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a b s t r a c t

One of the low-temperature failure mechanisms in ductile metallic alloys is the growth

of voids and their coalescence. In the present work we attempt to obtain atomistic

insights into the mechanisms underpinning cavitation in a representative metal,

namely Aluminum. Often the pre-existing voids in metallic alloys such as Al have

complex shapes (e.g. corrosion pits) and the defromation/damage mechanisms exhibit a

rich size-dependent behavior across various material length scales. We focus on these

two issues in this paper through large-scale calculations on specimens of sizes ranging

from 18 thousand to 1.08 million atoms. In addition to the elucidation of the dislocation

propagation based void growth mechanism we highlight the observed length scale

effect reflected in the effective stress–strain response, stress triaxiality and void fraction

evolution. Furthermore, as expected, the conventionally used Gurson’s model fails to

capture the observed size-effects calling for a mechanistic modification that incorpo-

rates the mechanisms observed in our (and other researchers’) simulation. Finally, in

our multi-void simulations, we find that, the splitting of a big void into a distribution of

small ones increases the load-carrying capacity of specimens. However, no obvious

dependence of the void fraction evolution on void coalescence is observed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Metallic alloys such as high strength aluminum alloys typically contain concentrations of secondary metallic phases
that are above their saturation solubility. The precipitates of intermetallic particles are the often primary sources of
structural susceptibility-certainly the case for Al alloys (Dufek et al., 2007). The dealloying of intermetallic particles results
in voids and pits. Aluminum and other similar metals generally fail by growth and coalescence of voids and pits,
mechanically (Mcclintock et al., 1966; Tvergaard, 1990) and electrochemically (Fontana, 1986). Extensive continuum
(Gurson, 1977; Tvergaard, 1990; van der Giessen and Tvergaard, 1990; Tvergaard and Needleman, 1995; Onck and van der
Giessen, 1999; Shen, 2004; Zhao and Chen, 2008; Scheyvaerts et al., 2011) and atomistic studies (Belak and Minich, 1998;
Gullett et al., 2004; Potirniche et al., 2006; Traiviratana et al., 2008; Rudd et al., 2007; Rudd, 2009) have been carried out to
investigate the progressive expansion of voids and the generation of new vacancies, under an increased level of effective
stress.
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Two primary mechanisms that have been proposed are vacancy condensation (Cuitino and Ortiz, 1996) and dislocation
emissions (Lubarda et al., 2004; Traiviratana et al., 2008; Lubarda, 2011). The applicability of these two models is governed by
factors such as temperature, strain rates and the localization of plastic flow. Under the conditions of low temperature and high
strain rates, Lubarda et al. (2004), Lubarda (2011) and Traiviratana et al. (2008) have proposed that dislocation emissions from
void fronts due to high stress concentrations are the dominant mechanism of void expansion. According to their thesis, both
prismatic and shear dislocation loops serve as a vehicle to radially transport atoms away from void fronts and result in the
further cavitation of porous materials. Existing voids expand as dislocation loops propagate away from the void front. Void
expansion is further enhanced at the later stage of deformation due to the coalescence of previously isolated vacancies and
voids. Void expansion substantially reduces the stress resistivity of ductile metals and greatly softens the material. Although
the ability to carry load can be increased by a certain amount due to dislocation reactions, the continuous void expansion is an
unstoppable process under increasing external forces, until the ultimate deterioration of the material.

The involvement of shear dislocation loops in void growth mechanisms as proposed by Lubarda et al. (2004) and
Traiviratana et al. (2008) has been challenged by Bulatov et al. (2010) and there is an apparent disagreement between two
groups of researchers on this issue (Bringa et al., 2010). We will comment on this in Section 3.3.

Among all the previous studies related to void growth and coalescence the void geometry has been limited to either
spheres (Marian et al., 2004; Traiviratana et al., 2008) or cylinders (Gullett et al., 2004; Potirniche et al., 2006) due to their
simplicity. In practical situations, however, void shapes can be much more complicated. A particular type of void, namely
corrosion pits, can be seen as an one-dimensional non-through defect whose depth is usually equivalent to or even longer
than its diameter. In this study, we propose void geometries similar to that of an one-end capped nanotube, as shown in Fig. 1,
to mimic such a pit. The central goal of this work is to perform a systematic study of the void expansion and coalescence by
dislocation pattern and length scale analyses. Molecular dynamics simulations with EAM potentials are employed to
investigate the elastoplastic deformation and ductile deterioration of monocrystalline aluminum at the nanoscale. A uniaxial
strain up to 20% is applied on all three types of specimens that contain one, two and five nanovoids, respectively. The number
of atoms for each type of specimen ranges from several tens of thousands to over a million, involving four material lengths.

