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a b s t r a c t

Thermal electrical noise in living cells is considered to be the minimum threshold for
several biological response mechanisms that pertain to electric fields. Existing models that
purport to explain and interpret this phenomena yield perplexing results. The simplest
model, in which the biomembrane is considered to be a linear dielectric, yields an equi-
librium noise level that is several orders of magnitude larger than what is observed ex-
perimentally. An alternative approach of estimating the thermal noise as the Nyquist
noise of a resistor within a finite frequency bandwidth, yields little physical insight. In this
work, we argue that the nonlinear dielectric behavior must be accounted for. Using a
statistical mechanics approach, we analyze the thermal fluctuations of a fully coupled
electromechanical biomembrane. We develop a variational approximation to analytically
obtain the benchmark results for model fluid membranes as well as physically reasonable
estimates of the minimum electrical field threshold that can be detected by cells. Quali-
tatively, at least, our model is capable of predicting all known experimental results. The
predictions of our model also suggest that further experimental work is warranted to
clarify the inconsistencies in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last several decades, the response of biological systems to external electro-magnetic fields has attracted much
attention and controversy. Several important biological processes in cell, such as electroporation (Joshi et al., 2001, 2002;
Weaver, 2000), activation of ion gated channels (Jones, 1998; Brownell et al., 2010) among many others, are directly related
to the interaction of cells with an imposed electric field. The source of the electric field could be ionic concentration gra-
dients in the local environment of the cell or simply an external stimuli. While the former is of interest due to the fun-
damental quest to understand transduction mechanisms and signaling in cells, the latter—disruption of biological processes
by very weak extremely low frequency fields (ELF) from external sources of electricity—has also been an active topic of
discussion (Astumian et al., 1997; Bezrukov and Vodyanoy, 1997; Repacholi and Greenebaum, 1999; Valberg et al., 1997;
Simko and Mattsson, 2004; Litvak et al., 2002). It is generally supposed that below a certain threshold–i.e. the thermal–
electrical noise, the cell cannot detect an electrical field. As it is schematically shown in Fig. 1, most (typical) external ELF
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field levels, are severely diminished at the cell level. Whether the electrical field sources are external or internal, the
question of the limit of electrical field detection by cells is of fundamental interest.

The limit for electrical field detection is that the field should exceed, at least, the noise generated by thermal fluctuations
in the cells. Although widely studied theoretically, e.g. Oosawa (1973), Fay (1997), Weaver et al. (1998) and Vaughan and
Weaver (2005), experimental results have been somewhat scarce (McLeod et al., 1987; Cleary et al., 1988; Goodman et al.,
1983).

In a frequently quoted, and relatively simple, model to estimate the noise threshold (Adair, 2000; Adair et al., 1998;
Weaver and Astumian, 1990), the cell-membrane is considered to be a resistor–capacitor system with corresponding values
of membrane resistivity and dielectric permittivity respectively. In the so-called Johnson–Nyquist noise of a RC circuit, the
time averaged noise voltage at low frequencies can be obtained as

V Rk T4 (1)k T BB
ν= ▵

where kB is the Boltzmann constant (Joule/Kelvin), T is the temperature (Kelvin) and ν▵ accounts for the frequency band-
width (Hz). Using this model, Adair (1991) estimated the thermal noise of a spherical cell with radius r 10 m5≈ − and
R 4 106Ω≈ × , to be V 2.6 10 Vk T

6
B

≈ × − for a frequency bandwidth of about 100 Hz. Adair (1991) recognized that the wisdom
of considering the entire cell with its attendant complexities is dubious. A meaningful and more relevant estimate of the
noise threshold is likely if the membrane noise limit is examined rather than that of the entire cell. From this point of view,
he estimated the noise for a small piece of membrane with area d 2.5 10 m2 17 2≈ × − , within a frequency band of 100 Hz, to be
V 0.02 Vk TB

≈ . Here d is the typical thickness of the membrane (∼5 nm).
We may also consider a (yet another) alternative approach. Consider the membrane of size  L(0, )2= as a linear di-

electric surface in equilibriumwith a thermal bath. Thermal fluctuations will lead to a spatially fluctuating and non-uniform
polarization field: we identify P x( ) as the out-of-plane dipole areal density at point x . Then, for a membrane with per-
mittivity ϵ, the electrostatic contribution to the total Hamiltonian can be written as


H aP dx x

1
2

( ) (2)
2∫=

where a d1/( )0= ϵ − ϵ . Discretizing the above Hamiltonian in the real space, in which each degree of freedom x( )i has an area
of A0–that fluctuates independently; we obtain

H aP Ax
1
2

( ) ,
(3)

i
x

2
0

i

∑=

The equipartition theorem immediately yields an estimate of the polarization fluctuation: P k T aA/B
2

0〈 〉 = . Assuming that A0

has the same order of magnitude as d2, the thermal noise of the voltage across the membrane is V k T d/k T B 0B
= ϵ . This gives

us a value as large as 0.3 V at room temperature. Although this approach is based on fundamental statistical mechanics, the
result is physically unreasonable and the ambiguity in deciding the patch of membrane that fluctuates independently (i.e.
A0) offers little insight.

