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Flexoelectricity in two-dimensional crystalline
and biological membranes

Fatemeh Ahmadpoora and Pradeep Sharma*b

The ability of a material to convert electrical stimuli into mechanical deformation, i.e. piezoelectricity, is a

remarkable property of a rather small subset of insulating materials. The phenomenon of flexoelectricity,

on the other hand, is universal. All dielectrics exhibit the flexoelectric effect whereby non-uniform strain

(or strain gradients) can polarize the material and conversely non-uniform electric fields may cause

mechanical deformation. The flexoelectric effect is strongly enhanced at the nanoscale and accordingly,

all two-dimensional membranes of atomistic scale thickness exhibit a strong two-way coupling between

the curvature and electric field. In this review, we highlight the recent advances made in our understand-

ing of flexoelectricity in two-dimensional (2D) membranes—whether the crystalline ones such as dielec-

tric graphene nanoribbons or the soft lipid bilayer membranes that are ubiquitous in biology. Aside from

the fundamental mechanisms, phenomenology, and recent findings, we focus on rapidly emerging direc-

tions in this field and discuss applications such as energy harvesting, understanding of the mammalian

hearing mechanism and ion transport among others.

1. Introduction

There are numerous types of electromechanical coupling
mechanisms in dielectric materials. Piezoelectricity and the
Maxwell stress effect† are fairly well-known and have been
extensively studied. The former, piezoelectricity, is a genuine
two-way linear coupling that allows a material to convert a uni-
formly applied electric field into mechanical deformation and
vice versa. Piezoelectricity is considered to be the dominant
electromechanical transduction mechanism and has been
exploited for a plethora of applications such as energy harvest-
ing, sensing and actuation, advanced microscopes, artificial
muscles, and minimally invasive surgery among others.1–4

Piezoelectricity is however restricted to dielectrics that possess
a non-centrosymmetric crystalline structure and is usually
found in hard brittle ceramics like barium titanate and lead
zirconate titanate. Quartz is another common example. The so-
called Maxwell stress and electrostriction are universally
present in all dielectrics. However both represent a one-way
electromechanical coupling. Due to either electrostriction or

the Maxwell stress effect, all dielectrics deform under the
action of an electric field; however, in these phenomena,
mechanical deformation does not lead to the development of
an electric field. In fact, in both cases, the mechanical strain
produced due to an imposed electric field scales as ∼εE2/Y
where ε is the dielectric constant, E is the electric field and Y
represents the elastic modulus. As is evident, reversal of the
electric field will not lead to the reversal of mechanical strain.
This peculiar nonlinear nature of the one-way coupling limits
the applications of these two phenomena. Specifically, the
effect is significant only for very soft materials such as dielec-
tric elastomers.

The term “flexoelectricity” first originated in the context of
liquid crystals6 and refers to the two-way linear coupling
between the electric polarization and strain gradients. Experi-
mental and theoretical studies have since then confirmed its
presence in both crystalline and amorphous dielectrics.7–16

Like the Maxwell stress effect or electrostriction, flexoelectricity
is also a universal phenomenon and is exhibited by all dielec-
trics. However, unlike them, the coupling occurs in a linear-
ized manner and a converse effect does exist. Mathematically,
piezoelectricity is often introduced through the following
linear relation:

Pi � dijkεjk ð1Þ

In eqn (1), the components of the polarization vector Pi are
related to the components of the second order strain tensor
εjk through the third order piezoelectric tensor components
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dijk. Due to the tensor transformation properties, all odd-
ranked tensors vanish under inversion-center symmetry. Thus,
most of the common crystalline dielectrics, such as silicon
and NaCl do not exhibit piezoelectric behavior whereas ZnO
and GaAs do. Flexoelectricity, on the other hand relates
polarization to the extent of the non-uniformity of the strain
field or in other words, strain gradient:6–9,17

Pi � dijkεjk þ fijkl
@εjk
@xl

ð2Þ

where fijkl are the components of the so called flexoelectric
tensor. Two representative examples of non-uniform strain
modes are bending and torsion. Group theory tells us that
fourth order material property tensors are admissible in
materials of any symmetry and accordingly, as alluded to
before, flexoelectricity is indeed universal and is even present
in centrosymmetric dielectrics where the piezoelectric tensor
(d) vanishes.18 Indeed, flexoelectricity has been experimentally
confirmed in both centrosymmetric materials like NaCl10 as
well as in ferroelectrics like barium titanate11,12 among others.

The focus of the present review article is on flexoelectricity
in two-dimensional membranes that are (nearly) atomistically
thin. This begs the question: what is special about flexoelectri-
city in 2D structures? Unlike piezoelectricity, flexoelectricity is
strongly scale dependent.17,19 By and large, in most materials,
the flexoelectric coefficients are of the magnitude such that
significant strain gradients are required for an appreciable
flexoelectric based electrical response. Two-dimensional
crystalline membranes are atomistically thin and biological

membranes possess thicknesses on the order of just a few
nanometers. In the context of membranes (let’s say isotropic
membranes for now), flexoelectricity just boils down to the fol-
lowing simple relation:

P � f κn ð3Þ

Here κ is the mean curvature and n is the normal vector to
the membrane. As can be easily appreciated, it is relatively easy
to bend or induce curvature in thin paper-like structures.
Such structures, as per eqn (3), readily polarize and produce
an electric field. In fact, with two-dimensional structures, a
strain gradient in the form of bending is the easiest form of
deformation. It is therefore not too far-fetched to claim that
nearly all 2D thin (dielectric) structures are multifunctional
in nature. Boron Nitride (BN) sheets, lipid bilayers, dielectric
graphene nanoribbons, and MoS2 sheets are but some of the
examples of such structures. The unique feature of 2D
materials to display flexible mechanical behavior and, due to
flexoelectricity, a coupled electrical behavior, paves the way for
fascinating applications such as energy harvesting, sensors
and actuators, and biomedical devices among others. Several
recent studies have already provided thorough reviews of flexo-
electricity in three dimensional crystalline materials.20–22

In this article, we will focus primarily on the unique aspects
of flexoelectricity in 2D materials with an emphasis on the
review of mathematical and computational developments,
recent experimental findings, applications and rapidly emer-
ging areas.
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2. Flexoelectricity in crystalline
membranes
2.1 Physical and microscopic mechanisms

The microscopic mechanism of flexoelectricity involves the
redistribution of charges in the lattice structure when sub-
jected to a non-uniform strain field. A full understanding of
this necessarily requires a quantum viewpoint. Here, keeping
in mind that we are primarily concerned with 2D materials, we
present a simplified discussion.‡ Broadly, two microscopic
contributions to flexoelectricity may be identified: ionic and
electronic.