The paper is organized as follows: several macroscopic quantities including the effective stress–strain response, stress
triaxiality, and void fraction are calculated from the atomistic simulations to provide the fundamental data analysis aiming
Fig. 1. Void geometry and distributions of (a) one-void, (b) two-void and (c) five-void models listed in Table 1. The Schematic is generated from the

equilibrated configuration of the largest run of each model. A constant void volume fraction of 0.5% results in different void sizes (R) for specimens with

different number of voids based on Eq. (4). The two vertical planes of atoms represent the rigid layers upon which a uniaxial tension is applied under a

constant strain rate of 2� 108 s�1.
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to elucidate length scale effects (Section 2). Dislocation patterns emitted from the void front under plastic strains are
analyzed in detail in terms of the centro-symmetry deviation parameter (Kelchner et al., 1998) (Section 2). In Section 3, we
focus on the length scale analysis of void growth and coalescence as well as the morphological evolution of void
geometries via dislocation analysis. Discussion and a few concluding remarks resulting from the atomistic simulations,
particularly in light of recent controversy regarding void growth mechanisms, are presented in Section 4.

2. Description of the atomistic simulations

We performed the atomistic simulations using the large-scale atomic/molecular massively parallel simulator
(LAMMPS) that was developed by Plimpton (1995), at Sandia National Laboratories. The interatomic interactions of
face-centered cubic aluminum structure were simulated by an EAM (Daw and Baskes, 1983, 1984; Foiles et al., 1986)
potential developed by Mishin et al. (1999) due to its accuracy in simulating crystalline defects in bulk aluminum. All EAM
potential functions share a common mathematical form of interatomic interactions. Namely, the total energy of a system
of particles is expressed by

Etot ¼
X

i

FiðriÞþ
1

2

X
jai

fijðrijÞ

8<
:

9=
;, ð1Þ

where fij is the conventional pairwise potential term given as a function of the separation distance rij between atoms i and
j. FiðriÞ is the energy required to embed an atom at site i having a background electron density ri and ri is a linear
superposition of the atomic electron densities fj due to all atoms interacting with i

ri ¼
X
jai

fjðrijÞ: ð2Þ

In the above equations, the Roman subscripts refer to atomic indices and no summation should be assumed when
repeated. The adjustable parameters in the EAM potential are fitted to both an experimental database and a large set of of
structural energies generated by the first-principles linearized augmented plane-wave (LAPW) method (Andersen, 1975;
Wei and Krakauer, 1985). The inclusion of the vacancy formation and migration energy is crucial for the simulation of void
cavitation in bulk aluminum due to their similar local atomic environment.

To quantify and visualize the dislocation structures, the coordination number (Li et al., 2002), the slip vector (Zimmerman
et al., 2001) and the centro-symmetry deviation parameter (Kelchner et al., 1998) are widely used in the literature. We
practically calculated all three parameters and found that the atomic coordination number and the slip vector become sensitive
to atomic thermal vibrations at elevated temperatures (Pei et al., 2007). Furthermore, the slip vector analysis always needs a
reference configuration so that we can calculate the relative displacement among atoms between snapshots and hence is
computationally expensive. More importantly, it does not allow for identification of crystal defects that are not generated from
atomic motion such as surfaces, grain boundaries, vacancies and voids. Based on these arguments, the centro-symmetry
deviation parameter has been chosen to characterize the plastic deformation in the present work. In a centro-symmetric lattice,
every atom is a center of inversion symmetry of the whole lattice. For any neighbor of a given atom at position r, there always
exists another neighbor at position �r. These two neighbors form a centro-symmetric pair about the atom of interest. The
centro-symmetry deviation parameter provides a quantitative measure of the deviation of a given atom’s local structure from
its ideal centro-symmetry, up to the nearest neighbors (Kelchner et al., 1998):

P¼
X6

i ¼ 1

jRiþRiþ6j
2, ð3Þ

where Ri is the position vector pointing from the central atom to one of its nearest neighbors with index i. iþ6 refers to the
index of another neighbor, which forms the closest centro-symmetric pair about the central atom with the neighbor i. Here,
‘‘closest centro-symmetric pair’’ means that the magnitude of the position vector sum of the pair atoms is one of the six
smallest among all the sums constructed from two arbitrary neighbors. An algorithm for the calculation of the centro-
symmetry deviation parameter can be summarized as:
1.
 Find the 12 nearest neighbors for atoms of interest. Generally we will have more than 12 neighbors, but only the 12
nearest ones are needed. For atoms close to defects, i.e. on a free surface or around vacancies, the cutoff distance needs
to be increased to include at least 12 neighbors.
2.
 Calculate the magnitude of vector sums for all 66 distinct pairs of atoms formed by the selected 12 neighbors.

3.
 Sort the array of 66 entries in an ascending order.

4.
 The centro-symmetry deviation parameter is taken as the sum of squares of the first 6 entries of the sorted list.

The centro-symmetry deviation parameter is zero for perfect fcc atoms, 3a2=2 or a2 for atoms on a f0 0 1g free surface,
3a2=2 for atoms on an f1 1 1g free surface, a2=2 for atoms in an intrinsic stacking fault and a f1 1 1g/0 1 1S perfect
dislocation core and a2=3 for atoms at an f1 1 1g/1 1 2S partial dislocation core, with a denoting the lattice constant.



Table 1
Summary of the geometric parameters for the four cases of each of the three models shown in Fig. 1. The units of Lx, Ly, Lz and R are nm.