Most other models also predict noise thresholds that are similar in magnitude to the ones described in the preceding
paragraphs. In sharp contrast, for some large mammalian cells, experiments (McLeod et al., 1987; Cleary et al., 1988;
Goodman et al., 1983) suggest values that are almost 1000 times smaller than all the theoretical models!

Fig. 1. (a) An external electrical field is weakened by the tissue, reducing to about 10�6 times the original value by the time it impinges on the cell
membranes. (b) Thermally fluctuating electric field on the surface of the membrane, in equilibrium. Only electrical fields larger than the thermal noise
threshold of the membrane are expected to be detected and therefore induce electromechanical conformational changes.
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Elucidation of the puzzling discrepancies as outlined in the preceding paragraphs is the key objective of this work. In
Section 2, we present our central physical ideas and formulate the corresponding Hamiltonian that accounts for nonlinear
dielectric behavior and coupled electromechanical behavior of fluid membranes. The statistical mechanics of the nonlinear
estimation of the noise threshold in model fluid membranes is outlined in Sections 3 and 4. Experiments indicate that the
limit of noise-detection is frequency dependent. We discuss the modification of our results, that account for finite frequency
bandwidth, in Section 5. In Section 6, we speculate on the relevance of the model fluid membrane results for real biological
membranes, and finally discuss and compare our results with experiments in Section 7.

2. Central ideas and formulation

The dielectric behavior of biological membranes (whether model or real) is nonlinear. The assumption of linearity i.e., the
notion that the polarization is linearly proportional to the electric field P E∝ implies that a membrane is capable of being
polarized to unrealistically high values at high fields. This is of course physically incorrect. Aside from the obvious fact
pertaining to the limits imposed by dielectric breakdown, it is expected that beyond a certain field, a limit will be reached
where all the relevant microscopic dipoles in the membrane have been aligned. Corresponding to this, the polarization will
saturate—in other words, there is an upper limit to which the membranes are capable of being polarized (hence forth
referred to as the saturation polarization). The most compelling evidence of this, at least among recent works, is provided by
the experiments and modeling of Raphael et al. (2000) — and indeed, their estimate of the saturation polarization (on the
specific membrane that they studied) is not only far below the dielectric breakdown limit but also below that of the po-
larization corresponding to the resting voltage.

This concept is schematically illustrated in Fig. 2(a) where we compare the linear dielectric behavior to the dipole sa-
turating trend in which the change in the polarization field becomes negligible once it approaches PS. In other words, the
membrane cannot be polarized to arbitrarily large values by an imposed electrical field and is restricted to a finite range.
There is close analogy of this problem to the confinement ofmechanical fluctuations between confined hard walls—-here the
amplitude of the thermal–mechanical fluctuations is restricted by the hard walls. This analogy is depicted in Fig. 2(b) in
which the membrane's polarization cannot exceed the yellow bounds. The problem of thermal–mechanical fluctuations of a
confined membrane has been discussed by a number of works (Kleinert, 1999; Bachmann et al., 2001) including a few recent
ones: Freund (2013) and Hanlumyuang et al. (2014). Since the strict finite range is difficult to treat analytically (and may not
be physical anyway) we mimic the saturation phenomena with a smooth nonlinear function shown in blue in Fig. 2(a).

Now consider a membrane of  L(0, )2= and thickness d L≪ . The membrane is described by the state variables
P h IR( , ): → , where P is the out-of-plane polarization area density and h is the out-of-plane displacement of the mid-plane

of the membrane. For simplicity (and almost completely justifiable in most situations), we have neglected the in-plane
components of the polarization. Let Kh

1
2

be the mean curvature of mid-plane and within a linearized elastic approximation:

K hx x( ) ( ). (4)h
2= ∇

Although the effect of electromechanical coupling will later be found to be negligible, for the sake of completeness, here we
take it into account and postulate that the total Hamiltonian of the membrane can be written as

Fig. 2. (a) Comparison of linear and nonlinear dielectric behavior of biomembranes. (b) Much like the classical problem of steric interaction of a fluctuating
membrane or how thermal fluctuations of membranes are restricted by hard walls, in the present case, the polarization fluctuations are considered to be
restricted by limits on maximum polarization that can be achieved by the membrane. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this article.)
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
H P h K a P fPK g P ds[ , ]

1
2

1
2

( ) , (5)b h h
2 2∫ κ= + | | + +

where κb and f are the bending modulus and the flexoelectric coefficient of the membrane respectively, and the non-
quadratic function g(P) is designed to increasingly penalize the fluctuations of the polarization field as it gets close to a
saturation value. The simplest form of g(P) is a higher order polynomial of polarization—such that its contribution to the
electrostatic energy is negligible at fields that correspond to well below the saturation point, Ps. We remark that the analogy
to non-linear elastic–plastic behavior is evident. From this point of view, we propose g(P) as below:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟g P aP

