Thermal fluctuations of vesicles and nonlinear curvature elasticity—implications for size-dependent renormalized bending rigidity and vesicle size distribution

Fatemeh Ahmadpoora and Pradeep Sharmab

Both closed and open biological membranes noticeably undulate at physiological temperatures. These thermal fluctuations influence a broad range of biophysical phenomena, ranging from self-assembly to adhesion. In particular, the experimentally measured thermal fluctuation spectra also provide a facile route to the assessment of mechanical and certain other physical properties of biological membranes. The theoretical assessment of thermal fluctuations, be it for closed vesicles or the simpler case of flat open lipid bilayers, is predicated upon assuming that the elastic curvature energy is a quadratic functional of the curvature tensor. However, a qualitatively correct description of several phenomena such as binding–unbinding transition, vesicle–to–bicelle transition, appearance of hats and saddles among others, appears to require consideration of constitutively nonlinear elasticity that includes fourth order curvature contributions rather than just quadratic. In particular, such nonlinear considerations are relevant in the context of large-curvature or small-sized vesicles.

In this work we discuss the statistical mechanics of closed membranes (vesicles) incorporating both constitutive and geometrical nonlinearities. We derive results for the renormalized bending rigidity of small vesicles and show that significant stiffening may occur for sub-20 nm vesicle sizes. Our closed-form results may also be used to determine nonlinear curvature elasticity properties from either experimentally measured fluctuation spectra or microscopic calculations such as molecular dynamics. Finally, in the context of our results on thermal fluctuations of vesicles and nonlinear curvature elasticity, we reexamine the problem of determining the size distribution of vesicles and obtain results that reconcile well with experimental observations. However, our results are somewhat paradoxical. Specifically, the molecular dynamics predictions for the thermomechanical behavior of small vesicles of prior studies appear to be inconsistent with the nonlinear elastic properties that we estimate by fitting to the experimentally determined vesicle size-distribution trends and data.

a Department of Mechanical Engineering, University of Houston, Houston, Texas 77204, USA. E-mail: fahmadpoor@uh.edu

b Department of Mechanical Engineering, Department of Physics, University of Houston, Houston, Texas 77204, USA. E-mail: psharma@central.uh.edu

1 Introduction

Biological membranes are ubiquitous in life, and form the envelope through which cells and organelles interact with their surroundings.1 Lipid bilayers, which primarily consist of self-assembled phospholipid molecules, often form closed vesicles.2 Usually just a few nanometers thick, the membranes serve as the gatekeepers for the cells and vesicles and aid in the transport of chemicals, facilitate mechanical and electrical signaling, transduction and adhesion. The vesicles, depending on the specific membrane composition and the surrounding environment, can exhibit a diversity of morphologies and of course serve as multi-purpose carriers that are capable of facilitating communication among cells, transporting functional genetic information as well as management of cellular waste. Aside from fundamental biological studies, lipid-based vesicles are often also created artificially in the laboratory for applications in drug design and delivery.

Although membranes are microscopically quite complex, their mechanical behavior is reasonably well-described by the phenomenological theory of elasticity and just a few continuum parameters such as the bending moduli and surface tension. Specifically, the oft-used Canham–Helfrich's theoretical framework parametrizes the energy cost of the deformation of a
tension-less membrane patch by the following quadratic form:3–7

\[F_b = \int \delta^2 \kappa_b (H - H_0)^2 + \kappa (K - K_0) \]

(1)

Here \(\kappa_b \) and \(\kappa \) are the bending moduli that, respectively, parametrize the energy change due to changes in the mean \((H) \) and Gaussian \((K) \) curvatures. The corresponding spontaneous curvatures are denoted by \(H_0 \) and \(K_0 \).\(^{\dagger} \) The elastic energy scale is set by the bending modulus and surface tension. Their typical values are such that membranes are usually hard to stretch but bend (curve) quite easily.\(^{8,9} \) Typical bending modulus of most lipid-bilayers is between 5 and \(25k_BT \)—small enough compared to the thermal energy scale that membranes undulate or fluctuate noticeably at physiological temperatures.\(^{8–12} \)

The study of these experimentally observed and widely studied thermal fluctuations has been one of the cornerstones of biophysical research on membranes.\(^{10–14} \) Statistical mechanics of open (nearly) flat membranes is well-developed and, to a comparatively lesser degree of exhaustiveness, several reports also exist that describe the thermal fluctuations of closed vesicles.\(^{15–19} \) The reason for the interest in thermal fluctuations of membranes is simple; aside from fundamental scientific curiosity, the fluctuations have been found to be responsible for the so-called entropic (steric) repulsive force between membranes\(^{20–23} \) and strongly influence phenomena such as self-assembly, adhesion, binding–unbinding transitions, membrane fusion and many others.\(^{24–27} \) In particular, the experimentally measured fluctuation spectra or calculated via microscopic methods such as molecular dynamics have provided a facile route to estimate mechanical and other related properties of membranes.\(^{28–31} \) For instance, in the case of large, nearly flat membranes, the following result for the fluctuations of the out of plane displacement field \(h \), can be easily derived based on the linearized version of the quadratic Hamiltonian described in eqn (1): \(\langle h^2 \rangle \propto k_BT \kappa_b \).\(^{32} \) This basic result has been extended to numerous other physically relevant contexts providing an avenue to extract useful information e.g. the incorporation of electromechanical coupling, tilt of lipids, presence of proteins or inclusions, proximity to substrates or other vesicles among others.\(^{33–40} \)

For very large cells and/or vesicles, assuming that the membrane is nearly flat is a reasonable assumption and considerably simplifies the statistical mechanics analysis. However, this assumption is certainly in error for even moderately sized vesicles and may conceal some interesting physical effects due to the presence of finite curvature. For instance Morse and Milner\(^{16} \) showed that the free-energy of a single vesicle increases logarithmically with vesicle size, if finite-size contributions are incorporated, as opposed to a logarithmic decrease predicted for a nearly-flat membrane. Accordingly, several studies have paid attention to the more difficult problem of understanding the fluctuation behavior of closed membranes.\(^{15–19} \)

In particular, one motivating factor has been the experimentally observed size-distribution of vesicles.\(^{41} \) A collection of a fixed number of vesicles with different sizes can freely exchange amphiphilic molecules until a thermodynamic equilibrium state is reached. Typically, the experimentally observed size distribution of an ensemble of vesicles at equilibrium is Gaussian in nature, with a rather large cut-off radius of about 10–20 nm. Theoretical models that purport to explain vesicle size-distribution trends do so based on contributions from the elastic bending energy and the chemical potential of the amphiphilic molecules that is required to create a vesicle. However, such models—which are predicated on the quadratic Helfrich Hamiltonian described in (1)—appear to be unable to completely explain all features of the experimentally observed vesicle size-distribution.