Case Lx Ly ¼ Lz R (one-void) R (two-void) R (five-void) Atoms

1 7.29 6.48 0.55 0.43 0.32 18 K

2 13.77 12.96 1.09 0.86 0.64 140 K

3 20.25 19.44 1.64 1.30 0.96 463 K

4 26.73 25.92 2.18 1.73 1.28 1.08 M
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Considering the widely separated values of the centro-symmetry deviation parameters, different atomic defects can be
easily distinguished.

Rectangular domains of single crystal aluminum, with crystalline axes x¼ ½1 0 0�,y¼ ½0 1 0� and z¼ ½0 0 1�, were created
with atoms in perfect fcc lattice sites. Three models, each with four cases of increasing domain sizes, are considered in this
study and summarized in Table 1. The number of atoms for these cases varies from 104 to 106. A defect structure
containing a number of voids is distributed about the center of the top surface (z¼0) of the simulation box. The geometry
and distribution of voids for the three models are shown in Fig. 1. To study the effect of void distribution on the plastic
deformation, a constant initial volume fraction of 0.5% is used according to the formula:

Vf ¼ ð
8
3pR3NÞ=V , ð4Þ

where R is the void size, N is the number of voids and V denotes the total volume of the simulation box. The calculated void
sizes are tabulated in Table 1 for different models and runs.

Before the domain is subjected to any load, the simulation is performed for 50 ps under a constant, low temperature of
5 K for equilibration. Periodic boundary conditions are applied in the y and z direction with a periodicity, Ly and Lz.
A uniaxial expansion strain up to 20% along the x direction is applied by freezing one-unit cell of atoms at the �x boundary
and imposing a constant strain rate of 2� 108 s�1 on another one-unit cell of atoms at the þx boundary. Newton’s
equation of motion for both the equilibration and straining process is integrated with a timestep of 1 fs. The velocity
component along the loading direction for all mobile atoms, i.e. those in between the frozen boundary ones, is ramped
according to their x coordinate to avoid the initial shock wave that may be induced by strains. Thermostating can be non-
trivial in molecular dynamics simulations and special care is required (Jang et al., 2007). In the present study all three
velocity components of mobile atoms are thermostated during equilibration; velocity component along the loading (x)
direction, however, is excluded during straining.

When properly averaged over time and space, the virial stress tensor (see Admal and Tadmor, 2010 for a deep
discussion of various measures of atomistic stress tensor) represents one of the microscopic measures of the continuum
Cauchy stress in molecular dynamics. The work of Admal and Tadmor (2010) suggests other measures of atomistic stress
that may be more appropriate, however, in this paper we have chosen the virial definition and do not expect any changes
in our conclusions as a result of this choice. In terms of the EAM potential functions (1) and (2), for a system of interacting
atoms, the virial stress tensor can be defined as

sab ¼
X

i

1

Oi
�miviavibþ

X
jai

dFi

dri

df j

drij
þ

1

2

dfij

drij

� �
rijarijb

rij

� �8<
:

9=
;, ð5Þ

where Oi denotes the atomic volume of atom i, mi and vi are the corresponding atomic mass and velocity, and the Greek
indices a and b represent the Cartesian coordinate axes and assume values from 1 to 3. The stress tensor includes
contributions of the instantaneous atomic velocities due to thermal vibrations and the interatomic forces. While the
second term is the sole contribution in static simulations (energy minimizations), the first term comprises an integral part
of the virial stress tensor for dynamics simulations at a finite temperature, as shown by Subramaniyan and Sun (2008).

In the region near the void defects, the reduced y–z cross sectional area leads to higher stresses. This increase of stress does
not correspond to a measurable macroscopic stress at the continuum level. It is an artificial result of atomic scale geometry.
To avoid the unfavorable stress increase, an averaging of stresses is taken over atoms in regions far away from defects, jxjZ2R,
3R and 7R for the one-void, two-void and five-void models, respectively. Furthermore, due to the way of thermostating in our
simulations, the velocity component along the loading direction is excluded in the stress calculation Eq. (5).

Mcclintock et al. (1966) demonstrated that the failure of ductile metals is promoted by the nucleation, growth and
coalescence of voids. Thus it becomes important to characterize the time evolution of void fraction such that its connections
with the stress–strain behavior and dislocation formations can be correlated. Here we adapt a void fraction calculation
algorithm developed by Gullett et al. (2004). Firstly, we discretize the simulation domain into a simple orthorhombic grid of
cells. The size of the cells is at least equal to the equilibrium distance among nearest aluminum neighbors ðZ0:2864 nmÞ. To
increase the computational efficiency, the side-length of grid cells may vary with increasing simulation box sizes among cases.
With the increase of Lx during the straining process, the x side-length of grid cells changes from timestep to timestep in order to
accommodate an integral number of cells along the x direction. The side-lengths along the other two directions are fixed
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throughout the simulations due to their periodicities. The volume of solid is then obtained as the sum of the volumes of cells
containing at least one atom, while that of a void is obtained as the total volume of empty cells within the boundaries of the
simulation box. This way, the volume fraction is simply the ratio of the number of empty cells over the total number of cells.