P
P

P

P

P

P
( ) ,

(6)s s s

2
4

2

2 6

4

4 8

6

6
ε ε ε= + + + ⋯

were εi are phenomenological scalar constants that represent the nonlinear behavior. In the absence of flexoelectric coupling
(i.e., f¼0), the out-of-plane electric field is given by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟E

P
aP g P aP

P
P

P

P

P

P

1
2

( ) 1 4 6 8 .
(7)s s s

2
4

2

2 6

4

4 8

6

6
ε ε ε= ∂

∂
+ = + + + + ⋯

The function in Eq. (7) can mathematically represent the nonlinear behavior, shown in Fig. 2(a). Furthermore, the energy
cost for the change in polarization field is compared for the cases of linear and non-linear behavior in Fig. 3(a). Specifically,
by taking into account the higher order terms of the polynomial function g(P), the energy cost increases rapidly for the
change in polarization field approaching PS.

As a result of using the new energy function (5), the distribution of the fluctuating polarization field is no longer
Gaussian. Basic statistical mechanics tells us that the probability of occurrence of a certain change of polarization can be
expressed as an exponential function:

p P H P k T( ) exp( ( )/ ), (8)B∝ −

indicating that, the higher polarization values (with the attendant larger energy cost) are less probable. Accordingly, the
nonlinear function g(P) ensures lower probability for largers value of the polarization. We have shown this qualitatively in
Fig. 3(b). Our modified Hamiltonian, which accounts for the nonlinear dielectric behavior, essentially confines the thermal
fluctuations of the polarization field in a finite range of P P/ 1S| | ≤ . For such a non-Gaussian distribution of the fluctuating
field, the equipartition theorem is inapplicable, and analytical solutions are hard to come by. However, we develop here a
variational approximation to obtain an estimation of the fluctuations—that yields analytical expressions. It is worthwhile to
remark that the subject of thermal-mechanical fluctuations of the membranes has been extensively investigated. For
example, in a pioneering work, Helfrich (1973, 1978) proposed that the thermal fluctuations of a membrane soften the
renormalized bending modulus. Also, in the context of dealing with non-quadratic Hamiltonians, Kantor and Nelson (1987)
have discussed the crumpling transition in polymerized membranes, Kardar and Nelson (1988) studied the fluctuations of
self avoiding tethered membranes and Bowick and Guitter (1997) investigated the tubular transition of self avoiding

Fig. 3. (a) Comparison of linear and nonlinear energy costs for change in polarization field. The blue curve is representing the nonlinear behavior, and
mimics the hard (walls) restrictions on the fluctuations. (b) Comparison of probability distributions for the linear and nonlinear dielectrics. The higher
order terms in the energy formulation make the smaller values of the polarization more probable and consequently decreases the fluctuations. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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anisotropic membranes. Several other examples abound which we avoid citing for the sake of brevity. Furthermore, in the
context of the somewhat more complicated and hard membrane materials, the reader is referred to the following sample of
works: investigation of graphene fluctuations by Gao and Huang (2014) and co-workers, DNA, by Argudo and Purohit (2014),
and twin-boundaries in crystalline metals by Chen and Kulkarni (2013).

3. Thermal fluctuations

The Hamiltonian of the system (5) can be rewritten as

H H H , (9)q nq= +

where Hq is the quadratic part of the Hamiltonian that includes the first three terms of (5), and Hnq is the last term of (5)
“Non-quadratic”. Due to the presence of the non-quadratic terms, the equipartition theorem is not applicable; it is hopeless
to compute the exact free energy and thermal fluctuations in closed-form. Nevertheless, we can employ a variational
approximation based on the Bogoliubov inequality (Safran and Samuel, 1994) that asserts the following:

F F F H H , (10)Hvar 0 0 0
≤ ≔ + 〈 − 〉

where F is the actual free energy of the system, H P h[ , ]0 is any Hamiltonian, F0 is the free energy associated with the
Hamiltonian H0:

F k T Z Z e D P hlog , [ , ], (11)B
H P h k T

0 0 0
[ , ]/ B0∫= − = −

and H0
〈 〉 denotes the expectation value with respect to the Hamiltonian H0.

To make analytical progress, we select a quadratic Hamiltonian H0 that in Fourier q-space is given by

⎪ ⎪
⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

H P h
L

G h G P G h Pq q q[ , ]
2

( ) ( ) ( )
(12)

h P f
q

q q q q0

2
2 2∑= | | + | | +

∈
−

where L L dq q{ 2 / ( , ): , , 2 / 2 / }x y x yπ ν ν ν ν π π≔ = ∈ ≤ | | ≤ , G q( )h , G q( )P and G q( )f are set of propagators that will be determined
later, and hq P( )q is the Fourier transformation of h x( ) P x( ( )):





h
L

h d

P
L

P d

x q x x

x q x x

1
( )exp( . ) ,

1
( )exp( . ) .