Our work is motivated by the following observations and questions:

- How does the bending modulus get renormalized for high-curvature or small-sized vesicles? Ostensibly, for small vesicles, nonlinear curvature elasticity properties should play a significant role; do they indeed do so?
- In analogy with what has been done in the case of quadratic Helfrich–Canham Hamiltonian, it would also be desirable to have closed-form expressions for the thermal fluctuation spectra of nonlinear curvature elasticity to readily extract nonlinear elastic properties via experiments or molecular dynamics.
- Our work is motivated by the following observations and questions:
 - How does the bending modulus get renormalized for high-curvature or small-sized vesicles? Ostensibly, for small vesicles, nonlinear curvature elasticity properties should play a significant role; do they indeed do so?
 - In analogy with what has been done in the case of quadratic Helfrich–Canham Hamiltonian, it would also be desirable to have closed-form expressions for the thermal fluctuation spectra of nonlinear curvature elasticity to readily extract nonlinear elastic properties via experiments or molecular dynamics.
 - Development of the statistical mechanics of closed membranes, incorporating fourth order nonlinear curvature elasticity, may be useful to understand various biophysical phenomena for small vesicles e.g. adhesion, modification of repulsive forces, and binding–unbinding among others.

To address the aforementioned issues, in the present work, we develop the statistical mechanics of closed spherical vesicles that are described by fourth order constitutively nonlinear curvature elasticity and may be suitable for the study of small-sized vesicles. The outline of the paper is as follows: nonlinear fourth order curvature elasticity is described in Section 2 along with several aspects of the problem setup. The statistical mechanics of closed vesicles is developed in Section 3, where we present the results for the renormalization of the bending modulus of small vesicles followed by, in Section 4, the implications of our work for the assessment.
of size-distribution of vesicles. Our results appear to be paradoxical in light of some past computation of nonlinear elasticity properties. This, along with other issues, are discussed in Section 5 where we also conclude the work.

2 Nonlinear curvature elasticity and problem setup

Consider a closed vesicle described by an enclosing surface Σ. The elastic energy density may be represented by $\psi = \tilde{\psi}(H,K)$. As has been discussed elsewhere, treatment of the vesicle surface as an isotropic fluid membrane and the foundational principles of continuum mechanics restrict the dependence of $\tilde{\psi}$ solely to $\mathbf{(H,K)}$. Assuming conservation of area and volume, in the absence of external forces, the total potential energy of the vesicle can be written as:

$$ E = \int_\Sigma (\psi + \sigma) d\Sigma + \int_V p dV $$

where σ and p are the surface tension and osmotic pressure, respectively. The conventional vesicle equations, as usually found in the literature, are obtained by assuming a quadratic form for ψ i.e. eqn (1). The equilibrium equations, derivable by means of variational calculus, however, can proceed without the actual specification of ψ and has been carried out by a number of authors.11,42–46 We quote below the result in the form presented by Biria et al.47.

$$ \tilde{\psi}_H (2H^2 - K) + \frac{1}{2} A_S \tilde{\psi}_H + 2 \tilde{\psi}_H HK + 2 A_S (\tilde{\psi}_K H) $$

$$ - \text{div}_S (L \nabla S \tilde{\psi}_H) - 2 (\nabla S H) \cdot (\nabla S \tilde{\psi}_K) - 2 \tilde{\psi}_K A_S H $$

$$ - 2H (\psi + \sigma) = p $$

(3)

Here, the subscript H (and K) denote the derivative with respect to H (and K). Furthermore, L is the curvature tensor and ∇S, A_S and div_S correspond to the surface gradient, surface Laplacian and surface divergence operators,47 respectively.

Fourth order nonlinear curvature elasticity is obtained by considering all the invariants of the curvature tensor \mathbf{L} up to the fourth order. Ignoring the spontaneous curvature, this leads to:

$$ \tilde{\psi}(H, K) = \frac{1}{2} A_S H^2 + \frac{1}{2} K + \frac{1}{2} L^4 + \frac{1}{2} L^2 K + \frac{1}{2} L K^2 $$

(4)

where γ_i are the fourth order moduli.

In linearized curvature elasticity (i.e. the quadratic Helfrich theory), assuming that the vesicle is a sphere of radius R, the Young–Laplace equation takes the form: $R = 2\sigma/p$. In the nonlinear setting, however, due to the presence of higher order moduli, this relation is modified. Assuming that sphere is the stable state, eqn (3) results in:

$$ -\frac{\gamma_1}{R} + \frac{\gamma_2}{R} = p - \frac{2\sigma}{R} $$

(5)

which implies that for a certain range of pressure, there may be more than one sphere solution, that might be either stable or unstable depending on the values of γ_i. In this paper we will not focus on the stability of different morphologies in the context of nonlinear elasticity. It is assumed that the conditions (based on the values of surface tension, pressure and the elastic properties) ensure that a spherical vesicle is stable. For further details on this topic, the reader is referred to ref. 48–50.

In what follows, we will assume that the topology of the membrane does not change as it undergoes thermal fluctuations and accordingly, the contribution of the Gaussian curvature to the free energy may be neglected.¶

We rescale the fourth-order moduli to emphasize the fact that nonlinear curvature elasticity introduces an intrinsic length scale—in sharp contrast to the conventional Helfrich-theory: $\gamma_c = k_B T \epsilon^2$ where ϵ_c is the critical length scale that determines when the nonlinearity may be ignored, $\ell_H \ll 1$. Typically, ϵ_c is assumed to be in the same order of magnitude as the thickness of the membrane. However, as will be elaborated in due course, there is uncertainty about the determination of this parameter and we eventually use experimental data on vesicle size-distributions to estimate that, at least for the materials system we investigated, its value is indeed of the same order as the membrane thickness. We speculate that