• Ionic flexoelectricity: to explain this, we assume that crys-
talline dielectrics consist of well-defined point charges as
shown in Fig. 1. In an undeformed centrosymmetric lattice
structure, the centers of positive and negative charges
coincide, and thus polarization is absent. Even if we were to
strain it uniformly, the centers of positive and negative
charges will continue to coincide and (consistent with our
understanding of non-piezoelectric crystals) a polarization will
not develop. However, upon application of a strain gradient
like bending, the internal ions will shift in a non-affine
manner. This non-affine shift of internal atoms in proportion
to the imposed strain gradient leads to development of
polarization.

The ionic contribution to flexoelectricity was first described
in detail by Tagantsev.8 Later, using a lattice-dynamical
approach, Maranganti and Sharma23 evaluated the flexoelec-
tric response of certain cubic crystalline ionic salts, perovskite
dielectrics, III–V and II–VI semiconductors. Recently, focusing
primarily on the ionic contribution, an effective Hamiltonian
approach was developed and used to study the temperature
dependence of flexoelectricity in ferroelectric thin films such
as BaTiO3 and SrTiO3.

24,25

• Electronic flexoelectricity: the discussion of ionic flexo-
electricity is based on a classical picture and is reasonable
enough to explain flexoelectricity in ionic solids, however, it
ignores the distinctly quantum nature of the flow of electronic
charge under mechanical distortion and the modern theory of
polarization developed over the last two decades (see Resta
and Vanderbilt for a review on the modern theory of polariz-
ation and references therein26). For example, the ionic flexo-
electricity mechanism outlined in the preceding paragraph
would lead us to believe that a mono-atom material like gra-
phene (dielectric) nanoribbon will not polarize upon bending.
However, explicit quantum calculations show that even a
mono-atomic material like graphene will polarize under
bending.28–31 Upon bending of such non-polar systems, as

shown in Fig. 2, the symmetry of the electron distributions in
the out-of-plane direction is broken and a net dipole moment
is induced at each atomic site. As a side note, it is worthwhile
to mention that if the circularly bent graphene nanoribbon is
completely closed (to form a circular nanotube), the net dipole
moment will vanish.

With specific emphasis on electronic flexoelectricity, several
studies have investigated flexoelectricity from a quantum
viewpoint.26,28–31 In recent work, Hong and Vanderbilt32 deve-
loped a general density functional theory based formulation to
compute piezoelectric and flexoelectric tensors and presented
numerical values for various cubic insulators. Stengel,33 using
a density functional perturbation theory that includes both
ionic and electronic effects, has derived the complete flexo-
electric tensor of an arbitrary dielectric in terms of a linear
response to atomic displacements. He further elaborates on
some of the relevant topics such as electrical boundary con-
ditions, static and dynamic flexoelectric responses and pure
and mixed contributions of piezoelectricity and flexoelectricity.
It is also worthwhile to mention that controversial perspectives
exist in the literature on the surface and bulk contributions
to material flexoelectricity. Resta,34 inspired by Martin,35 has
theoretically discussed the effect of a free surface on flexo-

Fig. 1 (a) Deformed configurations of atoms in a centrosymmetric
lattice under a uniform strain. (b) Deformed configuration of atoms in a
centrosymmetric lattice under a non-uniform strain field. The atoms
experience internal displacements in the presence of strain gradient that
result in flexoelectric polarization. Adapted from ref. 20. (c) Flexoelectri-
city in the context of bending: when a part of a material is bent, the
positions of the negative and positive charges transform in such a way
that do not cancel out each other and lead to a strain gradient induced
polarization.

‡A well-known issue pertaining to the discussion of polarization in periodic crys-
talline materials is its dependence on the choice of the unit cell. The reader is
referred to the paper by Resta and Vanderbilt26 and references therein for a
detailed discussion on this matter and how the concept of the so-called Berry
phase has been used to resolve this controversy. We refer the reader to the work
by Marshall and Dayal27 who provide an interesting insight into this issue from
a purely classical viewpoint.
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electricity and argued that it is indeed a bulk property and that
there is no surface contribution to the flexoelectric response.
This assertion is countered by Tagantsev36 who showed that
due to the non-zero contribution of the quadruple moment
tensor, the surface flexoelectricity indeed exists. The surface
flexoelectricity contribution has been elaborated further by
Tagantsev in a recent review paper.22 Also, Stengel,37 using a
first principles approach, provided quantitative evidence
of surface flexoelectricity and demonstrated that depending
on the surface termination, a SrTrO3 film can exhibit either
positive or negative flexoelectric voltage.