(13)

q

q

2

2

∫

∫

= − ı

= − ı

For the Hamiltonian (12), by the equipartition theorem we find the free energy F0 to be

F
k T

G G Gq q q
2

log(4 ( ) ( ) ( ) ),
(14)

F
B

h P f
q

0
2∑α= + −

where αF is a constant of no consequence. Also, for simplicity we consider only the first two terms in (6). Then, to within a
constant,

⎧
⎨⎪
⎩⎪

⎫
⎬⎪
⎭⎪ 

H H
L

h a P f h P
k T

L
a

P
P

P

P
dq q x

2
2 .

(15)
H b H H H

B

s s Hq
q q q q0

2
4 2 2 2

2 4

4

2 6

6

40 0 0 0

0

∫∑ κ ε ε〈 − 〉 = | | 〈| | 〉 + 〈| | 〉 + | | 〈| |〉 − + +
∈

−

All the quadratic correlations can be calculated using the equipartition theorem:

h
k TG

L G G G

P
k TG

L G G G

h P
k TG

L G G G

q
q q q

q
q q q

q

q q q

4 ( )
(4 ( ) ( ) ( ) )

,

4 ( )
(4 ( ) ( ) ( ) )

,

2 ( )

(4 ( ) ( ) ( ) )
.

(16)

H
B P

h P f

H
B h

h P f

H
B f

h P f

q

q

q q

2
2 2

2
2 2

2 2

0

0

0

〈| | 〉 =
−

〈| | 〉 =
−

〈 〉 =
−

−−

The last two terms of (15), which are higher order correlations, can be estimated by invoking Wick's theorem (Kleinert,
1989) as below:

P P P P3 , 15 . (17)H H H H
4 2 2 6 2 3

0 0 0 0
〈 〉 = 〈 〉 〈 〉 = 〈 〉

in which P PH Hq q
2 2

0 0
〈 〉 = ∑ 〈 〉∈ . Minimization of the variational free energy Fvar with respect to the unknown propagators
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furnishes an upper bound of the exact free energy. Now let P Hq q
2

0
η = ∑ 〈 〉∈ and G G Gq q q q( ) 4 ( ) ( ) ( )h P f

2χ = − . Then sub-
stituting (16) and (17) into Fvar (10), results in the following simplified form:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟F

k T k T
G aG f G

a L

P

a L

P
q q

q
q q q q q

2
log ( ( ))

2
( )

( ) ( ) ( )
3 15

(18)
B B

b P h f
s s

var
4 2

2 2
4

2

3 2
6

4∑ χ
χ

κ
η η

= ∈ + + + +
ϵ

+
ϵ

We minimize the free-energy with respect to G Gq q( ), ( )h P and G q( )f and obtain

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎫
⎬
⎭

F
G

k T a
G P a G

P

aG G G fG G

G G

F
G

k T a
P G G

P
G

G a G f G

G G

F
G

k T
a G G P

P

G
G a G G

f G G f G G

q

q q

q

q q q

q

q q q q

q

q q
q

q
q q

q
q

q q q q

q

q q q

q

q

q q

q

q

q
q q q q

q q q q q q

q

0
( )

2
12 ( ) 90 ( )

( )

( ) 4 ( )

( )

( )(4 ( ) ( ) )

( )

4 ( ) ( )
( )

0
( )

2
48 ( ) 360 ( )

( )
( )

4 ( )( ( )) 4 ( )

( )

( ( ) ) ( )

( )

0
( )

24 ( ) ( )(2 15 )

( )
,

4 ( )

( )
( )( ( )) ( ) ,

8 ( ) ( ) 2 ( ) ( )

( )
,

(19)

h
B

f s f

s

f P b P f f

h P

P
B

s h h

s
h

h P f

h b f

f
B

f h s

s

f
h P b P

h P f f

var
2

4
2 2 2

6
4 2

2 2 4

2

2 2

2

2

2

var 4
2 2 2

6
2

4 2

2

2

4 2

2
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2

6
4 2 2

4

2 2 2 3

2

η η

χ

κ

χ χ

χ

η η
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κ

χ

η η

χ χ
κ

χ

=
∂

∂
= −

ϵ + ϵ
+

+ | |
+

| | +

−

=
∂

∂
= −

ϵ + ϵ
+

− + | |

+
+ | |

=
∂

∂
=

ϵ + ϵ
+ − + | |

+
| | + | | +

wherein for differentiating the higher order correlations P 3H
4 2

0
η〈 〉 = and P 15H

6 3
0

η〈 〉 = we used the chain rule to write:

G
n

G
n

G
P

q q
q

( ) ( )
( )

(20)

n
n n

H
q q

1 1 2
0∑ ∑η η η η∂

∂
= ∂

∂
= ∂

∂
〈 〉−

∈

−

∈

Solving the equations in (19) for the unknown propagators yields

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

G

G a
P P

G f

q q

q

q q

( )