¶ In the conventional (linear) model, according to the Gauss–Bonnet theorem, the integration of the Gaussian curvature over the surface is invariant under any deformation and hence the contribution of the Gaussian curvature to the bending energy may be ignored. This is, however, a global constraint on the topology of the membrane, which is necessary but not sufficient. Strictly speaking, the Gaussian curvature at any point on the surface depends only on the metric tensor which is constrained by the intrinsic topology of the surface. To capture the effect of such a strict local topological constraint, one need to fix the metric tensor’s components, using local Lagrange multipliers in the total Hamiltonian. This will guarantee that the Gaussian curvature will not change at any point on the surface, and therefore all the contributions of the Gaussian curvature in the free energy can be neglected. In this manner, the total bending energy density in the nonlinear framework can be modified as below:

$$ \tilde{\psi} = \frac{1}{2} A_S H^2 + \frac{1}{2} K + L \cdot (g - g^0) $$

(6)

where γ_i is the only fourth order constant. Also, g^0 and g correspond to the metric tensors of the undeformed and deformed surfaces respectively. Furthermore, λ is a set of Lagrange multipliers accounting for the constraints on the metric tensor components. Imposing such local topological constraints, for the simplest example of an unstretchable flat sheet, it has been shown that constraining the metric tensor components results in a significant modification to the shape equation.31,32 This notion is critical when the deformations may result in topological changes. For our specific problem, since the fluctuations are considered to take place for a fixed (and stable) topology—and that is a stable sphere will remain a sphere in the absence of external forces—implementing the topological constraints is unimportant. Accordingly, in the remainder of the work, the additional Lagrange multiplier term in eqn (6) is dropped.
the physical origins of ℓ_c are rooted in force and entropic interaction between adjacent lipid molecules when compelled to take highly curved configurations whose size-scale is compared to the thickness dimensions of the bilayer (and hence lipids). We will focus on the fluctuations of a closed vesicle in the shape of a perfect sphere—as has been done by nearly all studies that precede us. The fluctuating spherical vesicle (Fig. 1) with a mean radius of r_0, surface defined as $S := \{ r \in \mathbb{R}^3 : |r| = r_0 \}$ has a membrane of thickness d. Consider a small but arbitrary perturbation of the surface of the vesicle. The position of each point on the perturbed surface of the sphere can be described as:

$$\mathbf{r} = \mathbf{r} + \psi U \mathbf{n}$$

(7)

where we have assumed that the perturbation is only along the normal direction as shown in Fig. 2. Here $\psi \in \mathbb{R}$ is a small number and $U(\theta, \phi) : S \to \mathbb{R}$ denotes the magnitude of the normal perturbation. The mean curvature and the Jacobian of the perturbed surface can be expressed as:

$$\bar{H} = H + \delta H$$

$$\bar{f} = f + \delta f$$

(8)

where H is the mean curvature of the undeformed surface. Up to second order in ψ, the variations of H and f may be expanded as:

$$\delta H = \left(\frac{1}{2} \bar{H} U^2 + \frac{1}{2} \bar{H} U^2 \right) \psi^2 + O(\psi^3)$$

$$\delta f = \left(\frac{1}{2} \bar{f} \mathbf{U} \mathbf{n} \right) \psi + \left(\frac{1}{2} \bar{f} \mathbf{U} \mathbf{n} \right) \psi + O(\psi^2)$$

(9)

Neglecting the contribution of the Gaussian curvature, the bending energy per unit area of the perturbed surface can be written as:

$$\bar{\psi}[H] = \frac{1}{2} \kappa_b \bar{H}^2 + \frac{1}{2} \kappa_c \bar{H}^4$$

(10)

Using eqn (8) and (9) and integrating the above expressions over the surface of the membrane, we obtain:

$$\delta \psi^{\text{tot}}[U, H] = \int_S \bar{\psi}[H] \bar{f} dA_0$$

$$= \int_S \left(E(\psi) + E(x^2) + E(\psi^2) + O(\psi^4) \right) dA_0$$

(11)

in which we have retained up to fourth order terms. The leading terms in the expressions for $E(\psi)$ are as follows:

$$E(\psi) = \frac{1}{2} \kappa_b \bar{H}^2 (1 + \ell_c^2 \bar{H}^2)$$

$$E(x^2) = \frac{1}{8} \kappa_b (\Delta_S U)^2 (1 + 6 \bar{H}^2 \ell_c^2)$$

$$+ \frac{1}{4} \kappa_b U \Delta_S U (5 \bar{H}^2 - 2K + 3 \bar{H}^2 (7 \bar{H}^2 - 4K) \ell_c^2) + \ldots$$

$$E(\psi^2) = \frac{1}{32} \kappa_b \ell_c^2 (\Delta_S U)^4 + \infty \ldots$$

(12)

Specializing to the case of a perfect sphere of radius r_0, the equilibrium mean and Gaussian curvatures are $H^{-1}_e = -r_0$ and $K^{-1}_e = r_0^2$. Moreover, we define the normalized mid-plane displacement as: $u = U/r_0$. For notational simplicity, we use $\Delta_S := \Delta_S(r_0 = 1)$ as the surface laplacian operator on the unit sphere. Assuming that θ and ϕ are polar and azimuthal angles, we can write the area element as: $dA_0 = r_0^2 \sin(\theta) d\theta d\phi$. Then, integrating the terms in (12) over the
area of the sphere, we obtain:

$$E_0 = \int S E(\phi) dA_0 = 2\pi k_b \left(1 + \frac{\ell^2}{r_0^2}\right)$$

$$E_2 = \int S E(\psi^2) dA_0$$

$$= \int \left[\frac{1}{8} k_b \left(1 + 6\frac{\ell^2}{r_0^2}\right) (\Delta u)^2 + \frac{3}{4} k_b \left(1 + 5\frac{\ell^2}{r_0^2}\right) u \Delta u\right] d\Omega$$

$$E_4 = \int S E(\psi^4) dA_0 = \int \left[\frac{1}{32\pi r_0^4} k_b \ell^2 (\Delta u)^3\right] d\Omega$$

(13)

For notational simplicity, in what follows, we set

$$k_1 = \frac{1}{8} k_b \left(1 + 6\frac{\ell^2}{r_0^2}\right), \quad k_2 = \frac{3}{4} k_b \left(1 + 5\frac{\ell^2}{r_0^2}\right), \quad k_3 = \frac{1}{32} k_b \ell^2 / r_0^4.$$

Evidently, E_0 is the ground state energy, corresponding to the equilibrium state. A small perturbation of the surface (7), requires an additional elastic energy that can be expressed as:

$$E_{\text{pert}} = E_2 + E_4.$$

Up to the second order, the energy function E_2 within the linearized curvature elasticity framework has been derived earlier by many authors. Here, we have generalized it to include the effects of constitutive nonlinearities. In the following section we will use the energy function (13) to study the thermal fluctuations of the displacement field for a spherical vesicle.

