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Grain boundary sliding is the key deformation and damage mechanism for high temperature deformation
of crystalline materials impacting, thus, applications ranging from nuclear reactors to aircrafts. Despite
decades of research—theoretical and experimental—a definitive atomistic understanding of this phe-
nomenon has been elusive. The primary bottleneck is the fact that conventional molecular dynamics
can only address pico-to-nano seconds of material physics while the characteristic relaxation times for
creep phenomena (including grain boundary sliding) are several orders of magnitude slower. In this let-
ter, we use a fresh approach based on a recently developed potential energy surface sampling method
that allows us to bridge long time scales and, for the first time, develop a physically reasonable constitu-
tive law. Our results show a dramatic improvement over what can be gleaned from conventional molec-
ular dynamics and provide insights on the relative merits of existing theories of grain boundary sliding.
Our simulations (based on a prototypical metal, Al) answer important questions such as (i) is there a
threshold stress for grain boundary sliding?, (ii) what is the form of constitutive law for grain boundary
sliding? and others.

� 2015 Elsevier B.V. All rights reserved.
At low enough temperatures—low compared to half the homol-
ogous temperature—crystalline materials exhibit irrecoverable
deformation provided the imposed mechanical stresses exceed
the so-called yield threshold [1]. For all practical purposes, this
deformation is considered to occur instantaneously. At high tem-
peratures, however, even at stresses below the yield stress, irrecov-
erable deformation occurs gradually over an extended period of
time. At the micro scale, this time-dependent deformation is pred-
icated on several viscous processes such as grain boundary and
volume diffusion, grain boundary sliding, dislocation glide-climb,
void nucleation, void growth and others [2–5]. These micro mech-
anisms exhibit characteristic relaxation times that range from sec-
onds to years (depending on the level of applied stress and
temperature). This ‘‘creeping’’ deformation behavior is the pre-
dominant cause of failure in materials that are subject to high tem-
perature environment: ice glaciers, nuclear reactors, air crafts,
electronics among others [6–8]. For example, Sn–Pb alloys (sol-
ders) are extensively used in electronics and the melting tempera-
ture of this class of alloys is low enough that at even room
temperature, creep eventually (in conjunction with other factors)
leads to failure [8].

It is now well recognized that grain boundary sliding (GBS) is a
key deformation and damage mechanism in creep [9]. Grain
boundary sliding is the phenomenon of relative sliding of crys-
talline interfaces or grains in a slow viscous manner upon applica-
tion of a macroscopic shear stress. The sliding is accommodated by
grain boundary diffusion, volume diffusion and in the case of met-
als, dislocation glide-climb within the adjacent grains (i.e. grain
plasticity).

Although work on grain boundary sliding dates back more than
sixty years, some of the first quantitative studies on this are those
by Raj and Ashby [11] who presented an analytical study of this
phenomenon based on accommodation by grain boundary and vol-
ume diffusion. Raj and Ashby’s work – the most widely used para-
digm of this phenomenon – proposed a linear dependence between
the imposed shear stress on the grain boundary and the conse-
quent sliding rate; and an absence of any threshold stress.
Extensive theoretical and experimental literature now exists which
outline a number of (sometimes) contradictory observations. For
example, Chauhan et al. [12] studied the problem from an experi-
mental viewpoint and qualitatively observed a threshold stress for
grain boundary sliding in ultra-fine grained Al alloy (300 nm grain
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Fig. 1. Orientations of the grains used in the present analysis. Schematics show the
convention used to rotate the grain with respect to the other one.
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size). The proposed value of threshold was found to be about
10 MPa (23 times lower than the experimentally determined yield
stress). For further details, the reader is referred to the review arti-
cle by Langdon and references therein [10]. Despite the extensive
focus on this phenomenon, several issues still remain open, or at
least, relatively unsettled, e.g. (i) in the case of diffusion dominated
creep, is the stress-sliding rate relation linear, as predicted by Raj
and Ashby [11]? (ii) is there a threshold stress for grain boundary
sliding? (iii) what is the qualitative form of the constitutive law for
grain boundary sliding?