2.2 Mathematical description and review of the modeling
literature

Several recent studies have mathematically studied flexoelectri-
city in 2D materials.38–43 In general, as alluded to earlier in the
context of eqn (3), flexoelectricity in 2D structures essentially
refers to the interplay between curvature and electrical degrees
of freedom. The modeling of coupled mechanical systems can
superficially differ from one work to the other based on choice
of independent variables e.g. displacement and polarization
vs. displacement and electric field, or in the manner in which
the derivations are carried out – e.g. using a true minimum
variational principle or directly invoking the equations of
motion. In some cases, this can cause confusion. We refer the
reader to two studies of Liu which clarify much of these
issues.38,39 Mohammadi et al.42 presented a simple (linearized)
model of crystalline flexoelectric membranes and, using the
developed framework, studied the effective properties of
heterogeneous membranes. Starting from the viewpoint of a
liquid crystal, Rey40 developed the formulation of an isotropic
(fluid) flexoelectric membrane under tension, bending
and pressure and illustrated how flexoelectricity renormalizes

the membrane tension, shear and bending effects. Also Gao
et al.41 using the framework given by Ou-Yang44 studied the
flexoelectric shape transformation of spherical and cylindrical
vesicles in the presence of electric field. Here we briefly outline
the formulation by Mohammadi et al.42 and Deng et al.43

Let U ⊂ R2 be an open bounded domain in the xy-plane.
Consider a thin dielectric membrane occupying U × (−h/2, h/2)
⊂ R3, where h is the thickness of the membrane. If the thick-
ness h ≪ 1 the thin membrane may be idealized as a two-
dimensional body; the thermodynamic state may be described
by the displacement vector w:U → R3 and the polarization
areal density vector P:U → R3. Thus the internal electromecha-
nical energy density can be postulated as W = W(w, P). The
membrane can experience a number of deformation modes,
such as shearing, stretching or compression and bending.
Moreover, these various modes of deformations can be
coupled in cases such as graphene and uncoupled for
many others such as lipid bilayers which are fluid membranes
that cannot undergo shearing strains. A complete continuum
model to account for the coupled deformations modes in
anisotropic 2D structures has not yet been established in the
literature. For the simpler case wherein the membrane’s de-
formation is restricted to bending, the electromechanical
energy density for an isotropic membrane may be expanded
up to quadratic orders of curvature and polarizations as:

W w;P½ � ¼ 1
2
κbκ

2 þ 1
2
ajPj2 þ f P � nκ ð4Þ

where κ is the mean curvature and n is the normal vector of
the surface. κb is the associated bending stiffness, a is the
inverse dielectric susceptibility and can be expressed in
terms of vacuum and dielectric permittivities (ε0, ε) and the
thickness of the membrane h as: a = 1/(ε − ε0)h. Also, f is the
flexoelectric coefficient. Furthermore, the self-field energy
associated with the electric field induced by polarization—
constrained by Maxwell equation—can be written as:

ξself w;P½ � ¼
ð
R
3

ε0
2
jrζj2; div �ε0rζ þ P½ � ¼ ρ0 ð5Þ

in which ζ is the potential field and ρ0 is the external charge
density (if present). For the case of small deflections, using the
so-called Monge gauge, the curvature in turn can be written as
κ = −Δw. The total free energy is then the summation of the
internal electromechanical and self-field contributions:

F w;P½ � ¼
ð
U

W w;P½ � � P � Eextð Þ þ ξself w;P½ � ð6Þ

where the second term is the work done by the external electric
field Eext. The equilibrium state is such that the total free energy
is minimized over all possible variations of state variables:

min F½w; P�
w; P½ � , S

ð7Þ

The variational procedure can be readily carried out and
the reader is referred to Mohammadi et al.42 for the complete

Fig. 2 Bending of graphene: upon bending, the symmetry of the elec-
tron distribution at each atomic site is broken, which leads to the polar-
ization normal to the graphene ribbon; an infinite graphene sheet is
semi-metallic; however, finite graphene nanoribbons can be dielectric
depending upon surface termination. Adapted from ref. 29.
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description of the pertinent (Euler–Lagrange) partial differen-
tial equations and the associated boundary conditions govern-
ing isotropic flexoelectric membranes. In their work, to
“custom-design” flexoelectric properties, the aforementioned
mathematical model was solved to find the effect of shape,
volume fraction and the electromechanical properties of the
inhomogeneities on the apparent flexoelectric response of 2D
crystalline heterogeneous membranes. Deng et al.43 also have
presented some illustrative examples such as the interaction of
a charged particle with an isotropic flexoelectric membrane
among others.

Using a model similar (but not identical) to what has been
described above, bending induced flexoelectric effects on
nanoplates and nanobeams have been studied by several
authors.45–49

2.3 Review of the literature and applications

The idea of employing strain gradients to induce polarization
suggests a potential to enhance the electromechanical
response in thin films such as atomically thin sheets of BN or
MoS2—which are piezoelectric to begin with. We note that BN
and MoS2 do not exhibit piezoelectric behavior in bulk crystal-
line form, however, the symmetry properties of their mono-
layers endows them with piezoelectric behavior. Moreover, the
strength of piezoelectricity in these monolayers is either com-
parable to, or exceeds, that of several common 3D piezoelectric
crystals such as quartz and AIN.60 Unlike the case of an iso-
tropic graphene, where bending does not lead to an in-plane
polarization, 2D anisotropic materials like BN and MoS2 are
expected to deviate from the simpler isotropic relation in eqn
(3). In other words, even under perfect circular bending, the
resulting polarization response is likely to be at an angle to the
normal direction of the membrane and therefore polarization
is also likely to develop within the plane. Though flexoelectri-
city is typically referred to the interplay between the curvature
and the out-of-plane polarization, for many cases of 2D aniso-
tropic systems such as BN, the in-plane flexoelectric contri-
bution may be of more interest.28 Accordingly, for these
anisotropic membranes, one may have to separately relate the
in- and out-of-plane components of the polarization to the cur-
vature using their corresponding flexoelectric coefficients:

Pn � fnκn

Pt � ftκt
ð8Þ

It is also worthwhile to mention that a nonlinear flexoelec-
tric response in some cases of noncentrosymmetric crystals
such as BN sheets has been observed, where the polarization
is related to the square of curvature (Pt ∼ (1/R2)).50–52 An inter-
esting discovery was made by Duerloo et al.53 where they found
that bilayer stacking nanosheets of BN, strongly enhanced the
curvature induced (in plane) polarization.53 One possible
explanation for this observation is that in this bilayer stacking
configuration, the sheets under bending, experience further
strain gradient at the interface that lead to enhanced polariz-
ation. Quantum mechanical calculations53 show that flexoelec-

tric response in bilayer BN is larger (by a factor of 103–104)
than the corresponding value in single layer sheet. To the
authors of this review article, the reasons for this large amplifi-
cation in polarization response due to bilayer stacking are not
clear and therefore represent an exciting avenue for future
study (Fig. 3).