( ) 1
12 90

( ) 2 . (21)

h b

P
s s

f

4

4
2

2
6

4

2

κ

η η

= | |

= +
ϵ

+
ϵ

= − | |

Subsequent substitution in the expression for η, gives us

P

L
P

d
L

P P e

d
L

P P d P

k TG

L G G G

k T

L f

x

x

x q q x

q
q q q

1
( )

1

1
( )

4 ( )
(4 ( ) ( ) ( ) )

( ) (22)

H

H

H

H H

B h

h P f
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b

q q
q q

q q x

q q
q q
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q

q

q

2

2
2

2
,
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2
,

2

2 2

2 2

0

0

0

0 0

∫

∫

∫

∑

∑ ∑

∑

∑

η

δ

κ
κ ξ

= 〈 〉

= 〈 〉

= 〈 〉

= + ′ 〈 〉 = 〈 〉

=
−

=
−

′∈
′

ı + ′ ·

′∈
′

∈

∈

∈

where a P P(1 90 / 12 / )s s
2

6
4

4
2ξ η η= + ϵ + ϵ and η can be solved for to estimate the polarization fluctuation. Further details on the

variational approach and its accuracy in the context of the current problem are provided in the Appendix.

4. Thermal fluctuations of the electric field

The computation of polarization correlation in Section 3 allows the estimation of the root mean square electric field. The
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polarized membrane induces an electric field that can be calculated using Maxwell's equations. Here we may consider two
ideal boundary conditions: (1) non-conducting boundary conditions, in which the membrane exterior has the permittivity
of vacuum and (2) conducting boundary condition, in which the surrounding electrolyte is perfectly conductive. The real
boundary conditions are somewhere between these two extremes—we will find that our final results (at the level of ap-
proximation we are interested in) are insensitive to these two bounding boundary conditions. Accordingly, we feel justified
in avoiding the more complex nonlinear Poisson–Boltzmann framework. In the first case, we write the Maxwell equation as
below:

⎛
⎝⎜

⎞
⎠⎟

P
d

z ediv ( ) 0,
(23)z0 ϕ χ− ϵ + =∇∇

where

⎡
⎣⎢

⎤
⎦⎥z z

d d
( ) 1 if

2
,
2

otherwise 0.χ = ∈ − =

The solution can be conveniently found in Fourier space:

z z
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d
e e e
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q
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2

( ) .
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z z d

q

q x

q q q q

.

0

/2

∑ϕ ϕ

ϕ

= ^

^ =
^

ϵ | |
−

∈

ı

| | −| | −| |

The ensuing voltage difference across the thickness of the membrane is

d d
P e

d
q q q

q
( ) ( , /2) ( , /2)

(1 )
.

(25)

d
q

q

0
ϕ ϕ ϕΔ ^ = ^ − ^ − =

−
ϵ | |

− | |

The autocorrelation of the potential can be obtained by summing over all possible modes:

V
P e

d
q

q
( )

(1 )
.

(26)

d

q q

q
q

2 2
2 2

2
0
2 2∑ ∑ϕ〈 〉 = 〈Δ ^ 〉 =

〈 〉 −

ϵ | |∈ ∈

− | |

The above sum can be approximately calculated by replacing it with an integration. For conducting boundary conditions, Eq.
(26) simply reduces to

V P
1

.
(27)q

q
2

0
2

2∑〈 〉 =
ϵ

〈 〉
∈

5. Power spectrum of the fluctuating electric field

The power spectrum of the electric field is the ensemble average of the time average of the power dissipation per unit
frequency bandwidth and may be used to estimate the frequency dependence of our results (Kittel, 2004). This is necessary

Fig. 4. Calculated values of noise with different Ps.
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since experimental results indicate the noise threshold to be sensitive to the frequency of the applied field. This can be
explained physically by considering the fact that the membrane is heavily occupied by fluctuating charges and dipoles, that
can dissipate energy and generate noise during conformational transitions. Since the external fields are mostly time de-
pendent – usually sinusoidal – it is best to compare the frequency spectrum of the thermal noise with that of the external
field. In this section we calculate the power spectrum of the fluctuating voltage, from which we can estimate the Nyquist
noise of the membrane. To this end, we assume a relaxation time, τ, during which the state of the system does not change.
The relaxation time in biological membranes, depends on the diffusion constants of the membrane, dipoles and charges, and
is roughly of the order of a millisecond (Phillips et al., 2009). This level of approximation, as will be seen in Section 6 where
we present our results, suffices to draw experimentally relevant conclusions.

