij�x� = �ij
*�

�

1

�x − y�
d3y �A3�

Equation �A1� can then be cast into the more familiar expression

��x� = S�x�:� * x � �

�A4�
��x� = D�x�:� * x � �

Mura’s book �14� contains detailed listing of S and D tensor for
various inclusion shapes �spheres, cylinders, ellipsoids, and

cuboids�. When the eigenstrain is nonuniform, it must be brought
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nto the integral in which case, Eshelby’s tensor is an integral
perator.

ppendix B: Some Identities Related to Ellipsoidal Sur-
ace Integrals

In this Appendix, we derive some identities related to various
rder M tensor. We simply illustrate the method by giving a deri-
ation of Mijkl which is not available in the literature �30,31�.
Consider the following lemma �30,31� for an arbitrary tensor

eld A:

�
S

�A

�xl
dSi =�

S

�A

�xi
dSl �B1�

n Eq. �B1� we set A=nlxjxkxm. The left side of Eq. �B1� can then
e expanded to

�
S

�div n�xjxkxm + �njxkxm + nkxjxm + nmxjxk�dSi �B2�

he right side of Eq. �B1� is written as

�
S

�	ijxkxm + 	ikxjxm + 	imxjxk�dS �B3�

quation �B3� can be used to derive the third order approximation
f needed.

ppendix C: Material Properties for Numerical Calcu-
ations

The numerical values used are listed in Table 1. Further infor-
ation on approximations of the interface elasticity constants is

vailable from Sharma and Ganti �8�. For the quantum dot prob-
em, all the properties in Table 1 and a dilatational physical eigen-
train corresponding to the lattice mismatch of 2% was used while
or the inclusion problem, only �M KM �o were used.
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