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Geometrically nonlinear deformation and the
emergent behavior of polarons in soft matter

Xiaobao Li,a Liping Liubc and Pradeep Sharma*ad

Mechanical strain can alter the electronic structure of both bulk

semiconductors as well as nanostructures such as quantum dots.

This fact has been extensively researched and exploited for tailoring

electronic properties. The strain mediated interaction between the

charge carriers and the lattice is interpreted through the so-called

deformation potential. In the case of soft materials or nanostructures,

such as DNA, the deformation potential leads to the formation of

polarons which largely determine the electronic characteristics of

DNA and similar polymer entities. In addition, polarons are also

speculated to be responsible for the mechanism of quantum actuation

in carbon nanotubes. The deformation potential is usually taken to be

a linear function of the lattice deformation (U B ae) where a is the

deformation potential ‘‘constant’’ that determines the coupling

strength and e is the mechanical strain. In this letter, by carefully

accounting for nonlinear geometric deformation that has been

hitherto ignored so far in this context, we show that the deformation

potential constant is renormalized in a non-trivial manner and is

hardly a constant. It varies spatially within the material and with the

size of the material. This effect, while negligible for hard materials, is

found to be important for soft materials and critically impacts the

interpretation of quantities such as polaron size, binding energy, and

accordingly, electronic behavior.

Mechanical strain is well-known to impact the electronic structure
and hence the optoelectronic properties of both bulk semicon-
ductors as well as, in even more unusual ways, nanostructures
like quantum dots.1–5 A rich body of literature exists that has
explored this coupling and indeed strain is now routinely used to
tailor the band gap, mobility of charge carriers and other aspects of
the electronic structure.6–9 Although inorganic semiconductors have
been extensively studied in this context, the topic of strain-electronic
structure coupling is also of importance for organic semiconductors

which offer some advantages—such as being lighter, flexible, and
more economical. Organic semiconductors are increasingly being
considered for applications in electronic devices like light emitting
diodes10 and field effect transistors11,12 among others.13–15 In this
letter, our focus is on the concept of ‘‘polaron’’17,18 which plays a
central role in the charge transport mechanism in DNA19–22 and
other organic polymers.16,23–26 We also note that the study of polaron
is of interest due to several tantalizing basic science questions
associated with this topic not to mention the recently discussed
ramifications in superconductors27–29 and the quantum actuation
mechanism in carbon nanotubes (CNTs).30–32 DNA is a one
dimensional (1D) prototypical soft nanoscale material whose
electronic properties (including conduction) are dictated by that
of polaron motion. Accordingly, throughout this communication,
we will frequently refer to DNA to highlight the key message(s) of
our work, although the implications of our work are broadly
applicable to soft matter in general.

The polaron, in brief, is a type of quasiparticle which is formed
due to the interaction between charge carriers (electrons or holes)
and phonons. In the present context, where the discussion is on
strain-mediated changes in the electronic structure, the interaction
is between charge carriers and acoustic phonons. By definition, the
acoustic polaron is a quasiparticle that is a result of a charge
carrier trapped by the self-induced localized lattice distortion (see
Fig. 1).† More colloquially, the polaron may be understood to be a
charge carrier surrounded by a ‘‘cloud’’ of strain. For small enough
nanostructures (e.g. carbon nanotubes, quantum dots) or soft
materials, the injection of a charge carrier may form a polaron.
As schematically depicted in Fig. 1, any stimuli that interact
with the charge carrier will then disturb the surrounding strain
field and hence cause deformation—leading to the so-called
quantum actuation mechanism.