The relaxation process is well-known to be an exponential decay in the effect of random fields:

C e( ) (28)t/τ ∝ τ−

Then the power spectrum of the fluctuating electric field is obtained as

G V e t dt
V

( ) 4 cos(2 )
4

1 (2 ) (29)
t

0

2 /
2

2∫ν πν τ
πντ

= 〈 〉 = 〈 〉
+

τ
∞

−

This value is equivalent to the Nyquist noise power in a resistor — Rk T4 B . For low frequency ranges in which 1ντ ≪ , the
power is almost constant— frequency-independent— and the fluctuating voltage is considered to be white noise. In this case
the Nyquist noise for different frequency bandwidth can be calculated by simply multiplying the power by the frequency
bandwidth: V Rk T4 B

2 ν〈 〉 = ▵ν . However, at high frequencies, since the power spectrum is no longer a constant, the Nyquist
noise should be calculated by integrating Eq. (29) over all possible values of the frequency. Assuming that the frequencies
from external electrical fields do not exceed 60 Hz, to draw a comparison with the thermal noise, we have calculated the
noise, V2〈 〉ν for different frequency bandwidth, up to 60 Hz—the results are shown in Fig. 5. As evident, at very low
frequencies (0–10 Hz), the noise threshold can be as much an order of magnitude smaller than the associated high-
frequency value, V2〈 〉.

6. Relevance to real biological membranes

So far, we have considered model fluid membranes. Real biological membranes are highly heterogeneous and are cov-
ered with a large fraction of proteins. In such a crowded environment, polarization is spatially correlated within its plane.
This non-locality of the polarization may play a significant role. One simple (and completely phenomenological) way to take
this into account is to add a term proportional to the spatial gradient of the polarization. This notion is inspired from similar
considerations in crystalline ferroelectrics and approximations made in the quantum mechanical density functional theory.
Let δ be the smallest correlation length. Then we can modify the quadratic part of the original Hamiltonian (5) as follows:


H h aP a P fP h dx x x x x x

1
2

( ( ))
1
2

( )
1
2

( ) ( ) ( ) . (30)
q

b
2 2 2 2 2 2∫ κ δ= ∇ + + |∇ | + ∇

To estimate the strength of the polarization gradient term or alternatively, the order of magnitude of δ, we make two
distinct arguments—both lead to similar results and are likely to bound the actual value: (1) We may consider the polar-
ization correlation to be linked with the tension correlation. The rationale is that the electromechanical conformation of the

Fig. 5. Calculated thermal noise in the presence of time-dependent fields. The relaxation time is considered to be 1 ms. Typically the frequencies of
imposed electric fields do not exceed 60 Hz, and most are, usually, lower. For frequencies less than 10 Hz, the effect of frequency is quite significant.
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mechanosensitive channels are coupled to the tension of the membrane (Paul and Phillips, 2005). (2) A geometrical ar-
gument may be made that δ ought to scale with the average inter-protein distance. Based on the first argument, using a
result given by Liu and Sharma. (2013), we consider the ratio of the two-point tension–correlation with respect to self-
correlation:

h h
h

q h

q h

e(0) ( )
(0) (31)

q q
q

q q
2

2 2

2 2
δη = 〈|∇ ∇ |〉

〈|∇ | 〉
=

∑ 〈 〉

∑ 〈 〉

δı ·

where δ is the relative position vector between two points. By integrating over all modes, for different values of δ, we find
that for d5δ ≥ the ratio is less than 0.1, which is essentially negligible. Therefore, we conclude that for biological mem-
branes, the minimum correlation length is at least 5d.

According to Linden et al. (2012), biological membranes are extremely crowded. They estimate that 30–55% of the area of
the lipid membrane is occupied by various types of protein channels. The radius of the channels in their open state is
roughly about 2–3 nm. Using these values, the average distance between the centers of the proteins can be estimated to be
about 6–12 nm. This argument provides an alternative way to estimating δ.

Recalculating the fluctuations of polarization, using Eq. (30) for the quadratic part of the total Hamiltonian (9), gives the
estimated noise for different values of δ. For 10 nmδ ≈ , we obtain values of noise voltage which is almost one order of
magnitude smaller than what we obtained earlier in Section 4.

7. Results and discussion

For quantitative results, we must estimate Ps. The breakdown voltage of the membrane is around 1 V—-and the polar-
ization corresponding to this represents a strict upper bound. As it can be appreciated from Fig. 2(a), significantly higher
electric fields are required to polarize a membrane close to Ps. Evidently Ps → ∞, represents the linear case which corre-
sponds to the quadratic Hamiltonian. Indeed, our nonlinear numerical results coincide with the linear estimates discussed in
the introduction of the paper if Ps is taken to be very large. The variation of the noise threshold with respect to choice of Ps is
shown in Fig. 4 where the abscissa corresponds to the voltage corresponding to Ps. To solve the Maxwell equation in Section
4, we used the conducting boundary condition, since it gives us the upper bound of the voltage noise. In our calculations, we
have assumed that k T25b Bκ = , 2 0ϵ = ϵ =, f a/ /2b

2 κ ≈ . For the higher order terms, since the dominant parameter is Ps we have
set εi equal to 1. We have verified that this does not significantly alter our results. The linear framework yields noise
threshold around 0.3 V. Even if we adopt the excessively simple model that the dielectric response is almost linear up until
the strict upper limit of the breakdown voltage, our models predict a noise threshold that is still much lower than 0.3 V. To
further refine our estimate of Ps, we take recourse in recent experimental work (Raphael et al., 2000) that has documented
nonlinear dielectric properties for a specific biomembrane (of outer hair cells in the ear). There is significant diversity among
biological membranes, however, their linear dielectric behavior is markedly similar and since our primary interest is in order
of magnitude estimates, we have used the experimental estimate of Ps by Raphael et al. (2000) as a representative value.