In spherical coordinates, using $(e_r, e_\sphericalangle, e_\theta)$ as the basis vectors, the perturbed surface of the sphere is $f = r_0 (1 + u(\theta, \phi)) e_r$, and the area element and normal vector of the perturbed surface are:

$$J dA_0 = \left|\partial_r \times \partial_\phi \right| d\theta d\phi$$

$$= \sqrt{1 + \left(\frac{\partial u}{\partial \phi}\right)^2 + \left(\frac{1}{\sin \theta} \frac{\partial u}{\partial \theta}\right)^2} r_0^2 \sin \theta d\theta d\phi$$

$$n = \frac{\partial_r \times \partial_\phi}{|\partial_r \times \partial_\phi|}$$

Also the mean curvature is:

$$\bar{H} = -\frac{1}{2} \text{div}_S n$$

The surface operators are defined as:

$$\nabla_s = \frac{\partial}{\partial \theta} + \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} e_\phi$$

$$A\ell = \frac{1}{\sin^2 \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta}\right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

The area element and the mean curvature can then be expressed as:

$$J dA_0 = r_0^2 \left(1 + 2u + u^2 + \frac{1}{2} \nabla u^2 + \ldots\right) \sin \theta d\theta d\phi$$

$$\bar{H} = \frac{1}{r_0} \left(1 - u - \frac{1}{2} \Delta u + u^2 + u \Delta u - \frac{1}{2} \nabla u^2 + \ldots\right)$$

3 Thermal fluctuations in the context of nonlinear elasticity and the renormalized bending rigidity of small vesicles

There exists rich and extensive literature on thermal fluctuations of membranes. In the context of lipid bilayers and biological membranes, the vast majority of the studies use Helfrich’s classical quadratic Hamiltonian (i.e. linearized curvature elasticity) as the starting point. Specifically, constitutive nonlinearity—as detailed in the preceding section, has hitherto not been accounted for. Unfortunately, carrying out statistical mechanics of non-quadratic Hamiltonians is a daunting task to say the least; and closed-form solutions are frequently unobtainable. The equipartition theorem, that is the essential result used by nearly all the analytical statistical mechanics works on biological membranes, is not applicable.

Several methods have been introduced in the literature for treating non-quadratic Hamiltonians. Perhaps, the most straightforward approach is the perturbation expansion wherein the non-quadratic part of the Hamiltonian is considered to be a small perturbation compared to the quadratic part for which an exact solution is known. If the perturbation term is small enough, and under certain conditions, a rapid convergence of the free energy expansion may be achieved. Nevertheless, for low temperatures, divergent contributions may appear from second order corrections. Improved results may be obtained by the so-called variational perturbation theory (VPT) which has been successfully employed to remove divergencies in several canonical problems of quantum and statistical physics. This method is based on the so-called principle of minimum sensitivity and involves the use of a trial quadratic Hamiltonian with a variational coupling parameter. The requirement that an infinite perturbation expansion series should not depend on the variational parameter, the variational coupling parameter is “optimized” so that a truncated series solution depends minimally on it. The convergence of this method has been shown to be excellent when compared to all-numerical calculations and fairly reasonable closed-form analytical solutions may be obtained with just first or second order expansions in many cases.

Renormalization group (RG) is also another approach to treat the divergencies in perturbation expansions. This method is based on scaling techniques and some universal properties of materials near critical phenomena. In most of the cases, RG involves numerical calculations to estimate the free energy, and is often unable to produce analytical expressions for the correlation functions.

In what follows, we employ the variational perturbation approach and retain terms only up to the first order. Higher order corrections are cumbersome to incorporate but may be included if required. Our choice of the approach is dictated by our desire to obtain closed-form yet reasonably accurate solutions. The perturbed energy function, introduced in (13) is split in two parts; quadratic (E_2) and a non-quadratic (E_4) part that is not tractable via the equi-partition theorem. We express