A rather intriguing application of flexoelectricity is to make
apparent piezoelectric materials/structures without actually
using piezoelectric materials. A simple example of this was
proposed by Fousek et al.,54 who argued that a truncated
pyramid like structure will act like a piezoelectric material.
Due to the varying cross-sectional area, a uniformly imposed
stress or load will result in strain gradients in the interior of
the structure and thus cause polarization. This was later
experimentally observed in BST truncated pyramid arrays.55,56

The resulting apparent piezoelectric response is found to be
size-dependent and, at sub-micro length scales, an effective
piezoelectric response rivaling that of common piezoelectric
ceramics may be achieved.

Pyramids are more of a “structure” rather than a “material”
and an alternative approach to create apparently piezoelectric
materials (in the more traditional sense) without using piezo-
electric materials is via the use of defects and inclusions. This
approach has been proposed for graphene—which is mani-
festly a non-piezoelectric material. Chandratre and Sharma57

showed, using first principles calculations, that merely by
introducing triangular shaped holes in dielectric graphene
nanoribbons, the material behaves like a piezoelectric. A non-
piezoelectric sheet without any defects does not show any
piezoelectric response under uniform stretching. Now consider
a non-piezoelectric sheet with circular holes (Fig. 4).
A uniform stretch results in a non-uniform strain field around
the boundary of the holes. However, due to the symmetry of
the holes, the total net polarization will be zero. Finally,
imagine the case of non-centrosymmetric shaped holes such
as the triangular ones shown in the bottom of Fig. 4. In this
case, under the action of uniform mechanical stretch or com-

Fig. 3 Duerloo and Reed53 found that a bilayer consisting of two BN
monolayers exhibits a strong curvature induced electromechanical
coupling. Using quantum mechanical calculations and a continuum
model, they found that these bilayers (in response to an external electric
field) amplify in-plane displacements by factors of as much as 103–104—

when compared with a single monolayer. Reproduced with permission
from ref. 53.
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pression, a non-zero net polarization will emerge. While Chan-
dratre and Sharma,57 using quantum calculations, were able to
illustrate this notion for graphene nanoribbons, experi-
mentally realizing small triangular holes in graphene nano-
ribbons is impractical. Fortunately, a close “cousin” of
graphene, the so-called graphene nitride nano-sheets naturally
exhibit triangular holes in one of its phases. Zelisko et al.58

characterized graphene nitride nano-sheets (g-C3N4) both
experimentally and via ab initio simulations. Intrinsically,
pristine graphene nitride nano-sheets are non-piezoelectric
however, in one of its stable form, the sheets are riddled with
triangular holes,59 as shown in Fig. 5. In their work, it was con-
firmed that indeed flexoelectricity, together with triangular
defects cause graphene nitride to exhibit an apparent piezo-
electricity. A comparison between the corresponding piezoelec-
tric coefficient of g-C3N4 (induced due to flexoelectricity and
defects) is made with those of common piezoelectric 2D struc-
tures such as hexagonal boron nitride (h-BN), MoS2 and WS2
shown in Table 1. Graphitic carbon nitride sheets exhibit a
greater piezoelectric response than hexagonal boron nitride
(h-BN), but smaller than that of molybdenum disulphide (MoS2)
and tungsten disulphide (WS2).

60 More importantly, when it
comes to multi-layered structures of these piezoelectric
materials, only graphene nitride exhibits piezoelectricity. Due
to the antiparallel stacking sequence, h-BN, MoS2 and WS2 are
centrosymmetric and hence non-piezoelectric. In contrast,
sheets of g-C3N4 in their multi-layered form are not stacked in
the same way and thus maintain their piezoelectricity.

In addition to mechanical defects described in the preced-
ing paragraph, apparent piezoelectricity may also be induced
through chemical doping.61–65 Adsorption of various atoms on

the surface breaks inversion symmetry and may generate strain
gradient that leads to a flexoelectric response. This approach
has been employed for graphene (Fig. 6). In recent work, Ong
and Reed,65 using density functional theory, studied the effect
of doping on the electromechanical response of graphene. They
considered various adatoms including lithium (Li), potassium
(K), hydrogen (H), and fluorine (F) and calculated the in-plane
deformation in response to an external out-of-plane electric
field. They found an approximately linear relationship between
the field and strain at field amplitudes between −0.5 to 0.5 V
Å−1. Their finding of a linear relationship between strain and
polarization appears to imply an emergent piezoelectric behav-

Fig. 5 Graphene nitride nanosheet, riddled by triangular holes, was
experimentally and computationally shown to exhibit an apparent piezo-
electric response. Adapted from ref. 58.

Table 1 Comparison between the piezoelectric coefficient of g-C3N4

(induced due to flexoelectricity and defects, shown in Fig. 5)58 with
some of common piezoelectric 2D structures

Material
Piezoelectric
coefficient (10−10 cm−1)

g-C3N4 2.18
h-BN 1.3860

MoS2 3.6460

WS2 2.4760

Fig. 4 The first figure schematically depicts a non-piezoelectric 2D
sheet with circular pores. Under uniform stretching, strain gradients
develop in the vicinity of the holes and therefore the local polarization
due to flexoelectricity is non-zero, however the net or average polariz-
ation remains zero, and thus overall there is no apparent piezoelectric
response. The second figure shows the same sheet with triangular
pores. In this case, again, locally, in the vicinity of the triangular holes,
polarization develops. Unlike the previous case, however, there also
exists now a net non-zero polarization and thus this hypothetical
material with triangular holes exhibits an apparent piezoelectricity even
though the native material itself is non-piezoelectric. Adapted from ref.
58.