According to their model, the length change of the outer hair cell with voltage, can be explained by a nonlinear re-
lationship between the flexoelectric coefficient and the applied electric field. To explain the nonlinear dependence of
flexoelectric coefficient on the membrane voltage, they proposed a nonlinear relationship between the polarization density
and the electric field. Their work suggest that for dipole moments less than 10D, the dielectric behavior of the membrane is
linear. Considering the dipole density of such membranes to be about 6000/μm2, we estimate P /s ϵ to be less than 10 mV.

Table 1
Estimated values of thermal noise limit in cell membranes.

Frequency (H) Experimental values
(V/cm)

Linear dielectric
model (V/cm)

Nyquist noise in the
equivalent RC circuit
(V/cm)

Present model for a
pure lipid bilayer
(V/cm)

Predicted values for a real bio-
membrane (V/cm)

Chicken fibroblastsa

Cleary et al. (1988)
1 0.6 6.1 105× 3.6 103× 1�103 100

Bovine fibroblastsa

McLeod et al. (1987)
10�1 300 6.1 105× 1.1 103× 320 30

1 2.1 6.1 105× 3.6 103× 1�103 100

101 1.5 6.1 105× 1.1 104× 3.2 103× 300

102 30 6.1 105× 3.6 104× 9.5 103× 900

103 600 6.1 105× 1.1 105× 1.5 104× 1400

a The noise was calculated for a cell of size L 150 m≈ μ . Considering the thickness of the membrane to be d 5 nm≈ , we have converted the reported
cell-level value to the membrane noise value.
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Using these estimates, our calculations of the noise threshold appear in Table 1 where a comparison is also made with
known experimental results and other models. We have converted the estimated voltage noise to the electric field noise, by
using the thickness of the membrane: E V d/k T k TB B

= . Some comments related to the frequency effect and the consideration of
gradient of polarization (relevant for real biological membranes) are warranted. Consideration of both effectively reduce the
noise threshold estimates by an order of magnitude. For example, consideration of the gradient of polarization term along
with the estimate of δ¼10 nm (see Section 6) leads to the noise threshold estimate that is almost 10 times smaller that for a
model fluid membrane. The experimental values in the second column evidently have significant scatter. The notable aspect
however, as already emphasized briefly in the Introduction, is how low these are compared to the estimates from con-
ventional models (column 3). We note that in the cited experimental references and prior works, the noise estimates were
made for the entire cell. In Table 1, we have converted the noise values from the cell level to the membrane level through
the following relations: E E L d/mem cell≈ × , in which L is the size (radius) of the cell. Here, we have assumed that the electric
field is uniform across the thickness of the membrane and cell, and used the equation: V E d E Lk T mem cellB

= × = × . The fourth
column is the Nyquist noise at different frequencies. The results of our model for pure lipid bilayers are shown in column 5.
In the last column, we have provided the estimated values of noise in real biological membranes, where we have (phe-
nomenologically) considered the interactions between the channels and other physical inhomogeneities, using 10 nmδ ≈ .

8. Concluding remarks

In summary, we have pointed out the rather large discrepancy that exists between the (experimentally estimated)
minimum electric field that an ideal fluid membrane can detect and what the existing theoretical models predict. A con-
sistent accounting for the influence of the nonlinear dielectric behavior of membranes on the thermal fluctuations of the
membrane electric field appears, in large part, to address this issue. The dielectric nonlinearity can be explained physically
by the dipole saturation phenomena, and the consequent fact that there is an upper limit, PS to which a membrane is
capable of being polarized. Our mathematical framework yields analytical solution for the thermal electrical noise of
membranes. In real biological membranes (as opposed to fluid membranes), we must contend with more
complex situations. Proteins, salts, charged objects, ionic flux and the polarized double layers are some of the items that may
contribute to the fluctuations of electric field in real biological membranes. To some extent, phenomenologically, we con-
sider the effect of inhomogeneities through an added energetic term that sets the scale for the membrane in-plane cor-
relations of polarization. The predictions of our theoretical framework provide noise estimates that are of the same order of
magnitude as experiments. In particular, our work provides both a benchmark estimate for model fluid membranes (which
should be experimentally testable) and reasonable predictions for biological membranes (where significantly more com-
plexity may be expected). Further experimental studies are required to understand and clarify the quantitative aspects of
dielectric nonlinearity in biological membranes and settle the rather large scatter in the existing experimental data.
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Appendix A. Details on the variational approximation

Kleinert and co-workers introduced the so-called variational perturbation method (VPT) to handle the statistical me-
chanics of anharmonic Hamiltonians (Kleinert, 1989, 2009). A straightforward perturbation approach (expanded around,
say, a quadratic Hamiltonian) results in a divergent series. On the other hand, variational approximation using trial function,
while effective, works best if the trial function is an “inspired” guess. The VPT combines both approaches and it has been
shown that the resulting series converges exponentially. In the present work, we have used the VPT while retaining only the
first term. This approach is extensively used to deal with thermal fluctuations of fluid membranes in different contexts
(Palmieri and Safran, 2013; Brewster et al., 2009; Pieruschka et al., 1994; Podgornik and Parsegian, 1992; Weikl and Li-
powsky, 2001).