The void fraction algorithm is tested by calculating the void volume of a cubic box of perfect aluminum lattice
containing various number of connected vacancies. Fig. 2 shows the calculated void volume, normalized by the
equilibrium atomic volume of aluminum ð � 16:6075 Å3

Þ, as a function of the number of vacant atoms. It is seen that
the result of the present algorithm is in reasonable agreement with the exact solution of the problem (straight diagonal
line, not shown in Fig. 2).

In general, deformation of ductile metals exhibits a well defined elastic region and a plastic one, separated by a yield
point, at which the linear or quasi-linear stress–strain relationship ends. Elastic deformation is recoverable and in general
also compressible. However, due to the marginal effect of elastic deformation on void volume evolution in our simulation,
the void volume fraction can be approximated as a constant during the elastic stage: Vf ¼ ðV�VSÞ=V ¼ f0 with VS and V

denoting, respectively, the volume of the solid and of the whole system. In contrast, plastic deformation is permanent and
produced by volume-preserving slip processes in metals. Hence, the volume of the solid material may be assumed constant
beyond the yield point and the net change in volume of the simulation box may be attributed to void expansion alone
(Gullett et al., 2004):

Vf ¼
VY ð1þePÞ�VSY

VY ð1þePÞ
¼
ð1þePÞ�VSY=VY

ð1þePÞ
¼

f0þeP

1þeP
, ð6Þ

where eP represents the plastic strain, a strain level measured relative to the yield strain at which the volume of the solid
and the whole system are denoted by VY and VSY, respectively.

3. Results and discussion

3.1. Stress–strain response

We first performed atomistic simulations for systems containing a single void to study the void growth behavior under
uniaxial strain. The geometry of the single void is of one-end-capped nanotube whose total length is three times its radius,
as shown in Fig. 1(a). The system is then equilibrated for 50 ps under the microcanonical ensemble with temperature
rescaling, followed by uniaxial expansion in a way described in Section 2. It is worth mentioning that due to fixed periodic
box lengths along the non-loading dimensions, the induced stress state under uniaxial straining is non-uniaxial. To
correlate a generally complex stress state with an equivalent uniaxial tensile loading path, the concepts of effective stress
and strain are employed (Hosford, 2005). For the present case, the effective strain degenerates to the uniaxial strain since
all other strain components are zero. A von Mises stress is calculated for each timestep and selected as the effective stress,
which by definition is

se ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2½ðs11�s22Þ

2
þðs22�s33Þ

2
þðs33�s11Þ

2
þ6ðs2

12þs2
23þs2

31Þ�

q
: ð7Þ

The effective stress–strain curves of the single-void model for four void sizes are shown in Fig. 3(a). All four curves
exhibit a quasi-linear stress–strain behavior up to their yield points at which a substantial stress drop is observed. With a
constant void fraction ratio of 0.5%, a size-dependent stress–strain behavior can be clearly observed from a variety of
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aspects. Firstly, the slope of the initial linear curves represents an increasing function of the simulation domain sizes.
The larger the domain size, the higher the effective Young’s modulus becomes. This behavior demonstrates that the size
scale plays a role in the elastic deformation of systems containing nanovoids. Secondly, the critical (yield) stress and strain
drop as the domain size increases: they are 4.21 GPa and 10.26% for R¼0.55 nm and drop to 2.69 GPa and 5.9%,
respectively, for R¼2.18 nm. Moreover, the magnitude of the effective stress drop right beyond the yield point decreases
with increasing domain sizes. For small domain sizes, dislocations generated from the void front are free to propagate to
the boundaries of the simulation box before they have a chance to meet and interact with each other. As a direct result of
the limit of the domain size, the work-hardening mechanism of the ductile aluminum is substantially weakened.
As domain size increases, more and more dislocation reactions are allowed before they manage to reach the boundaries.
Similar size-dependent behavior of the stress–strain response on domain sizes has previously been observed by
Traiviratana et al. (2008) for copper and Potirniche et al. (2006) for nickel, respectively, despite their quite different void
geometries. The size effects are also reflected in the other aspects of our atomistic simulations such as the binding energy
per atom and the partial temperature calculated from the kinetic energy of all mobile atoms after excluding the x-
dimensional velocity component.