Given the advent of computational power and the concomitant
development in atomistic simulation methods, the latter is a logi-
cal route to answer the aforementioned questions and in general to
obtain insights into the atomistics of grain boundary sliding. To
that end, Qi and Krajewski [13], in a nice work, carried out a molec-
ular dynamics study of a shear test on an Al bicrystal. This study
was carried out at 750 K to investigate the effect of applied force
and grain boundary mis-orientation on sliding. A linear relation-
ship between constant sliding velocity and applied stress was
observed, although the linear fit had positive intercepts indicating
a critical value of applied stress below which no sliding was per-
ceived. In other words, their work appears to confirm the linear
relation between stress-sliding albeit a sharp threshold stress is
predicted—-around 0.2 GPa for the material simulated, which is
about 10 times lower than the yield strength for the 6 nm grain
size used in the simulation [14].

While the work by Qi and Krajewski provided important
insights, there is a fundamental limitation of classical molecular
dynamics methodology that has prompted us to reexamine this
problem with alternative approaches. As is well known, classical
molecular dynamics can only handle time-scales of the order of a
few pico to nano-seconds. While this is sufficient for several classes
of problems, it is a serious deficiency when it comes to the study of
creep related phenomena, where the relaxation times are in sec-
onds and sometimes years. In other words, in classical molecular
dynamics, the applied strain rate is several orders of magnitude
faster than typical grain boundary sliding rates thus preventing
conventional molecular dynamics to truly capture the time-
dependent nature of the irreversible creep deformation process.

In this communication, we employ a sequence of methods to
extract a realistic constitutive law for grain boundary sliding and
answer some of the questions raised in the preceding paragraphs.
We choose Al bi-crystal as a model material system albeit our
approach can be repeated for any material. One motivation for
choosing this particular system is that conventional molecular
dynamics based results by Qi and Krajewsky [13] are already avail-
able, thus facilitating a comparison. Our work is paved by the
recent success of the potential energy surface sampling approach
(the so-called autonomous basin climbing algorithm [15]). Yip
and co-workers have confirmed its applications to several time-de-
pendent problems such as viscosity of supercooled liquids, creep
relaxation of metals, and void nucleation rates [16–18]. We note
here the recent work by Pattamatta et al. [19] that also shows pro-
mise for time-scaling applications.

The simulation layout is as follows (consistent with [13]): An Al
bi-crystal was generated by juxtaposing two grains separated
initially by a 3 Å gap. The two grains, approximately
60 Å � 40 Å � 20 Å in dimension each, have parallel h11 0i axis
about which a 25:2� miss-orientation angle is introduced. The sim-
ulation cell is periodic along y and z directions to make an infinite
grain boundary surface, while non-periodicity in x direction is arti-
ficially created by adding a 30 Å vacuum to the two extremes of the
bi-crystal (see Fig. 1).

The system was then equilibrated at 300 K under NPT condi-
tions to relax the stresses arising due of the incompatibility of
atomic arrangement along the interface. During the course of the
simulation, the interfacial gap between the two grains gets filled
to form the grain boundary. The correctness of the GB formation
was confirmed by calculating the grain boundary energy (0.58 J/
m2), which compares well with Qi et al. [13] (0.548 J/m2). Our sub-
sequent simulations were carried out at 750 K which is 0.8 homol-
ogous temperature; thus well into creep deformation regime.
Accordingly, the temperature of the bi-crystal was raised slowly
from 300 K to 750 K and subsequently relaxed at 750 K for 50 ps
under NPT conditions. The whole structure is subsequently mini-
mized using conjugate gradient iterations. The initial structure of
grain boundary interface before commencement of the sliding
(computer) experiment is shown in Fig. 2. The GBS can in general
be initiated by a strain [17,20] or stress controlled process.
Although controlling the strain is a commonly used approach in
atomistics, to us it is not the most appropriate to study grain
boundary sliding. A strain-controlled simulation would be more
appropriate to study creep-stress relaxation, however, sliding (as
understood in most creep experiments) appears most clearly via
an applied resolved shear stress. Under the application of a shear
stress along the grain boundary, we sample the potential energy
surface using the Autonomous Basin Climb (ABC) algorithm. This
algorithm developed by Kushima and Yip et al. [15,17,16,21] is a
modified version of meta-dynamics introduced by Laio and
Parinello [22]. The algorithm outputs a list of stable configurations
that the system visits successively under given boundary condi-
tions (e.g. an imposed shear stress in the present case). The algo-
rithm moves the system from one energy basin to the other
through a series of small activation and relaxation steps. The pro-
cess starts from a minimum energy configuration, where an activa-
tion is introduced by adding a 3 N gaussian penalty function Uk

pðrÞ,
centered at the minimum configuration, to the total potential
energy of the system:

Uk
pðrÞ ¼Wexp �ðr � rk

minÞ
2r2

� �
ð1Þ

where r and rk
min are the atomic configuration at any point and at the

kth minimized configuration. The parameters W and r are constants
and determine, respectively, the amplitude (in eV) and width (in 2)
of the gaussian penalty function. The choice of these parameters is
crucial, and should be carefully adjusted in accordance with the
physics of the problem under consideration. For instance, a small
W can lead the system to remain in the same well for thousands
of iterations, while a large W can lead the system to overcome small
barriers without ‘‘seeing’’ them. Once the penalty function is added,
the minimum configuration transforms into a saddle point because
of the penalty energy (Fig. 3), the system is again relaxed and an
activation energy centered at current position is added. This process



Fig. 2. Aluminum bicrystal with a misorientation of 25:2� , relaxed under constant
stress and temperature at 750 K and minimized subsequently using the conjugate
gradient approach: (a) x–y projection of GB region relaxed at 750 K under NPT
condition (b) x–z projection of GB region relaxed at 750 K under NPT (c) x–y
projection of GB region after minimization (d) x–z projection of bicrystal after
minimization. (e) The projection of the bicrystal on x–z plane shows the boundary
conditions for the present simulation.

Fig. 3. The Autonomous Basin Climbing approach (Adapted from [15]): an energy
minimized initial structure is activated by adding a gaussian penalty energy Uk

pðrÞ
(centered at the original configuration) on the potential energy landscape U and
followed by subsequent relaxation, which pushes the system to climb up the basin
to a higher energy configuration. Repeated activation by penalty energy and
relaxation drives the system to explore new minima in adjacent basins.

Fig. 4. At 173 MPa, a plot of grain boundary diffusion at different instants of time.
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continues till the accumulation of the penalty energies is enough to
coax the system to cross the lowest neighbor barrier and reach a
new basin. The energy penalty function added in each step is not
removed from the energy during this potential energy topography
exploration to ensure that the system is prevented from reverting
back to a previous energy minimum. It is worthwhile mentioning
here that Park and co-workers [23,24] have recently modified the
ABC approach so that the system adapts the penalty function
parameters through a self-learning process. However, in these works
they do not employ KMC to circumvent the artifact that the ABC
algorithm finds the saddle points in a sequence that is not physi-
cally relevant.

To carry out the ABC simulation on the Aluminum bi-crystal, we
have divided the sample into three zones. A fixed zone consisting
of 140 atoms on each extreme of the model along x direction,
where atoms are only allowed to move in the shear direction z,
(Fig. 2(e)). A moving zone consisting of 700 atoms adjacent to
the fixed zone in each grain, where a force f is applied on each
atom, but in opposite direction for two grains to produce a shear
effect on the grain boundary. The remaining 4084 atoms in both
the grains makeup the free zone, where no constraints are
imposed. The corresponding shear stress along the grain boundary
is obtained by Eq. (2).
s ¼ f � n
A

ð2Þ

where s is the shear stress, f is the applied force per atom, and n is
then number of atoms in the moving zone. The parameters used for
the simulations are W = 0.5 and r2 = 0.1.

At an applied stress of 170 MPa, the mechanism for accommo-
dation of grain boundary sliding appears to be grain boundary dif-
fusion at 750 K as evident from the atomistic pictures of the grain
boundary interface as shown in Fig. 4.

We observe no evidence of dislocation based accommodation
and this may be anticipated given the extremely small sizes of
the grains. The used ABC algorithm is combined with two other
algorithms to relax some of its assumptions and to increase its
accuracy. On the one hand, since the penalty energies added to
the system are cumulative, the potential topography might be
biased in some areas, which can lead to a lack of accuracy in the
configurations of the obtained minima. The obtained barriers are
in general over estimated because of the nature of the algorithm.