Fig. 6 Chemical doping of graphene surface with different com-
ponents such as nitrogen, polymers, and various metals can induce a
piezoelectric response. Reproduced with permission from ref. 64.
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ior. Nevertheless, the mechanism cannot be uniquely attribu-
ted to pure piezoelectricity or flexoelectricity. A possible
approach to check for the contribution of flexoelectricity is to
calculate the in-plane strain gradient field. We speculate that
in the vicinity of inhomogeneities (doping domains) there is a
sharp strain gradient which leads to a flexoelectric contri-
bution in the lines of the previously discussed cases of pore-
riddled graphene and/or graphene nitride.

A composite of multi-layered systems is another alternative
approach to create apparently piezoelectric materials without
using piezoelectric materials. Sharma et al.66 proposed a
model of a superlattice of thin films stacked in an odd-ordered
sequence to induce strain gradient under normal loading. To
elucidate the corresponding physical mechanism, consider a
periodic bilayer of thin films. Each layer in such a periodic
bilayer experiences identical strain gradients but in opposite
directions at each interface. Due to the inversion symmetry of
the strain gradient, the resulting dipole moment in one bilayer
is canceled out by the dipole moment appearing in the next
bilayer, and hence the overall average polarization in the com-
posite is zero. Nevertheless, careful choice of elastic properties
and superlattice sequence can break the geometric centro-
symmetry. If one inserts a third layer, the inversion symmetry is
broken. This periodic tri-layered superlattice thus is capable of
inducing a non-zero polarization in the system (Fig. 7).

A flexoelectric model of a multi-layered structure of barium
strontium titanate (BST) was also proposed67 to enhance electro-
mechanical sensitivity. The proposed cantilever structure is
composed of two active layers (piezoelectric or non-piezoelec-
tric) and a supporting layer in between. Under a mechanical
load at the end of the cantilever, the layers undergo bending
and generate strain gradient along the normal direction and
consequently induce electric polarization. The resulting
response from theoretical calculations and experimental
measurements was compared to that of a single layered model
of BST. A remarkable enhancement in the flexoelectric
response was found in the multilayered structure. A compari-
son between the piezoelectric response of a single layer BST
with the flexoelectric response of the proposed multilayered
structure shows that at small thicknesses, the proposed flexo-
electric model is significantly stronger. When the thickness of
the cantilever beam is large enough, the electromechanical
response converges to that of what is expected from a pure
piezoelectric mechanism. Furthermore, careful choice of
material in the middle layer with regard to its mechanical
properties allows the possibility of tailoring a desired electro-
mechanical response.

One of the most exciting applications of flexoelectricity is in
nanogenerators and harnessing energy from mechanical
vibrations. The reader is referred to a recent review on some of
the novel experimental attempts in this area by Jiang et al.68

Energy harvesting from dynamical systems,69–72 primarily for
applications in self-powered miniature sensors and electronic
devices, has emerged as an intensely researched topic. To
date, research on this topic is centered on piezoelectric
materials. Examples of exploiting piezoelectricity for energy

harvesting range from shoe-mounted inserts73,74 to unmanned
aerial vehicles.75 Due to the universal nature of flexoelectricity,
we expect the latter to offer some advantages in situations
where piezoelectric materials cannot be used or alternatively,
to greatly enhance the energy harvesting capabilities of
materials that are already piezoelectric. For example,many ferro-
electrics lose their piezoelectricity above a certain temperature
due to phase transformations. Flexoelectricity, in contrast
can persist at fairly high temperatures. In recent work, Mbarki
et al.76 exploited flexoelectricity in functionally graded thin
films to tunable high temperature piezoelectrics.

The basic idea of flexoelectricity based energy harvesting
was proposed first by Majdoub et al.77,78 More recently Deng
et al.79 developed a theoretical continuum model for flexoelec-
tric nanoscale energy harvesting (Fig. 8). The cantilever beam
is covered by conductive electrodes on its top and bottom sur-
faces. Due to application of an external force or the movement
of the base, the cantilever beam undergoes bending vibrations.
As a result, an alternating potential difference is generated
across the electrodes. Accordingly, the symmetric thin beam
can be used as a good alternative for the flexoelectric energy
harvester at sub-micron scales. A dramatic size effect in flexo-
electric energy harvesting is observed in this model.79 Upon

Fig. 7 Schematic of a comparison between periodic bilayer and trilayer
superlattices. Red arrows indicate polarization. In a periodic bilayer,
under uniform stretching or compression, the induced dipole moment
in a layer cancels out the dipole moment induced in the other layer.
Thus the overall average polarization in a periodic bilayer super-lattice is
zero. In contrast, a periodic trilayer superlattice shows that careful
choice of material properties and superlattice topology can break the
geometric centrosymmetry. Averaged strain gradients and thus the aver-
aged induced polarization over the unit cell of a periodic trilayer super-
lattice are nonzero. Adapted from ref. 66.
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reduction of the beam’s thickness from 3 μm to 0.3 μm, the
mechanical-to-electrical energy conversion efficiency was
found to increase by two orders of magnitude! Such a remark-
able size effect in flexoelectric energy harvesters makes them
quite favorable for micro and nanoscale systems.

However, notwithstanding the developments described in
the preceding paragraphs, the exploitation of flexoelectricity
for energy harvesting is still at its infancy and most recent
advancements in this area have been towards enhancing piezo-
electric behavior.80–82 One example is shown in Fig. 9 where
the piezoelectric PZT ribbons on a rubber substrate are
employed for flexible energy conversion80,81 where in ribbons
of the piezoelectric ceramic PZT is rendered stretchable by
printing onto a pre-stretched PDMS substrate to induce
bending deformations. The resulting wavy shaped ribbons can
undergo larger strains with enhanced piezoelectric response
due to the presence of strain gradients and flexoelectric effect.
The pre-existing curvature in the ribbons provides the possi-
bility of using the flexoelectric curvature induced electric field
to dramatically improve the sensitivity of the nanoribbons to
small deformations. It has been also discussed80 that the pre-
existing curvature may be designed for a desired electromecha-
nical response.