** This approach, if only a first-order expansion is used, is also known more popularly as the Gibbs–Bogoliubov variational method, which is frequently used in several classes of quantum and classical statistical mechanics problems.
the original Hamiltonian in the following modified form:
\[
\mathcal{H}(\lambda) = \mathcal{H}_0 + \lambda \mathcal{H}_f
\]
where \(\lambda\) is a control parameter, such that \(0 \leq \lambda \leq 1\). We remark that \(\mathcal{H}\) is exactly the original non-quadratic Hamiltonian when \(\lambda = 1\). Also, \(\mathcal{H}_0\) is a trial Hamiltonian, that is analytically soluble and \(\mathcal{H}_f\) is the correction term. Using the concept of the canonical ensemble, the partition function is:
\[
Z(\lambda) = \int \exp(-\beta \mathcal{H}(\lambda)) \mathcal{D}[\psi]
\]
where \(\beta = \frac{1}{k_B T}\) and \(\mathcal{D}[\psi]\) represents the functional integration measure.\(^{58}\) The Helmholz free energy can be obtained as:
\[
F(\lambda) = -\frac{1}{\beta} \log Z(\lambda)
\]
Differentiating the above free-energy, with respect to \(\lambda\), we obtain:
\[
\frac{\partial F(\lambda)}{\partial \lambda} = \left(\mathcal{H}_f - \mathcal{H}(\lambda)\right) \left.\exp(-\beta \mathcal{H}(\lambda))\right|_{\mathcal{H}(\lambda)} = \langle \mathcal{H}_f \rangle
\]
where \(\beta = 1/k_B T\) and \(\mathcal{D}[\psi]\) represents the functional integration measure.\(^{58}\) The second derivative of the free-energy, with respect to \(\lambda\), yields:
\[
\frac{\partial^2 F(\lambda)}{\partial \lambda^2} = -\beta \left(\langle \mathcal{H}_f^2 \rangle - \langle \mathcal{H}_f \rangle^2 \right) - \beta \left(\langle \mathcal{H}_f^2 \rangle - \langle \mathcal{H}_f \rangle^2 \right) - \beta \left(\langle \mathcal{H}_f^2 \rangle - \langle \mathcal{H}_f \rangle^2 \right)
\]
which is always a negative value, \(\frac{\partial^2 F(\lambda)}{\partial \lambda^2} \leq 0\). This implies that the free energy is a concave function for all values of \(\lambda\), and thus, the function \(F(\lambda)\) is always below the tangent to \(F(\lambda)\) at \(\lambda = 0\). Using the Taylor expansion around \(\lambda = 0\) we can write:
\[
F(\lambda) \leq F_0 + \frac{1}{2} \left(\frac{\partial F}{\partial \lambda}\right)_{\lambda=0} \lambda^2 + \ldots
\]
We may now set \(\lambda = 1\) to retrieve the free-energy corresponding to the original Hamiltonian. Also we can write the correction term in terms of the trial Hamiltonian \(\mathcal{H}_0\) and the exact Hamiltonian \(\mathcal{H}\) as:
\[
\mathcal{H}_f = \mathcal{H} - \mathcal{H}_0
\]
the infinite Taylor series in the righthand side of eqn (19) should match the exact free energy—regardless of the choice of the trial Hamiltonian \(\mathcal{H}_0\). In practice, however, the series is truncated up to a finite order \(M\) to obtain an estimate of the free energy. Let \(F_M\) be the truncated series (19) up to the \(M\)-th order. Then using cumulant averages we can write the explicit form for \(F_M\) as:
\[
F_M = F_0 - \frac{1}{\beta} \sum_{k=1}^{M} \frac{(-\beta \mathcal{H}_0^k)}{k!} \mathcal{H}_f^k \]
where \(\langle \cdot \rangle_{\mathcal{H}_0}\) denotes the phase average with respect to \(\mathcal{H}_0\) and the superscript \(\epsilon\) corresponds to cumulant averages.\(^{59,60}\) Unlike the infinite series expansion in eqn (19), the truncated series \(F_M\) does depend on the choice of the trial Hamiltonian \(\mathcal{H}_0\). Accordingly, in order to obtain an optimized estimate, we need to minimize the sensitivity of the truncated series to the trial Hamiltonian. Suppose now that the trial Hamiltonian \(\mathcal{H}_0\) in Fourier space is defined as:
\[
\mathcal{H}_0 = \sum_{q \in \mathcal{X}} \psi(q) G(q) \psi(q)^* \tag{21}
\]
with \(q\) representing the modes of fluctuations, \(\psi(q)\) being the fluctuating field in mode \(q\) and \(G(q)\) is an unknown trial function that defines the form of interactions between the degrees of freedom. Then, to obtain the optimal form of \(G(q)\), we must set:\(^{60}\)
\[
\frac{\partial F_M}{\partial G(q)} := 0.
\]
In a rather good approximation, the result for the truncated series of the variational free energy from this method will converge i.e. \(F_M \approx F_{M+1}\) and the series (20) achieves its minimal sensitivity to the trial function. We remark that restricting calculations to first order in the truncated series (20) yields just the well-known Bogoliubov theorem\(^{13}\) for the upper bound of the exact free energy:
\[
F \leq F_0 + (\mathcal{H} - \mathcal{H}_0)_{\mathcal{H}_0}
\]
In what follows, we will use this approach up to first order to obtain a closed form solution for the free energy of the system.
As can be appreciated, the original Hamiltonian may be split into a trial and a correction term in an infinite number of ways. The next step involves choosing the optimal trial quadratic Hamiltonian. To achieve this, we start with the Fourier decomposition of the perturbation field on the sphere. To this end we expand the displacement in terms of spherical harmonics. Let \(N\) be the total number of degrees of freedom and
\[
\mathcal{X}_N := \{(l, m) | (l, m) \in \mathcal{Z} \times \mathcal{L}, l \geq 2, l(l + 1) < N, -l < m < l\}
\]
Then we can expand the normalized perturbation field in terms of spherical harmonics as below:
\[
\psi(\theta, \phi) = \sum_{(l, m) \in \mathcal{X}_N} \psi_{l,m} Y_{l,m}
\]
where \(Y_{l,m}\) are spherical harmonics\(^{73}\) with eigenvalues:
\[
\nabla^2 Y_{l,m} = -q_{l,m}^2 Y_{l,m} = -(l + 1) Y_{l,m}
\]
†† We have excluded the modes corresponding to \(l = 0\) and \(l = 1\), since these modes represent the area change and the rigid body motion of the vesicle and hence do not contribute to the total energy. We also recall the two important properties of the spherical harmonics, which will be used later in our calculations. They are orthonormal:
\[
\int_{\mathcal{S}} Y_{l,m} Y_{l',m'} d\Omega = \delta_{l,l'} \delta_{m,m'}
\]
and separable:
\[
Y_{l,m} = P^l(\theta)e^{im\phi}
\]
where \(P^l(\theta)\) is the Legendre polynomial corresponding to the mode \((l, m)\). In what follows, for the eigenvalues of the spherical harmonics, we use the notation \(q = q_{l,m}\) wherein \(q^2 = q_{l,m}^2 = l(l + 1)\).
and \(u_{i-m} = \hat{u}_{i,m} \) are the Fourier transformation of \(u(\theta, \phi) \):

\[
u_{i,m} = \int_{\Omega} u(\theta, \phi) Y_{i,m}^* \, d\Omega \tag{26}\]

We select the general form for the quadratic trial Hamiltonian \(\mathcal{H}_0 \) in Fourier space as defined in eqn (21). The goal now is to match the exact free-energy as closely as possible by finding an optimal match for the form of the propagator \(G(\mathbf{q}) \). To this end we set\(^{12,60}\)

\[
\frac{\partial}{\partial G(\mathbf{q})} \left(F_0 + (\mathcal{H} - \mathcal{H}_0)_{\mathcal{H}_0} \right) := 0 \tag{27}\]

The partition function and the free energy corresponding to the trial quadratic Hamiltonian \(\mathcal{H}_0 \) in eqn (21) is obtained as:

\[
Z_0 = \int e^{-\beta \mathcal{H}_0[u]} G[u],
F_0 = x_F + \frac{k_B T}{2} \sum_{\mathbf{q} \in \mathcal{X}} \log(G(\mathbf{q}))
\]

where \(x_F \) is a constant independent of the propagator \(G(\mathbf{q}) \). Calculating \(F_0 \) from (28) and substituting it into the L.H.S. of eqn (23), we obtain the variational free energy \(F_{\text{var}} \) as:

\[
F_{\text{var}} = F_0 + (\mathcal{H} - \mathcal{H}_0)_{\mathcal{H}_0}
= x_F + \frac{k_B T}{2} \sum_{\mathbf{q} \in \mathcal{X}} \log(G(\mathbf{q}))
+ \sum_{\mathbf{q} \in \mathcal{X}} (\kappa_1 q^4 - \kappa_2 q^2) \langle u(\mathbf{q})^2 \rangle_{\mathcal{H}_0}
+ 4\pi \kappa_3 \langle (\nabla^2 u)^2 \rangle_{\mathcal{H}_0}
\tag{29}\]

The mean square value of the perturbation field in each mode of the fluctuation can be obtained using the equipartition theorem:\(^{24}\)

\[
\langle u(\mathbf{q})^2 \rangle_{\mathcal{H}_0} = \frac{k_B T}{2G(\mathbf{q})} \tag{30}\]

Also the last term in (29), which is a higher order correlation function, may be calculated by invoking Wick’s theorem:\(^{24}\)

\[
\langle (\nabla^2 u)^2 \rangle_{\mathcal{H}_0} = \frac{3}{4} \langle (\nabla^2 u)^2 \rangle_{\mathcal{H}_0}^2 \tag{31}\]