Stress triaxiality, w, is defined as the ratio of hydrostatic stress to the von Mises effective stress: w¼ sh=se. It describes
the portion of the stress tensor that is perpendicular to and on the octahedral plane. Hydrostatic stress is associated with
the energy required to dilate a solid element. The von Mises effective stress is related to the distortion energy in view of its
linear proportionality with the octahedral shear stress. Thus, stress triaxiality can physically be interpreted as the ratio
between energies required to change the volume and shape of a solid element as it deforms. For a uniaxial strain test, the
von Mises yield criterion yields the effective stress: se ¼ 2Ge with G representing the shear modulus. The corresponding
hydrostatic stress is easy to calculate: sh ¼ Ke with K denoting the bulk modulus. For a numerical value of the stress
triaxiality, the shear modulus can be estimated as the average of the lower ððC11�C12Þ=2Þ and upper (C44) bounds for single-
crystal aluminum (Shukla, 1982) while the bulk modulus can be taken as K ¼ ðC11þ2C12Þ=3. Assuming the numerical
values of the elastic stiffness constants by Meyers and Chawla (2009) for monocrystal aluminum at ambient temperature,
a constant stress triaxiality of w¼ K=2G� 1:46 can be estimated for the linear elastic stage of the deformation. Fig. 3(b)
shows the evolution of the stress triaxiality for the four simulations of the single-void model under uniaxial straining.
Initially, the stress triaxiality rapidly ascends to the value of the theoretical prediction ð � 1:46Þ for all simulations and
subsequently remains constant until the yield point of each simulation is reached. The deviation of the triaxiality from 1.46
beyond the yield points is resulted from the continuous dislocation nucleation, propagation and interactions emanating
from the void front. Dislocation initiation and movement with increasingly applied strain favors the shear deformation



C. Mi et al. / J. Mech. Phys. Solids 59 (2011) 1858–18711864
while dislocation interaction hardens the material and makes the plastic slipping between neighboring close-packed
planes more difficult. The complicated competing process results in the fluctuations in the stress triaxiality. In general,
larger simulation runs experience higher triaxialities due to increased level of dislocation interactions.
3.2. Interpretation of yield stress from atomistic results using Gurson’s model

One of the most frequently used models for studying the yielding condition for a continuous ductile medium containing
microvoids is the one developed by Gurson (1977). The yielding function of the model is given as

F¼
s2

e

s2
Y

þ2f cosh
3sh

2sY

� �
�1�f 2, ð8Þ

where f is the void volume fraction, sY is the yield or flow stress of the virgin (unvoided) material and sh and se are as
usual denoting the hydrostatic and the von Mises effective stress. For uniaxial strain Gurson’s yielding formulation can be
rewritten as

F¼
ð2GeÞ2

s2
Y

þ2f cosh
Ke

2sY

� �
�1�f 2: ð9Þ

A conservative estimate of the yield stress, as suggested by Hosford (2005), assumes the maximum shear stress that can
be sustained by a real crystal around 1

10 th of its shear modulus: tmax � G=10. Accordingly, a theoretical yield strength may
be approximated as: sY ¼ G=5. This value, however, is orders of magnitude higher than the experimental measurements
due to the generation, propagation and reaction of dislocations.

One interpretation predicated from Gurson’s model is as follows: consider a homogenized (void-free) comparison
material. In such a case, Gurson’s model is simply the usual yield criterion:

F¼
ð2GeÞ2

s2
Y

�1: ð10Þ

Our goal, in order to interpret the atomistic calculations, is to find an ‘‘effective’’ yield stress sYe of a material riddled
with voids. Accordingly we equate Gurson’s model with the above expression and compute sYe:

ð2GeÞ2

s2
Y

þ2f cosh
Ke

2sY

� �
�1�f 2 ¼

ð2GeÞ2

s2
Ye

�1: ð11Þ

We emphasize that sY in Eq. (11) represents the microscopic yield stress of the corresponding unvoided material.
Fig. 4 shows the variation of critical stresses as a function of void size, predicted from both Gurson’s yielding criterion

and the atomistic calculations. As well-evident from the figure, Gurson’s model (somewhat expected) fails to capture the
size-effect in our atomistic calculations calling for the development of a modified Gurson’s model. It is worth mentioning
that the modification of Gurson’s model (e.g. Wen et al., 2005) that accounts for gradient plasticity effects is not applicable
in this particular size-regime since the characteristic length scales entering those formulations are in microns.
Gurson’s model

Atomistic Simulations
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3.3. Void growth mechanisms

It is mechanically well understood that fcc crystals deform by slip, which involves the sliding of one close-packed plane
over another. As a result, slip generally affects the local atomic structures of two adjacent planes of atoms. (The plane on
which the sliding of atoms occurs is called the slip plane and the direction of the sliding is known as slip direction.) For fcc
crystals, slip naturally occurs on the close-packed f1 1 1g planes, on which the smallest possible Burgers vector is given by
the smallest lattice vector, /1 1 0S=2. Such a perfect fcc dislocation, however, is not energetically favorable. Consider the
specific case of an ð1 1 1Þ½1 1 0�=2 slip system. A dislocation with this Burgers vector may dissociate into two partial
dislocations: ½1 1 0�=2-½2 1 1�=6þ½1 2 1�=6, by Frank’s rule (Hirth and Lothe, 1982). This is the reason that perfect
f1 1 1g/1 1 0S=2 dislocations are rarely observed in both experimental and atomistic studies. Nonetheless, they are still
useful in calculating the favorable slip systems under given stress and strain states. The dissociation from a perfect
dislocation into leading and trailing Shockley partial dislocations can subsequently be analyzed in terms of a Thompson
tetrahedron (Hirth and Lothe, 1982). Under a general stress state ðrÞ, the resolved shear stress (RSS) of a slip system
defined by a slip plane (n) with the slip direction (d) is given by