Flexoelectric effects are stronger, when the material experi-
ences large deformations. Soft materials, due to their flexibility
are good candidates to exploit flexoelectric effects. The model
by Deng et al.79 can also be used for soft materials—in the lin-
earized regime. Inspired by flexoelectricity in biological mem-
branes, Rey et al.83 also proposed an energy harvesting
consisting of a soft thin membrane subjected to harmonic
forces due to contacting bulk fluid. It was shown that both
bending modulus and bending viscosity have significant roles
in the resulting electric field and efficiency.83

3. Flexoelectricity in soft and
biological membranes

Flexoelectric behavior has also been extensively studied in the
context of soft condensed matter – specifically liquid crystals
and biological membranes.13,14,84–87 The phospholipid mole-
cules in most biomembranes consist of two components:
hydrophilic heads and hydrophobic tails. Accordingly, when
they are dispersed in an electrolyte, they arrange themselves
into two sheets including charges and dipole moments on the
surfaces. The resulting membrane is fluid-like within the
plane but can sustain a variety of mechanical deformation
modes including bending and compression in its thickness
direction. The typical thickness of the ideal lipid bilayers and
biological membranes is between 3–5 nm. Given that the
bending moduli of bio-membranes are typically small—
10–20kBT—these 2D structures undergo large thermal fluctu-
ations even at room temperature. Needless to say, relatively
little energy is required to induce curvature in these soft bio-
membranes. During curvature deformation, the density of the
charges and dipoles on the top and bottom of the surface alter
and a non-zero net polarization is developed. In contrast to
crystalline membranes, the microscopic mechanisms under-
pinning flexoelectricity in biomembranes can be explained
purely by using classical electrostatics and continuum mech-
anics based arguments.§ Mathematically, the flexoelectric be-

Fig. 9 Generating wavy piezoelectric ribbons on silicone rubber for
application in flexible energy conversion. (A) From top to bottom: the
ribbons are patterned on an MgO substrate; a slab of pre-strained PDMS
is laminated against the PZT ribbons and peeled off quickly; PZT ribbons
are transferred onto PDMS and form wavy/buckled structures due to
strain relaxation. (B) SEM image of PZT ribbons transfer printed to PDMS
with zero pre-strain. (C) Buckling of PZT ribbons under pre-strained
conditions. The buckled ribbons exhibit enhanced piezoelectric per-
formance compared to their flat counterparts. Reproduced from ref. 81.

Fig. 8 Schematic of a centrosymmetric flexoelectric energy harvester
under base excitation. The cantilever beam is covered by conductive
electrodes on its top and bottom surfaces. Due to application of an
external force or the movement of the base, the cantilever beam under-
goes bending vibrations. Due to flexoelectric contribution, an alternating
potential difference is generated across the electrodes. Adapted from
ref. 79.

§The relevant length scales for flexoelectricity in biological membranes are
larger than in monolayered crystalline membranes and accordingly classical
mechanics provide a reasonable description rendering quantum considerations
unnecessary.
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havior can be described by the same energy formulation as in
eqn (4) which may be interpreted as an extension of Helfrich
Hamiltonian that includes the flexoelectric electromechanical
coupling and the dielectric energy. Most of the pioneering
theoretical studies in this area have emerged from the physics
of liquid crystals.13–16 We highlight that the notation of the
flexoelectricity in most of the literature13–16 on biomembranes
is different from what has been introduced in eqn (4). In the
work of Petrov et al., the flexoelectric constitutive law is
expressed as follows:

P ¼ f eκ ð9Þ
Use of the above equation conceals the inherent elastic

coupling and it is best to use the complete model outlined in
eqn (4). The flexoelectric coefficient f that appears in (4) is
related to f e as f e = −f/a. The typical values of f e for biomem-
branes have been experimentally16,95–97 measured to be in the
range of 10−21–10−18 C.

Flexoelectricity is likely to be the key electromechanical
mechanism in biomembranes. This statement can be easily
appreciated if we recognize that fluid membranes cannot
(easily) have the low symmetry needed for a phenomenon like
piezoelectricity to occur—as it does in some 2D crystalline
membranes such as BN or MoS2. Despite this, there has been
relatively scant work on the topic of biological flexoelectricity
and much of what exists has been pioneered by
Petrov.13–16,95–98

3.1. Physical and microscopic mechanisms

The detailed microscopic mechanism underlying flexoelectri-
city in biological membranes was recently clarified in the work
by Ahmadpoor et al.99 The central hypothesis of that work is
that geometrical nonlinearity, in combination with the pres-
ence of external charges and/or dipolar distributions leads to
the flexoelectric effect. They examined the effect of external
charges and dipolar distributions on the apparent flexoelectri-
city of a lipid bilayer membrane. In a simple linearized setting,
external charges do not change the apparent flexoelectricity.
However, Ahmadpoor et al.99 showed, using a rigorous math-
ematical model, that carefully accounting for geometric nonli-
nearity and the associated change in the polarization permits
the observation of some nontrivial coupling effects. Prior
insightful studies in this direction were those of Petrov13–16

and Hristova et al.100 In the work of the latter, Langmuir
adsorption equations were used to evaluate the redistributed
charge density (under bending) of the membrane electric
double layers. Similarly, Derzhanski101 presented a simple
model of a spherically deformed membrane to describe the
relationship between the radius of curvature and the induced
membrane voltage.