Despite significant work to date, several controversies still
remain regarding the fundamental mechanisms underpinning
charge transport in DNA and similar soft structures.34–41 A well-
accepted (although still debated) charge transport mechanism
is the formation of the so-called ‘‘large’’‡ polaron. In this notion,
the charge carrier spreads over several bases or lattice sites and is
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‘‘dressed’’ by the lattice distortion in order to minimize the
energy.19 In particular, in a long line of pioneering work predicated
on polaron motion, Conwell and co-workers have clarified several
key aspects of charge transport mechanisms in DNA.42–46 Other
related work has examined the stability of polarons in DNA47,48

and the effects of the environment,42,44 electric fields49 and
temperature.20,50

A key role in the models that purport to describe polarons in
organic materials (or for that matter, even inorganic ones) is
played by the material property called the electron–phonon
coupling or deformation potential constant. The electronic
transport between the adjacent lattice sites is accompanied by
the lattice distortion due to the electron–phonon interaction
which results in the polaronic state. In particular, the strength
of this coupling strongly affects the polaron size, effective mass
and therefore the mobility of charge carriers in soft materials.
As already alluded to earlier, this parameter is assumed to a
constant value for a given material and its estimation appears to
vary significantly depending on which method is used. In this letter,
we modify the continuum Holstein based model17 to correctly
account for geometric deformation nonlinearity that is essential in
the study of easily deformable soft materials. We show that, instead
of a ‘‘constant’’, the electron–phonon coupling parameter may vary
spatially or in the case of DNA, from site to site and also with the
size of the structure. The effect of geometric deformation non-
linearity is found to be the quantum mechanical analog to the
electrostatic Maxwell stress effect in soft materials. We present the
effect of this aforementioned geometric nonlinearity on the polaron
binding energy and polaron induced mechanical deformation in
one dimensional nanoscale materials ranging from hard materials
like CNTs to soft polymer chains like DNA.

In the following, we outline the mathematical framework to
incorporate the effect of geometric deformation nonlinearity on
the deformation potential. Our starting point is the continuum
Holstein model. The approach couples elasticity with quantum
mechanical effects (or electronic structure) in the spirit of

the envelope function and the k.p. approach.51,52 We adopt
this approach in the interest of transparency and analytical
tractability. The chosen approach does not impact the central
message of our work. Other formalisms such as the discrete
Holstein model,17 Su–Schrieffer–Heeger Hamiltonian18 and
Kohn–Sham Density Functional Theory (DFT) may also be
employed but (in our opinion) the key ideas are most clearly
presented in the field theoretic formalism outlined below.

Consider an extra charge carrier (electron or hole) introduced
into a dielectric body. For simplicity, we neglect the kinetic energy
of lattice motion since the time scale dictating the relaxation of
the extra charge carrier is sufficiently rapid compared to the
atoms and is able to adjust to the instantaneous positions of
the atoms.53 We also restrict ourself to a non-spin energy calcula-
tion throughout this work.

We begin with the postulations that (i) the state of the
system is described by the deformation v: OR - O and the
electronic wave function c: O - C associated with the charge
carrier, and (ii) the Hamiltonian of the system is given by:53

H ¼
ð
O

�h2

2m�
gradcj j2 þ cj j2Udvþ

ð
OR

WeldV; (1)

where m* is the effective mass of the charge carrier and the first
term is the kinetic energy, the term U is the deformation potential
characterizing the electron–acoustic phonon interaction, and the
last term Wel is the elastic strain energy density. For the ground
state, our problem is to minimize the total Hamiltonian with
respect to all admissible wave functions and deformations. In this
procedure, we must carefully distinguish two configurations
(OR vs. O), which would give rise to the geometric nonlinearities.

One apparent difficulty in solving the variational problem
defined by (1) arises from the fact that the deformed configuration
O depends on the deformation v of the body which is coupled to
the wave function c. A systematic way to address this difficulty is
to ‘‘pull-back’’ all quantities to the reference configuration. To be
precise, let C(X) = c(v(X)) be the wave function with respect to the
reference configuration, and denote by

F = rv, J = det F (2)

the deformation gradient and the Jacobian. Here and subsequently,
we denote by x (resp. X) the spatial/Eulerian (resp. material/
Lagrangian) coordinates, and by grad/div and r/r the gradient/
divergence operator with respect to x and X, respectively. Then by
changes of variables x - X, the Hamiltonian (1) can be written
as a functional of deformation v and wave function C:

H ¼
ð
OR

�h2J

2m�
F�1rC
�� ��2 þ JU Cj j2þWel

� �
dV : (3)

The normalization condition for the electronic wave function in
the reference configuration can be expressed as:ð

O
cj j2dv ¼

ð
OR

J Cj j2dV ¼ 1: (4)

Standard first-variational calculations for the Hamiltonian
(3) with the constraint (4), though rather tedious, yield the

Fig. 1 The figure schematically illustrates how an extra charge carrier may
form the quasi-particle called polaron and induce different deformation
modes such as extension/contraction, bending, twisting in DNA or similar
1-D nanostructures.
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Euler–Lagrange (EL) equations for determining polaron states
(v,C) that duly account for geometric nonlinearity. However,
the governing equations are rather complicated and their
physical meaning is somewhat obscure. To render the impact
of geometric deformation nonlinearity on the deformation
potential more transparent, we introduce the displacement
u = v(X) � X. Let ru = F � I be the (unsymmetrized) strain
and Z B |ru| be the order of magnitude of the strain. For
simplicity, the elastic energy density and deformation potential
are written as

Wel ¼
1

2
ru � Cru and U ¼ a0r � u; (5)

respectively, where C is the fourth-order elasticity tensor and a0

is the deformation potential constant. Formally, we expand the
first two terms in (3) in terms of strain as:

�h2J

2m�
F�1rC
�� ��2 þ JU Cj j2 ¼ �h2

2m�
rCj j2

þ Cj j2U þ Cj j2 S;ruh i þ oðZÞ;
(6)

where

S ¼ �h2

2m� Cj j2
rCj j2I�rC� � rC�rC�rC�
h i

:

Neglecting higher order o(Z)-terms in (6) we rewrite the
Hamiltonian (3) in terms of (u,C) as

H ¼
ð
OR

�h2

2m�
rCj j2 þ Ueff Cj j2þWel

� �
dV ; (7)

where

Ueff = U + hS, rui. (8)

Comparing (7) with (1), we refer to Ueff as the effective deforma-
tion potential. Neglecting hS,rui in (8) we obtain the coupled
Schrödinger-Elasticity equations for (C,u):5,30

� �h2

2m�
r2 þ a0r � u

� �
C ¼ EC;

r � Cruþ a0 Cj j2I ¼ 0
� �

:

8><
>: (9)

From ref. 19 and 30 we estimate that a0|C|2 B 0.01–1 eV Å�1 in
magnitude for one dimensional materials such as carbon
nanotubes or DNA strands. From (9), we see that for hard
materials, the assumption of small strain is indeed an accurate
approximation. For instance, the stiffness of carbon nanotubes
is approximately 600 eV Å�1, implying strains Z of the order
of 10�4. However, for soft macromolecules such as DNA, the
stiffness is of the order of 1 eV Å�1, implying that the strain Z
can be as large as 10–100%. Indeed, in the latter case, the use
of (9) for estimating polaron states is quite questionable. As will
be shown shortly, the geometric deformation nonlinearity
significantly alters the wave function, energy, deformation
and possibly the stability of polaron states for soft materials
undergoing large deformations. In particular, the Hamiltonian (7)

and constraint (4) imply the following governing equations
for (u,C):

� �h2

2m�
r2 þ a0r � u

� �
CþLgnC ¼ EC;

r � Cruþ a0 Cj j2Iþ Sgn
h i

¼ 0;

8>>><
>>>:

(10)

where Lgn (Sgn) is the additional operator (stress) arising from
the geometric nonlinearity:

LgnC ¼ �h2

2m�
r � �ðr � uÞIþruþ ðruÞT

� �
rC

	 

;

Sgn ¼ ðS� EIÞ Cj j2:
(11)

From (10)2, we see that it is necessary to consider the leading-

order term from geometric nonlinearity if
�h2

2m�
rCj j2 is compar-

able to the elastic stress Cru (or ke for the 1D case). We also
remark that the exact nonlinear Euler–Lagrange (governing)
equations may be obtained from the original Hamiltonian (3)
which must be used if the strain Z is large.