Minimization of the variational free energy in (29) with respect to the unknown propagator \(G(\mathbf{q}) \) provides an upper bound for the exact free energy. Then, solving eqn (27) gives us the following form for \(G(\mathbf{q}) \):

\[
G(\mathbf{q}) = ([\kappa_1 + 24\pi \eta \kappa_3] q^2 - \kappa_2) q^2 \tag{32}\]

where,

\[
\eta = \langle (\nabla^2 u)^2 \rangle_{\mathcal{H}_0} = \frac{1}{4\pi} \sum_{\mathbf{q} \in \mathcal{X}} q^4 \langle u(\mathbf{q})^2 \rangle_{\mathcal{H}_0} \tag{33}\]

which should be calculated by integrating over all undulation modes. For brevity we rewrite eqn (32) as:

\[
G(\mathbf{q}) = \frac{1}{8} (c_1 q^4 - c_2 q^2) \tag{34}\]

where \(c_1 \) and \(c_2 \) are the corresponding coefficients of \(q^4 \) and \(q^2 \) in (32), respectively. The unknown value of \(\eta \) in the expression for \(c_1 \) should be calculated from the implicit equations of (30), (32) and (33):

\[
\eta = \frac{1}{4\pi} \sum_{\mathbf{q} \in \mathcal{X}} q^4 \langle u(\mathbf{q})^2 \rangle_{\mathcal{H}_0}
= \frac{k_B T}{4\pi} \sum_{\mathbf{q} \in \mathcal{X}} \left(1 + \frac{c_2}{c_1 q^2} + \ldots \right)
\tag{35}\]

where, to further simplify our calculations, we have dropped the term \(\frac{1}{q^2} \) since it is negligible compared to one—\(q^2 \gg 1 \). To compute the summation we replace it with an integral:

\[
\sum_{\mathbf{q} \in \mathcal{X}} := (2l + 1) \approx \int (2l + 1) \, dl
\tag{36}\]

where \(l_{\text{max}} \) can be easily obtained from the total number of modes (degrees of freedom):

\[
N = \sum_l (2l + 1) = \frac{4\pi r_0^2}{A_0}
\tag{37}\]

in which \(A_0 \) is the area associated with each degree of freedom, and is typically of the same order of magnitude as \(d^2 \) with \(d \) is the thickness of the membrane. Substituting the solution of eqn (35) for \(\eta \) into the expression for \(G(\mathbf{q}) \) in eqn (34) gives us the following form for the coefficients \(c_1 \) and \(c_2 \):

\[
c_1 = \frac{1}{2} \kappa_0 \left(1 + \frac{6\ell_c^2}{r_0^2} + \chi \right)
\tag{38}\]

\[
c_2 = 6\kappa_0 \left(1 + \frac{5\ell_c^2}{r_0^2} \right)
\tag{39}\]

where,

\[
\chi = \sqrt{\frac{1 + \frac{12\ell_c^2}{r_0^2} + \frac{36\ell'_c^4}{r_0^4} + \frac{24\ell_c^2 N}{\pi k_B T r_0^2}}{B_0 N}}
\tag{39}\]

Note that the \(q^4 \) contribution in (32) is equivalent to the bending rigidity \((c_1) \) of a vesicle studied in the context of linearized curvature elasticity, and according to (38), can be significantly larger than the bare modulus \(\kappa_0 \). We also note that there is a curvature-dependent suppression of thermal fluctuations in the nonlinear context and accordingly larger vesicles experience stronger fluctuations, compared to smaller vesicles. On the other hand, the \(q^2 \) term in eqn (34) has softening effects that arise from geometric nonlinearities. In the remainder of this section, we aim to study the softening effects of the thermal fluctuations on the bending rigidity. This topic has been well appreciated since the early and pioneering work by Helfrich.\(^{56,75-77}\) Considering geometric nonlinearity and using first order approximations, Helfrich\(^{78}\) explained that the renormalized bending rigidity in...
linearized curvature elasticity (for nearly flat membranes) can be written as:

$$\kappa_{\text{eff}} = \kappa_b + \frac{1}{2\pi} k_BT \log N$$ \hspace{1cm} (40)

wherein z is a universal constant and N is the number of molecules in the system. Assuming weak rippling in nearly flat membranes, he predicted $z = -1$. Peliti and Leibler also reexamined this problem and obtained z as -3, later on, Kleinert rigorously discussed the origins of these discrepancies and highlighted the care needed in choosing the integration measures in path integrals as well as some algebraic errors in expanding the energy formula. Consider now a spherical vesicle (described by linearized elasticity) with a bending rigidity of κ and radius r_0. The bending energy can be computed to be:

$$F_0 = -k_B T \log Z_0$$

$$= z_F + \frac{k_B T}{2} \sum_{q \in \mathbb{S}^3} \log G(q)$$

$$= z_F + \frac{k_B T}{2} \sum_{q \in \mathbb{S}^3} \left(\log c_1 q^4 - \frac{c_2}{c_1} q^2 + \ldots \right)$$

The above expression shows that the contribution of geometric nonlinearity produces additional terms in the Taylor expansion of the free-energy. The “additional free energy” can be interpreted as the change in apparent bending stiffness:

$$\Delta F = \frac{1}{2} k_B T \sum_{q \in \mathbb{S}^3} \left(\frac{c_2}{c_1} q^2 + \frac{c_2}{2 c_1} q^4 + \ldots \right)$$

$$:= 2\pi (c_1 - \kappa_{\text{eff}})$$

Thus, the effective bending stiffness can be calculated up to first order as:

$$\kappa_{\text{eff}} = c_1 - \frac{c_2}{4\pi c_1} k_B T \sum_{q \in \mathbb{S}^3} \frac{1}{q^2}$$ \hspace{1cm} (43)

s^6 We highlight that in many studies on this topic, the bending energy density is assumed to have the form of $\frac{1}{8\kappa_0} (1/R_1 + 1/R_2)^2$ in which R_1 and R_2 are the principle curvature radii. In this form, the mean curvature is considered to be $H = 1/R_1 + 1/R_2$, while in the present work, we consider half of this value as the mean curvature—$H = (1/R_1 + 1/R_2)/2$. Accordingly, the bending energy of a sphere, based on our assumption is obtained as: $2\pi\kappa_0$, while in some reports, the bending energy is assumed to be $8\pi\kappa_0$. Therefore, the change in the bending modulus in some of the references we have cited is $\frac{1}{2} k_B T \log N$. A comparison between these two forms shows that any variation in κ_0 used in our model, is four times larger than those in other reports.

Fig. 3 Renormalized bending modulus for different values of ℓ_c. Solid red, green and blue correspond to $\ell_c = 4$ nm, $\ell_c = 3$ nm and $\ell_c = 2$ nm, respectively. The dashed line is obtained from the Helfrich linear model in which $\ell_c = 0$. The data have been calculated with $a_0 = 2\kappa_0 k_B T$ and $d = 5$ nm.