We briefly summarize the model put forth by Ahmadpoor
et al.99 For simplicity, we consider here a small part of a cylin-
drically deformed lipid membrane inside an electrolyte bath
(Fig. 10). The membrane thickness is h and let the radii of the
inner, outer and mid surfaces be r1, r2 and rm. Lipid molecules

may carry dipoles or charges either along the thickness of the
membrane or on the surfaces. These dipoles and charges
might be “external” or the intrinsic properties of the lipid
molecules. The former may be due to proteins and ion chan-
nels, for instance. In general, the charges and dipoles may be
distributed in and around the membrane in a complex
manner, however, to present the central results developed in
ref. 99, we consider the simplest possible case, in which the
distributions of the charges and dipoles are radial; neglecting
any angular variation. The external charges and dipoles are
uniformly distributed along the surface of the membrane with
densities of ρe(r) and Pe(r). Let f0 be the intrinsic flexoelectricity
coefficient. Also let fC and fP be the flexoelectric contributions
of the external charges and dipoles, respectively. Then the
effective flexoelectric constant was derived to be:

f eff ¼ f 0 þ f C þ f P ð10Þ

wherein fC and fP are:
99

fC ¼ � 1þ h
2rm

þ h2

6r2m
þ � � �

� �

� a
ðr2
r1

1
r

ðr
r1

r1 r′� rmð Þρeðr′Þdr′dr

fP ¼ 1þ h
2rm

þ h2

6r2m
þ � � �

� �
a
ðr2
r1

r1 r � rmð Þ
r

PeðrÞdr

ð11Þ

The expressions in eqn (11) exhibit the nonlinear and curva-
ture-dependent nature of the flexoelectricity in highly curved
membranes. Such nonlinear behavior has been also observed
in experiments.88

Fig. 10 A small part of a cylindrically deformed membrane is con-
sidered. Lipid molecules may carry charges and dipoles. The distribution
of charges may vary due to ion transport. In this model it is assumed
that the dipole and charge densities are functions of the radii and are
uniformly distributed along the surface. Reproduced from ref. 99.
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3.2 Biological implications of flexoelectricity and the
literature review

As mentioned earlier, due to the fluidity of biological
membranes and the fact that their bending stiffness is about
10–20kBT, they are likely to experience large thermal undula-
tions. These thermal fluctuations are an important element of
a variety of biophysical phenomena and a detailed discussion
of this topic is certainly beyond the scope of the present
article. It is sufficient to say here that statistical mechanics of
biological membranes is a keenly studied subject and
the reader is referred to the following literature for further
information.102–109 One of outcomes of thermal fluctuations is
that they generate a repulsive force between two membranes in
close vicinity. Helfrich102 showed that this repulsive entropic
force between two membranes is proportional to 1/d3 where d
is the distance between the membranes. Petrov109 investigated
the effect of flexoelectricity on this repulsion and concluded
that it leads to an attractive component, which at a certain dis-
tance cancels out the entropic repulsive force. In his model,
such flexoelectric attraction becomes quite significant at
shorter distances. Recently, using eqn (4) Liu and Sharma110

investigated the influence of flexoelectricity and thermal fluc-
tuations on the mechanical and dielectric properties of bio-
membranes. It is well-known in the biomembrane literature
that thermal fluctuations cause a softening of the membranes.
Liu and Sharma110 showed that flexoelectricity enhances the
softening effects of thermal fluctuations, while temperature
appears to have a decreasing effect on the flexoelectric
coefficient.

Both Mohammadi et al.42 and Deng et al.43 have presented
a mathematical framework of flexoelectricity in biomembranes
(summarized in section 2.2). Deng et al.43 specifically present
some illustrative examples such as the deformation of a bio-
membrane due to the interaction with an ion. Recently Rey111

has also presented a theoretical framework that includes
tension, bending, pressure, and flexoelectric effects to deter-
mine the equilibrium shape of a vesicle. Gao et al.112 estab-
lished an electromechanical liquid crystal model of a cell’s
membrane based on Eringen’s micropolar theory.113 They
studied the shape deformation of spherical and cylindrical
vesicles in response to an externally imposed electric field,
incorporating the contributions of elastic bending, osmotic
pressure, surface tension, flexoelectricity and Maxwell pressure
into the free energy of the system. Finally, Loubet et al.114

derived the electrostatic contribution to membrane mechan-
ical properties, such as bending stiffness, tension, spon-
taneous curvature and flexoelectric coefficient. In their model,
they considered an infinite planar membrane with a uniform
areal charge and dipole densities that vary along the thickness.
They used the Poisson–Boltzmann approach—which is a
mean-field approximation and does not take into account
the ion correlations—and derived the equilibrium stress
equations. Abou-Dakka et al.115 formulated a flexoelectric
actuation model of a tethered circular membrane in the
presence of an oscillating electric field. Their model can be

employed to explain how the outer hair cells in mammalian
ears function.

Flexoelectricity has a number of implications in biology,
including ion transport, electromotility and mammalian
hearing mechanism. Voltage gated channels are trans-
membrane proteins that are activated in response to the change
in local electric fields. The membrane, due to flexoelectricity
undergoes conformational deformations in the presence of
external fields which impose mechanical forces on the bound-
aries of the channel that make it activated. The usual sources
of electric fields are ionic concentration gradients in the local
environment of the cell. The ion pumps use flexoelectricity in
a similar manner. As a result of the conformation transform-
ations of the protein induced by ATP and ions, the membrane
becomes curved. The resulting curvature as shown in Fig. 11
induces polarization and a so-called depolarizing electric field
emerges that results in the generation of a driving force for ion
pumping.94,116

Electromotility117 is the cell’s movement in the presence of
an electric field across the cell membrane. As observed in
experiments,118 the mammalian hearing mechanism critically
relies on cell’s electromotility. Hair cells are the primary
sensory receptors in the auditory system that transform the
mechanical vibrations of sound into sensible electrical action
potential.119 Though, the corresponding mechanism is still
not fully understood, one possible explanation is that the
stereocilia in inner hair cells are flexoelectric. Hair bundles
consist of several stereocilia (as shown in Fig. 12) that are con-
nected by thin fibers called tip links and organized in rows of
decreasing height. The axes of hair bundles point away from
the center of the cochlea. Mechanosensitive ion channels are
located within the wall of the stereocilia near the top and teth-
ered to adjacent stereocilia by tip link tension. Bending of the
hair bundle toward the tallest row imposes tip link tension on
channels in the shorter neighbor causing them to open and
make the cellular inner environment more electrically positive.
Similarly, bending the bundle in the opposite direction closes
the channel, causing the cell to become more negative. During
these processes, a voltage difference emerges across the