RSS¼ n � r � d: ð12Þ

For the uniaxial strain test of the single-void models with a small void fraction of 0.5%, s114s22 � s33 and all other stress
components are approximately zero. The energetically favorable slip systems can then be summarized as: ð1 1 1Þ½1 1 0�=2,
ð1 1 1Þ½1 0 1�=2, ð1 1 1Þ½1 0 1�=2, ð1 1 1Þ½1 1 0�=2, ð1 1 1Þ½1 0 1�=2, ð1 1 1Þ½1 1 0�=2, ð1 1 1Þ½1 0 1�=2, ð1 1 1Þ½1 1 0�=2, all with
the same RSS of ðs11�s22Þ=

ffiffiffi
6
p

. It is noted that, there are two equally favorable slip directions (edges of the Thompson
tetrahedron) on each of the four close-packed slip planes (faces of the Thompson tetrahedron).

Fig. 5 shows the initiation, propagation and interaction of various dislocation structures for the largest run (1.08 million
atoms) of the single-void model, as shown in Table 1 and Fig. 1(a). All the dislocation structures in the present paper are
generated using the visual molecular dynamics package developed by Humphrey et al. (1996). Dislocation structures start to
nucleate at the yield point (Fig. 3) around t¼ 291 ps, corresponding to a uniaxial strain of e¼ 5:82% (Fig. 5(a)). Two shear loops
on ð1 1 1Þ and ð1 1 1Þ planes are firstly nucleated (Fig. 5(b)). Each shear loop consists of two layers of atoms on its slip plane
representing a partial annular stacking fault ribbon separating two Shockley partial dislocations. Both the leading and trailing
Fig. 5. Snapshots at the strain levels of (a) 5.82%, (b) 5.90%, (c) 5.94%, (d) 5.98%, (e) 6.02% and (f) 6.06% illustrating the nucleation, propagation and

interactions of dislocation structures. Atom colors indicate various types of crystal defects according to the centro-symmetry deviation parameter: void

front (blue), intrinsic stacking faults (green), Shockley partial dislocations (red) and Lomer–Cottrell stair-rod locks (yellow). Only atoms with a centro-

symmetry deviation parameter greater than 0.5 are shown. (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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partial dislocations are approximately bowed into semi-circles which are energetically favorable dislocation configurations due
to the minimum stress required (Hirth and Lothe, 1982). As the uniaxial strain further increases more shear loops on various
close-packed f1 1 1g planes are emitted from the void front. Notably, a newly generated shear loop on plane (1 1 1) propagates
and meets with an existing shear loop on plane ð1 1 1Þ. The direct product is the formation of a Lomer–Cottrell stair-rod lock
(Fig. 5(c)). The possible reactions for the formation of Lomer–Cottrell dislocations are given by

½2 1 1�=6þ½1 2 1�=6¼ ½1 1 0�=6; ½1 2 1�=6þ½2 1 1�=6¼ ½1 1 0�=6: ð13Þ

It is seen that the Burgers vector of Lomer–Cottrell dislocations runs between centers of the Thompson tetrahedron faces and is
out of any of the four slip planes. This makes the Lomer–Cottrell dislocation completely sessile and one of the major hardening
mechanisms during plastic deformation. It hardens the material by preventing the associated shear loops from crossing each
other and hence makes the subsequent plastic deformation more difficult. To accommodate the propagation of the two
shear loops it borders, the Lomer–Cottrell dislocation extends its dislocation line under the application of increased strains
(Fig. 5(d–f)). As the leading partial of the (1 1 1) shear loop expands, its trailing partial follows and gradually zips off the
Lomer–Cottrell dislocation lock. More stacking fault ribbons, Lomer–Cottrell dislocations and other more complicated
reactions are introduced as various shear loops propagate toward the boundaries of the simulation box. It is also interesting
to observe the mutual repulsion between the shear loops and the rigid boundaries on which the uniaxial strains are applied
(Fig. 5(e and f)). On the contrary, the shear loops are free to cross the periodic boundaries.

Another interesting aspect of the atomistic simulations involves the dynamical evolution of the void volume fraction.
Based on the arguments presented in Section 2, the void fraction should approximately remain the same as its initial value
(0.5%) until the yield point is reached, at which dislocation structures started to nucleate, propagate and interact. New
vacant sites only develop during the stage of plastic deformations and are the direct cause of the tensile failure of ductile
metals (Strachan et al., 2001). Fig. 6(a) shows the dynamical evolution of the void volume fraction for the four runs of the
single-void model as a function of the overall uniaxial strain. The curves for the atomistic simulations are calculated from
the algorithm developed in Section 2. As expected, no void expansions can be observed until critical strains are reached.
Subsequently, the void fraction becomes roughly a linear function of strain and increases to a maximum value around 0.12.
The size dependence behavior of void growth at this strain level ðr20%Þ is consistent with the cylindrical voids expansion
in nickel by Potirniche et al. (2006): an increasing void volume fraction is observed for smaller simulation domains due
probably to their higher von Mises stresses, as shown in Fig. 3. The same conclusion can be drawn easily from Fig. 6(b)
which is a replotting of Fig. 6(a) showing only the portions beyond the yield strains of each individual run. Even though the
void expansion of smaller runs starts at a higher strain, the higher slope of their void fraction curves results in an increased
void expansion at a final strain of 20%. Better linearity is achieved as the size of simulation domains increases. Also shown
in Fig. 6(b) is the theoretical prediction of void fraction from Eq. (6), from which the quasi-linear dependence of void
fraction on plastic strain becomes more clear in view of a Taylor series expansion of Eq. (6) for small plastic strains:
Vf ¼ f0þð1�f0ÞeP�ð1�f0Þe2