In this appendix we present some calculations that provide some assurance to the quality of our approximation. Consider
the following Hamiltonian which, while anharmonic in the polarization field, ignore the mechanical displacement fields:

H aP
a

P
P

1
2 (32)S

2 4
2

4∫ ε
= +

The advantage of the Hamiltonian in (32) that includes a fourth order polarization term (but no field derivatives) is that
the partition function and the free energy can be obtained in closed-form and therefore provides a simple (but related) test
case to assess the approximation we have used in this work. To deal with the path integral in the partition function, we first
discretize the Hamiltonian (32). To this end we assume that the membrane consists of 2N molecules located at
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n n n n mx ( , ): , 1, ,1 2 1 2Λ∈ = = … , where L m/Λ = . The total number of degrees of freedom are N m2= and each has an area
of A0

2Λ= . Given that the area density of the dipole moment at point x is P x( ), the dipole moment P x( )˜ at this point can be
calculated by: P P Ax x( ) ( ) 0

˜ = . Substituting this into Eq. (32) and summing over all degrees of freedom, we obtain

H a
P
A

a
P

A P

x x1
2

( ) ( )

(33)Sx

2

0
4

4

0
3 2∑ ε=

˜
+

˜

∈

The partition function is
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A P
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e A P K
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0
3 2

/32
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4 32

4

S S0
2

4 0
2

4∫ ∫ ∑ ∏ ∏β β ε= − = −
˜

+
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ϵ

β β

∈ ∈ ∈

ϵ
ϵ

where K1/4 is the modified Bessel function of the second kind. The free energy per unit area is: where K1/4 is the modified
Bessel function of the second kind. The free energy per unit area is

⎜ ⎟⎛
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⎞
⎠
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ϵ

In the limits of PS → ∞ or 04ϵ → , which corresponds to the quadratic Hamiltonian, we obtain

f
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0π
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Also the fluctuations of the dipole moment at each point x′ ∈ can be obtained using the partition function (34):
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The root mean square of the voltage across the membrane is given by

V V
P
A

x( )
(38)exact

2
2

0 0
= 〈 〉 =

〈 ˜ ′ 〉
ϵ

To compare the exact results with that of the variational approximation, we calculate the free energy per unit area and
the root mean square of the voltage across the membrane, by minimizing the right hand side of the inequality (10) with
respect to the trial parameter. To start, consider the trial Hamiltonian as below:

H aP x
1
2

( )
(39)x

0
2∑= ¯ ˜

∈

where ā is the trial dielectric parameter. Using the above Hamiltonian, we calculate the right hand side of the inequality (10)
as below:
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where we have used Wick's theorem to obtain the higher order correlation function P Px x( ) 3 ( )H H
4 2 2

0 0
〈 ˜ 〉 = 〈 ˜ 〉 . Also, we have

directly used the equipartition theorem to calculate the correlation function: P k T ax( ) /H B
2

0
〈 ˜ 〉 = ¯ . Minimization of the varia-

tional free energy with respect to the trial dielectric parameter, provides us with an upper bound of the exact free energy:
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The solution of Eq. (41) will give us the renormalized dielectric parameter as below:
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The renormalized dielectric parameter may be substituted in (39) and by recourse to the equipartition theorem, we may
calculate the free energy per unit area, fluctuations of the dipole moment, and eventually the root mean square of the
voltage across the membrane. A comparison between the variational approximation obtained using (42), and the exact
values of the free energy per unit area and the root mean square of the voltage, from Eqs. (35) and (38), respectively, is
depicted in Figs. 6 and 7. In Fig. 6, the free-energies are normalized with respect to the one obtained from the quadratic
Hamiltonian (the linear dielectric case, (36). The variational free energy which is shown is dashed blue is always above the
exact free energy (magenta). On the other hand, since the variational free energy is always greater than the exact free
energy, the estimated fluctuations (obtained from variational method) will be always smaller than the exact fluctuations.
We have also compared the estimated and the exact root mean square of the voltage in Fig. 7. The vertical axis in this plot is
the ratio of the variational estimate with respect to the exact value. For any values of PS, the error is less than 10%. In case
more accurate results are of interest, progressing to the second order of the variational perturbation method (Kleinert, 1989,
2009) is required.
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