Fig. 11 This model of flexoelectricity driven ionic pump is proposed by
Petrov.94 Due to conformation transitions of the protein induced by ATP
and ions, the phospholipid bilayer becomes curved. This curvature
results in flexoelectric polarization and an electric field ensues which
acts as the driving force for ion translocation. Adapted from ref. 94.
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thickness of the stereocilia membrane and due to the flexo-
electric properties of cellular membrane, the radius of the
stereocilia changes. Accordingly, the height of the stereocilia
increases (or decreases) to maintain the fixed volume. The con-
tribution of electromechanical coupling in the hearing mech-
anism was first hypothesized by Hudspeth and Corey120–124

and based on several interesting experiments, Brownell and
co-workers88–93,125,126 have argued that flexoelectricity is
indeed the mechanism that serves to link mechanics and elec-
tricity in this context. Interestingly, the hair bundles not only
transduce the mechanical signals into electric ones, but also
amplify the weak mechanical stimuli. The corresponding
mechanism involves the emergence of instability phenom-
enon, namely – Hopf bifurcation127 a discussion of which is
beyond the scope of this paper. For further details, the reader
is referred to the recent review on hearing mechanism by
Reichenbach and Hudspeth.128

4. Concluding remarks and future
directions

Flexoelectricity is a fascinating form of electromechanical
coupling and is especially relevant to the easily curved 2D
materials such as graphene and biological membranes.
Despite a fair amount of recent activity, several open questions
remain and there are numerous avenues for future research.
First and foremost, the complete characterization of the flexo-
electric properties of many of the 2D materials is still in-
complete. Although the first 2D material, graphene, was
synthesized just a short while ago, several novel material
systems have emerged since then e.g. boron nitride,129,130

black phosphorus,131,132 molybdenum disulfide,133,134 tung-
sten disulphide135,136 and others. With the exception of gra-
phene, BN and (to some extent) graphene nitride,28,30,58,60

characterization data of the flexoelectricity in these 2D
materials are still missing. In particular, we note that to date

flexoelectricity has not been experimentally evaluated for any
of the 2D inorganic materials, however, as described in the
main text, considerably more progress has been made in the
case of lipid bilayers.15,16,95–97

Simulating flexoelectricity 2D materials and their variants
(e.g. layered or composite structures) from an atomistic view-
point is quite challenging. The quantum mechanical
approaches are computationally expensive since modeling of
bending (or other nonuniform deformation modes such as
torsion) necessarily precludes the use of periodic boundary
conditions to simplify computations. Furthermore, even if
quantum methods are cleverly used, they are limited in the
sense that, practically speaking, only zero Kelvin information
can be obtained. As an alternative, empirical force-field based
molecular dynamics may be used, however developing poten-
tials to model electromechanical behavior is notoriously
difficult and that itself is an active area of research.137

Recently, a piezoelectric molecular dynamics model for boron
nitride nanotubes has been proposed by Yamakov et al.138

Similar studies are also required for other 2D materials.
Regarding quantum mechanical calculations, a promising
recourse may be found in the recently developed Objective
Structures based approach.139–141

A theoretical framework for 2D membranes that properly
accounts for large deformations and possible anisotropic
effects is still absent. The former is important for biological
membranes while the latter is of interest in the case of crystal-
line membranes. In particular, for crystalline membranes, in-
plane elastic behavior is coupled with bending which makes
the modeling of such membranes quite complex. As already
alluded to earlier, studies on experimental characterization of
flexoelectric response in 2D structures are rather scarce.

One of the applications of flexoelectricity is in energy har-
vesting. Existing theoretical and computational studies are
based on the linear flexoelectricity effect79,83—we expect much
to be gained from examining nonlinear effects and is thus an
open avenue for research. In particular, inspired by how mam-

Fig. 12 (a) Cross-section of the organ of corti and hair bundles on the apical surface of inner hair cells (iHcs) and outer hair cells (oHcs). (b) Scan-
ning electron microscopy image looking at the apical surface of hair cells with the tectorial membrane removed. iHc and oHc hair bundles are
pseudo-colored orange and red, respectively. (c) Elongation of a schematic of the hair bundle and hair cell apical surface. When hair bundles are
stimulated, the stereocilia are tilted towards the tallest row of stereocilia. Reproduced with permission from ref. 119.
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malian hearing mechanism works, possible flexoelectricity
based energy harvesting schemes may be created. On these
lines we note that several bio-inspired applications of soft
materials have been proposed in the literature e.g. liquid crys-
talline elastomer (LCE) soft actuators that are extensively used
in artificial muscles, micro-robots and MEMS.142–145

Several other open questions remain regarding flexoelectri-
city in 2D materials. As an example, Duerloo and Reed53 found
that the polarization-curvature in BN bilayers is amplified by
3–4 orders of magnitude compared to a single BN layer. We
can only speculate about the mechanisms underpinning this
observation and further investigation of this topic is an inter-
esting avenue for future study. Likewise, Tagantsev22,36 pre-
sents a careful distinction between surface flexoelectricity and
bulk flexoelectricity. What are the ramifications of this in the
context of 2D materials?

Finally we point out the phenomenon of photoflexoelectri-
city – which is the coupling between light, mechanical strain
gradients and electrical field. It was first observed in lipid
membranes146,147 and later in liquid crystals.148 Recent studies
of the phenomenon include investigation of the use of photo-
chromic elastomers149–152 as actuators and energy harvesting
systems. Beyond the few cited references, hardly any work has
been carried out to investigate this effect.
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