Pþ � � �. A reasonable agreement is confirmed between the atomistically calculated curves and
the theoretical prediction. The evolution of the shape of the void for the largest run of the one-void simulation, say in the
x–z plane after 7.5%, 10%, 15% and 20% of applied strain, are shown in Fig. 7.

As indicated in our introductory section, the works by Lubarda et al. (2004) and Traiviratana et al. (2008) proposed that
voids grow through the mechanism of emission of shear dislocation loops. Bulatov et al. (2010) have challenged the
validity of this assertion. In principle, shear loop emission cannot lead to void growth due to violation of mass
conservation, however, in both ours as well as the simulations of Lubarda et al. (2004) and Traiviratana et al. (2008)
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Fig. 6. The dynamical evolution of void volume fraction as a function of (a) uniaxial and (b) plastic strain for the four simulations of one-void model. The

theoretical curve plotted in (b) is predicted by Eq. (6).



Fig. 7. Snapshots at (a) 7.5%, (b) 10%, (c) 15% and (d) 20% of applied strain illustrating the shape formed by the void front. Only atoms with a centro-

symmetry deviation parameter greater than 17 are shown.
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the beginning of emergence of shear loops are observed. We believe (as argued by Bulatov et al., 2010) that the shear loops
observed in our simulations are initial stages of prismatic loop formation (which indeed can lead to void growth). Fig. 5
shows a completely detached prismatic loop observed in our simulations.
3.4. Void coalescence

To study the size effects and void fraction evolution under the influence of void coalescence, similar uniaxial straining
tests are performed for specimens containing two voids and five voids under the same high strain rate of 2� 108 s�1. The
size and distributions of voids for two-void and five-void models are illustrated in Fig. 1(b) and (c), respectively. With the
initial void volume fraction kept the same (0.5%) for all three models, the size of voids decreases with an increased number
of voids, as indicated in Table 1. For example, the sizes of the largest runs are 2.18, 1.73 and 1.28 nm for one-void, two-void
and five-void models, respectively. Similar to the single-void simulations, several size-dependent behaviors including the
effective stress–strain curve, stress triaxiality and void volume fraction are clearly observed across the four running cases
for both two-void and five-void models. The same conclusions relevant to the size effects that have been drawn for the
single-void model equally apply to the multi-void models. Instead, here we present a detailed comparison among the
largest simulations of each individual model to concentrate on the effects of void distribution and coalescence.

Fig. 8(a) and (b) show the evolution of von Mises effective stress and stress triaxiality for the largest runs of the three
models under uniaxial strains up to 20%. The corresponding simulation configurations are indicated in Fig. 1 and the last
row of Table 1. Given the same number of atoms (1.08 million) and initial volume fraction (0.5%), the dependence of
effective stresses on void distribution can clearly be observed. Initially, the slope of the quasi-linear elastic stress–strain
curve slightly decreases with an increased number of voids. On the contrary, the five-void model exhibits the highest
critical stress and strain. These observations demonstrate that at nanoscale void distribution plays a role in determining
the deformation behavior of ductile metals. The same conclusion can be drawn from the evolution of stress triaxiality.
The value deviates from the theoretical prediction of 1.46 at the individual critical points of the three curves. To better
illustrate the effect of void distribution as well as that of simulation domain size, the critical stresses for all the twelve
runs, four for each case, are tabulated in Fig. 9. While the critical stresses for all three cases decay with single-void size
roughly following a power law, the vaster the void volume distribution the higher the critical stresses become. Also shown
in the figure are corresponding critical yield stresses predicted from the continuum Gurson’s model (Eq. (11)). Similar to
the one-void case, the calculated critical yield stresses are fairly independent of both the single-void size and the void
volume distribution and behave almost constant for all twelve runs.
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The stress–strain curves immediately after the stress drop are roughly overlapping for the one-void and two-void
models, as shown in Fig. 8(a). This is due probably to the limited activities of dislocation interactions in the narrow
ligament region between the two voids. The same overlapping behavior can be seen clearly in the stress triaxiality, as
shown in Fig. 8(b). On the other hand, significant dislocation reactions are allowed in the wide region among the five voids,
resulting in a universally elevated stress–strain curve in Fig. 8(a) and a suppressed triaxiality in (b).