From (9) or (10), we see that the equations for polaron states
are in general, nonlinear and not amenable to explicit solu-
tions. For 1D materials/structures such as nanotubes and
conjugate polymer chains, ref. 23 and 30 obtained explicit
solutions to (9) by suppressing the degrees of freedom in the
transverse direction (these works however ignored the effect of
geometrically nonlinear deformation). In the following, we
explore the effect of geometric nonlinearity. We denote the
longitudinal displacement by u: R - R, the normal strain by e =
uX and the stretch ratio by g = 1 + u,X. Using (5) we write the
deformation potential as U = a0e and strain energy density
function as Wel = 1

2ke2. From the exact Hamiltonian (3), we find
the following simplified Euler–Lagrange equations for 1D
polaron states (u,C) that account for geometrically nonlinear
deformation:

� �h2

2gm�
C;X

g

� �
;X

þ a0u;XC ¼ EC

ku;X þ a0 Cj j2 �
�h2

2m�
C;X

g

� �2

�E Cj j2
" #

;X

¼ 0:

8>>>>><
>>>>>:

(12)

Evidently, the last two terms in (12)2 arise due to the geometric
nonlinearity. We let two ends of the material free, therefore the
requisite boundary conditions may be written as:

C ¼ 0;

ku;X þ a0 Cj j2 �
�h2

2m�
C;X

g

� �2

�E Cj j2¼ 0:

8><
>: (13)

To solve the two coupled 1D equation (12) subject to
boundary conditions (13), we performed an iterative numerical
calculation using the so-called ‘‘imaginary time method’’. The
reader is referred to ref. 54–56 for further details on the
numerical procedure to solve such classes of boundary value
problems. We only briefly summarize the basic idea here.
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First, a suitable initial guess (e.g. a Gaussian function) is made for
C and e as the starting point for the iteration, and then C and e
were solved in the next iteration using the following relationship:

@CðX ; tÞ
@t

¼ �dE
dC

;
@g
@t
¼ �dE

dg
:

We used forward Euler for time discretization and a second-order
central finite difference for discretizing the spatial derivatives. The
normalization and boundary conditions were also imposed at each
step. After several trials, we selected a time step Dt = 0.001 s and a
spatial unit Dh = 0.5 Å. In each iteration, we calculated the total
energy—which decreases with increasing number of iterations.
Convergence was considered to have been achieved when the energy
difference between iterations dropped to less than 10�4 eV.

To illustrate how the geometrically nonlinear deformation
influences the key polaron properties, we present the results of
our calculation of the polaron binding energy and polaron
induced strain for a wide range of 1D materials. From
the contour plots shown in Fig. 2 and 3, we observe that the
effect of geometrically nonlinear deformation for both the
induced strain and the binding energy shows a similar pattern:
the effect is minor for hard materials (e.g. carbon nanotubes)
and significant for elastically soft materials (e.g. DNA). In
particular, for materials that are elastically soft and have a
strong electron–phonon coupling constant, the effect is quite
large and can dramatically change the two key aforementioned
polaron signature properties. In short, the central message of
this letter, that is amply justified by the two contour plots, is
that geometric nonlinearities cannot be ignored for polarons in
soft materials.

To study the effect of effective mass, we fixed the stiffness
constant k to be 15 eV Å�1 and varied both the effective mass
and coupling constant. For simplicity, we performed calcula-
tions for only three different values of the effective mass

(e.g.
�h2

2m�
¼ 2:312; 8:1; 16:94 eV Å2) which cover the range of

typical values in materials from DNA to carbon nanotubes.
The overall trend is found to be the same as shown in Fig. 4.
Through this analysis, we can see that as the charge carrier
becomes heavier, the geometric nonlinear effect becomes larger.
This is due to the fact that as the charge carrier becomes heavier,
it ‘‘feels’’ the potential in a stronger way and gets trapped in
deeper energy wells with larger deformations around it. As
shown before, the geometric nonlinear effect on binding energy
increases with respect to the increasing coupling constant.