The summation is calculated using integration over all possible modes:

$$\sum_{q \in \mathbb{S}^3} \frac{1}{q^2} = \int_{\mathbb{S}^3} \frac{1}{l(l+1)} dl = \log N$$ \hspace{1cm} (44)

Substituting the above integral into eqn (43), we obtain the effective bending rigidity as:

$$\kappa_{\text{eff}} = \frac{1}{2} k_B \left(1 + \frac{6\ell_c^2}{r_0^2} + \chi \right) - \frac{\ell_c^2}{4\pi} k_B T \log N$$ \hspace{1cm} (45)

where χ has been previously defined in (39) and a' is:

$$a' = \frac{c_2}{c_1} = \frac{12 + 60\ell_c^2}{r_0^2}$$

$$+ \frac{6\ell_c^2}{r_0^2} + \chi$$ \hspace{1cm} (46)

Note that in the limit of $\ell_c \to 0$ the above expression reduces to that of a conventional linearized curvature elasticity model. For quantitative comparisons, we have calculated the bending stiffness, for a range of vesicle sizes with different values of ℓ_c. The results are shown in Fig. 3 where we compare four different cases. The horizontal axis is the normalized radius of the vesicle r_0/d where we set $d = 5$ nm. Solid blue, green and red lines correspond to $\ell_c = 2$ nm, $\ell_c = 3$ nm and $\ell_c = 4$ nm, respectively. The dashed line corresponds to the case of $\ell_c = 0$ which reduces to the Helfrich quadratic model. As can be readily observed, for small vesicles that have high curvatures, the effect of nonlinearity becomes quite significant. Even for a small value of $\ell_c = 3$ nm—less than the typical thickness of the membrane—the apparent bending rigidity becomes significantly stiffer for sub-20 nm vesicles. Also, the effect of nonlinearity does not vanish in the limit of the flat membrane, when $H \to 0$. The corresponding limits of the normalized effective bending rigidity κ_{eff}/k_b for the cases of $\ell_c = 2$ nm, $\ell_c = 3$ nm and $\ell_c = 4$ nm are found to be 1.42, 1.76 and 2.13, respectively.
4 Size distribution of vesicles

Vesicles can be artificially made across a broad range of diameters. However, if an ensemble of vesicles are allowed to freely exchange molecules—artificial or nature-made—the size of the vesicles will change for some period, until they become thermodynamically stable. At this state, it is very unlikely to find vesicles beyond certain sizes, i.e. there is discernible maximum and minimum size-limit for the radius of the vesicles. Depending on the experimental methods used for the preparation of vesicles, these size limits may slightly vary in the beginning, but eventually the experimentally observed size distributions appear to become independent of the method of preparation and are determined by macroscopic mechanical and entropic properties of the vesicles.78 Several experimental efforts have been dedicated to this subject.78–80 The most common method to determine the size distribution of vesicles is \textit{via} dynamic light scattering (DLS) measurements. Another well-known method is to use cryo-TEM images81–83 and obtain the size distribution histogram using statistical analysis. In a recent work Xu \textit{et al.}41 have used a combination of these two approaches and obtained the size distribution for a set of lauric acid vesicles. They confirmed that the size of the vesicles is distributed within a finite range with a remarkably large cut-off radius of about 20 nm. In this section, using the results derived in the preceding sections, we aim to study the qualitative effects of mechanical properties and their corresponding entropic effects on the size distributions of small unilamellar vesicles.

In the following we assume that the vesicles can exchange amphiphilic molecules, while the total number of the vesicles remains fixed. Also the spontaneous curvature is considered to be zero, and that there is always non-zero amount of energy cost for any non-zero curvature. Given that \(N\) is the number of amphiphilic molecules in a vesicle, the size distribution of the vesicles, \(w(N)\), is determined by the total free energy \(F\) and the Boltzmann factor:

\[
w(N) \propto \exp(-F/k_B T)
\]

We first briefly review the predictions for eqn (47) made by conventional approaches before discussing the results unique to this work.

The bending energy of a sphere in linearized curvature elasticity is always: \(2\pi\kappa_b\), which is independent of the vesicle size. This implies that regardless of the size of two vesicles, the transfer of surfactant molecules from one vesicle to another does not change the total bending energy. This results in a flat distribution for the vesicles’ sizes (47). The total free energy for the vesicle with \(N\) number of amphiphilic molecules and chemical potential \(\mu\) can then be written as:

\[
F = 2\pi\kappa_b N + N\mu
\]

Eqn (48) gives rise to an exponentially decaying distribution, with zero size, being the most probable size—a rather glaring problem. To further modify the result of eqn (47), Helfrich84 proposed to include the entropic effects in the elastic energy. As discussed in the last section, in the conventional linear framework, the thermal undulations lead to softening effects on the effective bending modulus.75 The corresponding effective bending modulus is provided in eqn (40). To account for the entropic effects, Helfrich84 substituted the bare value of bending modulus \(\kappa_b\) by the renormalized bending stiffness \(\kappa_{\text{eff}}\):

\[
w(N) \propto \exp\left(-\mu N - 2\pi\kappa_{\text{eff}} \frac{N}{k_B T}\right)
\]

The above expression has been extensively used to predict the size distribution of the vesicles. In general, using the expression for the effective bending rigidity (40), the following size distribution is obtained:

\[
w(N) \propto N^{-\alpha} \exp(-\mu N/k_B T)
\]

The major differences between prior theoretical studies on this topic arise from the diversity in predicting the universal constant \(\alpha\). Using \(\alpha = -1\) and normalizing the size distribution to 1, Helfrich84 obtained the size distribution as:

\[
w(N) = \left(\frac{2}{N}\right)^{2} N \exp\left(-\frac{2N}{N}\right)
\]

where \(N\) is the mean number of molecules per vesicle and is determined by the chemical potential \(\mu\). As well-evident, the final distribution function described in eqn (51) is independent of the mechanical properties of the vesicles. Furthermore, since the vesicles cannot deform beyond a certain curvature and there is always a cut-off radius for the size distribution of the small vesicles, such a distribution is not compatible with experimental observations. To resolve the inconsistency, Helfrich84 suggested that fourth order curvature elasticity terms should be incorporated in the bending energy formulation. Using a rather crude approximation, he demonstrated that accounting the fourth order term can alter the size distribution to make smaller sizes less probable. He modified the probability density distribution in the following form:

\[
w(N) \propto Ne^{-\alpha N - B/N}
\]

The above distribution although slightly shifts the mean value of the diagram to a larger size, and suggests smaller probability for smaller sizes is incapable of predicting the correct value for the experimentally observed cut-off radius.