Fig. 6. For 130 MPa and 0.3 Å displacement: GB sliding for every transition between
successive minima.

Fig. 7. For 130 MPa and 0.3 Å displacement: time for barrier transition is calculated
using Eq. (3). Energy from Fig. 5 is used in the calculation of time by the Harmonic
Transition State Theory.
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To increase the accuracy of the transitions barriers, the structures
of the bi-crystal corresponding to the obtained minima are
extracted and then minimized individually using conjugate gradi-
ent iteration technique. Nudged Elastic Band (NEB) [25] simulation
between these minima is performed with 24 replicas between each
of the two minima. The energy barriers are then obtained accu-
rately. Unlike the ABC method, where the output is in sequential
form, the output of the NEB simulation is a matrix containing the
exact barrier between each two explored minima regardless of
their order of appearance.

The second algorithm used in accordance with the ABC is
Kinetic Monte Carlo (KMC) [26]. The sequential order of the visited
minima does not mimic the real physics of the problem and does
overrule the Boltzmann distribution for the jump probabilities. In
fact, the transition from a potential well to the other is probabilis-
tic: The system might go one step back or oscillate between two or
more states before moving to the next configuration if the energy
barriers dictate so.

Subsequent to the application of KMC, the time corresponding
to each transition event is calculated using the harmonic transition
state theory (HTST) Eq. (3) [27]

tðA!BÞ ¼ mexp �DEðA!BÞ

KBT

� �� ��1

ð3Þ

where DE is the energy barrier between A and B, m is the character-
istic frequency factor approximated to 1013 Hz, T is temperature,
and KB is the Boltzmanns Constant. Having the transition time
needed to cross each barrier on the path (Fig. 7), and the sliding dis-
tance at each configuration (Fig. 6) the sliding rate can be obtained
by mean of a linear interpolation of the time dependent sliding
(Fig. 8).

The points i and j correspond to the same pair of minima in all
the plots. Fig. 6 shows non-uniform sliding for different transitions
and this is due to non-continuous sliding of the grain boundary.
Larger obstacles can make the system deform slower over many
transitions and there may be ‘‘sudden’’ sliding after the obstacle
is overcome.

In the current study a comparison between our constitutive
equation and that found by Qi et al. [13] is made in Fig. 9.

Based on the obtained numerical results shown in Fig. 9, we find
that a hyperbolic sine function bests fits the results. The resulting
constitutive equation relating the dependence of sliding rate on
applied stress is given in Eq. (4).
Fig. 5. For 130 MPa and 0.3 Å displacement: energy of transition between local
minima obtained from NEB.

Fig. 8. A plot of grain boundary displacement as a function of time: obtained by
correlating sliding produced from Fig. 6 to time for transition from Fig. 7.



Fig. 9. GBS Constitutive Law (y-axis is in logarithmic scale): a plot of grain
boundary velocity against corresponding applied shear stress. Our results are
compared with the conventional molecular dynamics results of Qi and Krajewski
[13].
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_s ¼ C sinh
As
syield

� �
ð4Þ

where _s is grain boundary velocity in Å/s, and s is the shear stress in
MPa. Here ‘A’ is a material constant and syield is a normalizing stress
taken to be the yield strength of material for the simulated grain
size (2 GPa). For the present case, we found C = 27 and A = 40.
Fig. 9 suggests that a meaningful threshold does not exist for grain
boundary sliding (at least in the present configuration). For getting
an exact value of threshold stress ABC simulation needs to be done
at much lower stresses which is not computationally expedient at
this point. Nevertheless, given the trend, we propose that practi-
cally speaking, the threshold stress in this particular case is indeed
negligible. Although the combination of the used algorithms (ABC,
NEB, KMC and HTST) is surely an improvement against conven-
tional MD, our results may be improved further. The accuracy of
barrier estimation can be improved by using the finite temperature
string method [28]. The assumptions inherent in simple harmonic
approximation for transition state theory may be relaxed as well
[29]. However, for the specific purpose of this paper, where no com-
plex dislocation motion or grain rotation is observed, we believe
that, certainly qualitatively, our results are reasonable. Future work
is anticipated that will employ some of these aforementioned
refinements and investigate cases where dislocation accommoda-
tion is evident.
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