To confirm the intuitive assertion that the aforementioned
effect ought to be negligible for hard materials, we compare a
CNT with DNA. For the CNT(11,0) case, we use the same

Fig. 2 The contour plot shows the change in polaron binding energy due
to the geometric deformation nonlinearity. For simplicity, we have fixed the

value of
�h2

2m�
¼ 2:312 eV Å2 and varied a0 and k in the range of 1 o ao 10 eV

and 1 o k o 700 eV Å�1.

Fig. 3 The contour plot indicates how the geometric nonlinearity plays a
role in polaron-induced strain depending on the elastic and electron–
phonon properties of the materials. As in Fig. 2, we have fixed the value of

�h2

2m�
and varied the values of a0 and k within the same range.

Fig. 4 The figure depicts the interplay between the polaron binding
energy and effective mass. The stiffness is kept fixed at k = 15 eV Å�1. EN

and EL denote the polaron binding energy both with and without the
geometric nonlinear effect, respectively.
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parameters, a0 = �8.9 eV and k = 644 eV Å�1, as in ref. 30. The
electron (hole) effective mass can be written in terms of hop-
ping integral t0 as:

m� ¼ �h2

2t0a2
(14)

where a is the lattice constant (2.46 Å for CNT and 3.4 Å for
DNA). The hopping integral for CNT is roughly 2.94 eV. The
hopping integral depends on the DNA geometry as well as
the environment.57 Both DFT calculations and theoretical
methods estimate that the hopping integral is within the range
of 0.02–0.3 eV.19,41,58,59 We select t0 to be 0.3 eV. As discussed
in ref. 23, we have used the corresponding parameter relation-
ship between continuum SSH and Holstein Hamiltonian
to reduce the difference between them. Based on that, we
selected the electron–phonon coupling constant (a0) to be
8.16 eV (4 � 0.6 eV Å�1 � 3.4 Å) and the elastic constant k is
set to 11.56 eV Å�1 (4 � 0.85 eV Å�2 � 3.4 Å).

As well evident from Fig. 5, both the polaron probability
density distribution and deformation do not change in the case
of the CNT–whether or not deformation nonlinearities are
accounted for. The polaron length and the maximum strain are
about 44 nm and 1.46 � 10�5, respectively. The binding energy is
�2.02� 10�2 meV. All these values match well with reported ones
in past works.30 However, a significant effect is well-evident for
DNA. The polaron length is increased from 2.41 Å to 3.65 Å. Also,
the maximum strain is reduced from �14.7% to �10.7% which
corresponds to a total change of length 0.71 Å and 0.66 Å,
respectively. Furthermore, the binding energy is decreased from
�0.2 eV to �0.15 eV. Another finding is that, in the absence of
nonlinearity, the binding energy is exactly one-third of the total
electronic energy which is consistent with previous work.53,60

In conclusion, we have shown that the contribution of geo-
metrically nonlinear deformation must be properly accounted for
when describing polarons in soft materials. In soft materials, an
‘‘effective’’ deformation potential constant may be defined which
is no longer a constant and nearly all the significant polaron
properties and behavior are dramatically altered—such as the
polaron binding energy and polaron-induced deformation.

These altered polaron properties are likely to play a central role
in charge-transfer mechanisms in soft materials like DNA and
therefore represent an intriguing avenue for further study. We
note here that we considered only a single charge carrier (and
hence a single polaron). Several of our predictions on the
alterations in polaron properties due to nonlinear geometric
effects are likely to be even more exaggerated if multiple
polarons are considered (non-trivial as such a study may be,
however). In the past, many potential applications of DNA have
been proposed, in particular, designing it as an electron-optical
device, biosensor and/or nanoactuator.61,62 Polaron mediated
charge transport may be important for these applications and
the extension of the present work for those situations is
anticipated. One of the implications of this work is that we
can remotely deform a sufficiently soft material by simply
exposing it to light. The latter will certainly alter the electronic
structure of the soft object (provided it is small enough) and,
through mediation by polarons, induce large deformations.
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