In a different work, Morse and Milner16 suggested that the free energy, due to translational and rotational entropy, increases logarithmically with the size of the vesicle in the following form:

\[
F(N) = F_0 + 2\kappa_b T \log N
\]

for which they evaluate \(\alpha = \frac{7}{8}\). Based on this, they obtained the size distribution as:

\[
w(N) \propto N^{-7/8} e^{-\mu N}
\]

Unfortunately, this predicted size-distribution renders smaller vesicles more probable not less and is somewhat contradictory.\footnote{We note that in the present work for pure lipid membranes, we assume that there is no entropic contributions from tilting or area change.}
These results may be straightforwardly modified to account for the present non-linear elasticity, to derive the size-distribution. The solid and dashed pink curves correspond to the size distribution for two different temperatures, while the dotted blue curve is obtained from the present model and the experimental data. A comparison between our results and experimental data is made in Fig. 4, where we have plotted the size distribution within linear curvature elasticity as presented in eqn (51). The solid magenta is obtained from the present nonlinear model, assuming $\ell_c = 3$ nm and the dotted red line corresponds to $\ell_c = 10$ nm. Finally, we may estimate the characteristic length ℓ_c to fit our results to those obtained from the experiments. A comparison between our results and experimental data in Fig. 4 shows that the corresponding characteristic length for this type of composition is roughly about $\ell_c = 3$ nm. Even though this value is in the same order as the thickness of the membrane, at finite temperature it can dramatically change the size distribution of the vesicles through thermal fluctuations. Finally, the experimentally observed cut-off radius is clearly evident in our model.

5 Discussion and concluding remarks

One of the main results derived in this paper is a closed-form expression for the spectra of the thermal fluctuations of spherical vesicles duly incorporating nonlinear curvature elasticity terms. In conjunction with our results, either molecular dynamics simulations or experimental flicker spectroscopy may now be used to extract nonlinear elasticity properties. The
renormalized bending rigidity due to thermal fluctuations is found to be size-dependent and a dramatic stiffening is predicted to occur for small sub-20 nm vesicle sizes.

The conventional models (based on linear curvature elasticity) that purport to describe vesicle size-distributions typically fail to adequately capture a few qualitative aspects of the distribution for small vesicle sizes. We have used our analytical expression for the renormalized bending stiffness in the nonlinear framework, to study the size distribution of vesicles. Although all the existing models predict a Gaussian size distribution, the problem of the cut-off radius—below which the vesicles are not likely to exist—is inadequately predicted and as evident from our predictions, the size-distribution is considerably more complex. A possible explanation for the instability of vesicles with sizes below the cut-off radius is the entropic repulsive forces between the amphiphilic molecules.

In the following we summarize the key issues related to fourth-order moduli as discussed in prior studies put in the context of what we have found:

- The first one is regarding the magnitude and significance of the fourth order modulus. Typically ℓ_c is assumed to be of the order of the thickness of the membrane. Based on this assertion, the higher order contributions of the bending energy are usually ignored in studying the mechanical response of the vesicles. Our results, however, demonstrate that thermal fluctuations of small unilamellar vesicles are significantly influenced by the higher order modulus even for small values of ℓ_c. Furthermore, for nearly flat membranes, wherein the curvature dependency vanishes, the nonlinearity can still significantly suppress the undulations and hence increase the apparent rigidity. For example, using $\ell_c = 2$ nm which is less than the thickness of the membrane, a correction of about 40% is obtained in the apparent bending rigidity. In order to highlight some of the discrepancies between our results with the prior studies the reader is referred to a recent work by Harmandaris and Deserno. Using molecular dynamics simulations, these authors employed the well-known idea of tether-pulling experiments to study the fourth order correction of the bending energy for cylindrical vesicles consisting of pure DPPC lipid molecules. Their results indicate that the quadratic energy function proposed by Helfrich is valid for a wide range of curvature radii up to the thickness of the membrane. The entropic effects are assumed to be intrinsically embedded in the simulations. Nevertheless, we speculate that, for tethered membranes, due to the high surface tension, the undulations are significantly suppressed and hence the role of entropic effects in the apparent bending stiffness were not adequately taken into account. This can be explained by recognizing the fact that the fluctuations of the out of plane displacement field in the presence of surface tension vary as: $\langle h^2 \rangle \propto 1/\sigma$. According to the relationship between the surface tension and the radius of the vesicle $R \propto 1/\sqrt{\sigma}$, to reduce the size of the vesicle to just a few times of the thickness of the membrane, a relatively high tension field is required to overcome the entropic effects. It has been observed in experiments that if such a tension field is abruptly removed, the vesicle will undergo an entropic instability.

In a different work Li et al., also using molecular dynamic simulations, have computed the elastic properties of the membrane, including fourth order moduli. Unlike the work by Harmandaris and Deserno, these authors carried out the their simulations for various volume fractions of hydrophilic molecules. Interestingly, their results on free energy calculation also demonstrate that the higher order contribution of bending energy, is relatively small and the difference between their results and those obtained within the Helfrich model is no more than 10%. Also, they obtained values for the fourth order moduli which surprisingly depend on the topology of the vesicles—negative values for spherical and positive values for cylindrical vesicles. This is puzzling to us since the properties, in principle, depend on the underlying material, not on the topological structure. A possible explanation for observation of such contradictory results in their analysis is that the contribution of the intrinsic topology—spontaneous Gaussian and mean curvatures—is not taken into account. Strictly speaking, a flat membrane does not transform into spherical shape, unless an energy cost is considered for fission or fusion. In this manner all the free energy should not be referred to only bending energy. Hence, the free energy of cylindrical and spherical shapes should be analyzed using the different reference states.

- The second issue regarding the fourth order modulus is related to the sign of the modulus. In the present work, the higher order modulus is assumed to be positive from the outset. However, it has been argued that the fourth order modulus is negative when dealing with different co-surfactants. Also it has been argued that a negative fourth order elastic modulus is a possible explanation for the mechanism of lipid
protein sorting.91 We note that, in the presence of different compositions, various stable phases might be observed that can be described in terms of different spontaneous mean and Gaussian curvatures or alternatively different bending stiffnesses. We, however, believe that a change in the molecular structure of the membrane results in both mechanical and topological transformations. For pure lipid membranes, a positive fourth order correction of bending energy is required to explain the experimentally observed size distribution of vesicles—as evident from Fig. 5 which clearly demonstrates how unrealistic the size-distribution results will be if a negative fourth order modulus is used.

Finally, we note that, when the area-size of the membrane becomes comparable with its thickness, the notion of high-q cutoff necessary in the functional integration becomes dubious. For the smallest size vesicles, we come dangerously close to that limit. However, given the close agreement of our results with experimentally observed vesicle size-distributions, we speculate that our results are at least qualitatively reasonable.

Acknowledgements

FA gratefully acknowledges discussions with Professor Gemunu Gunaratne. PS acknowledges financial support from the University of Houston M. D. Anderson Professorship.

References

61. H. Kleintert, Z. Narzikulov and A. Rakhimov, Quantum phase transitions in optical lattices beyond the Bogoliubov