Fig. 10 show the dislocation activity at several critical stages for the two-void (a)–(d) and five-void (e)–(h) specimens
with the largest material lengths under uniaxial straining test. With the increase of uniaxial strains, red atoms first appear
at the front of each void around the yield point (a) and (e) indicating the locales where the subsequent partial dislocations
are about to emit. Up to this strain level, all deformations are seen to be elastic. The aspect ratio of individual voids is
directly proportional to the uniaxial strain with the long axis of each void aligned along the loading direction. As the



Fig. 10. Snapshots showing the morphological evolution of void coalescence for the largest runs of two-void model (first row) at strain levels of (a) 6.36%,

(b) 6.76%, (c) 10.00% and (d) 20.00% and five-void model (second row) at (e) 7.02%, (f) 7.18%, (g) 8.98% and (h) 20.00% under uniaxial strain. Atoms are

colored according to the centro-symmetry deviation parameter. Only atoms with a centro-symmetry deviation parameter greater than 0.5 are shown.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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applied strain keeps increasing, shear loops nucleated from neighboring voids propagate and interact (b) and (f). This stage
corresponds to the large stress drops right beyond the yield points in Fig. 8(a). A large amount of strain energies stored
within the simulation domains due to uniaxial strains are dissipated by the various dislocation motions. The aspect ratio of
individual voids have been gradually reversed under the increased level of plastic deformations (c) and (g). As a result,
initially separated voids have been brought together and coalesce into a single and larger void. This stage roughly
corresponds to the end of the large stress drops in Fig. 8(a). Further application of the uniaxial strains up to 20%
continuously weakens the load-carrying capacity of the specimens and substantially increases the volume of the coalesced
void (d) and (h).

Shown in Fig. 11 is the dynamical evolution of the void volume fraction as a function of overall uniaxial strain and
plastic strain for the largest runs of one-, two- and five-void models. As in the case of the single-void simulations, the
volume fraction remains roughly the same as the initial value of 0.5% until the yield points are reached, as shown in
Fig. 11(a). Although the void fractions of individual runs start to grow at their own yield points, they end up with roughly
the same value of 0.11 at the final uniaxial strain of 20%, as shown in Fig. 11(b). Surprisingly, no obvious void coalescence
is observed for the two-void and five-void void growth curves. For example, there is no significant increase in void growth
in the vicinity of multiple voids coalescing into a single void and all three curves reasonably follow the theoretical
prediction by Eq. (6). This observation, however, is consistent with the cylindrical void growth mechanism in nickel
investigated by Potirniche et al. (2006), in which effect is attributed to the very high strain rate effects intrinsically
associated with molecular dynamics simulations.

4. Concluding remarks

Molecular dynamics simulations have been performed to investigate the mechanism of void growth and coalescence in
aluminum, with particular emphasis on the dislocation analysis. Simulations consisting of several tens of thousands to
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over a million atoms, at four different material lengths, reveal a clear size dependence of load-carrying capacity during a
uniaxial tension test. Multi-void specimens with the same initial void fraction are employed to study the effects of void
distribution and coalescence. Given the very high strain rate that is intrinsically associated with atomistic simulations, the
main observations are as follows:
1.
 For all simulation cases, deformation prior to yield points exhibits quasi-linear elasticity. A length scale effect is clearly
indicated by the effective stress–strain response as well as stress triaxiality. The larger the simulation domain size the
lower the yield stress and strain become. Gurson’s model (Gurson, 1977) fails to capture the observed size-effect and
calls for its modification accounting for the mechanisms prevalent at the nanoscopic void dimensions.
2.
 Void volume fraction remains a constant until the critical stresses are reached. Void grows and coalesces by the
continuous nucleation, propagation and reaction of shear loops emitted from void front. All energetically favorable fcc
f1 1 1g/1 1 2S=6 partial slip systems are observed under external forces. A shear loop typically consists of two
Shockley partial dislocations bounding a stacking fault ribbon in between. Lomer–Cottrell stair-rod sessile dislocations
are formed by the reaction of two Shockley partial dislocations from intersecting slip planes. Rigid boundaries produce
repulsive forces on propagating dislocations. The forces divert dislocations to propagate toward the periodic boundaries
instead of the rigid ones.
3.
 A void growth algorithm based on simple-cubic discretization of the rectangular simulation domains is proposed and
implemented to characterize the void expansion. Under uniaxial strains up to 20%, a small size dependence of void
fraction evolution is observed. A smaller simulation domain results in higher void volume fraction at the end of the
straining test. Nonetheless, void fractions from all four material lengths show a reasonable agreement with the
theoretical prediction deduced from geometric arguments.
4.
 Under the condition of constant void fraction, multi-void specimens generally result in higher yield stresses and
elevated load-carrying capacity than single-void samples through more intensive dislocation interactions. This
observation demonstrates that the stress resistivity of specimens can be enhanced by redistributing a large void into
multiple small ones at nanoscale. The evolution of void fraction, however, seems to be independent of the number of
voids given a constant void fraction. No obvious acceleration of void expansion due to coalescence of neighboring voids
are recorded.
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