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Revisiting the curvature-mediated interactions
between proteins in biological membranes

Himani Agrawal,a Liping Liu*b and Pradeep Sharma*c

Proteins embedded in soft biological membranes experience a long-range force mediated by elastic

curvature deformations. The classical linearized Helfrich–Canham Hamiltonian based derivations reveal the

nature of the force between a pair of proteins to be repulsive in the zero-temperature limit and the

interaction potential is inversely proportional to the fourth power of the distance separating the inclusions.

Such a result is the starting point to understand many-body interactions between proteins in biological

membranes and the study of their clustering or, more broadly, self-organization. A key observation

regarding this widely quoted result is that any two (mechanically rigid) proteins will experience an identical

force. In other words, there is no specificity in the currently employed continuum models that purport to

explain protein interactions. In this work we argue that each protein has a unique mechanical signature

based on its interaction with the surrounding lipid bilayer membrane and cannot be treated as a non-

specific rigid object. We modify the classical Helfrich–Canham theory of curvature elasticity to incorporate

protein–membrane specificity, discuss the estimation of the new model parameters via atomistic simula-

tions and re-evaluate the curvature-mediated force between proteins. We find that the incorporation of

protein-specificity can reduce the interaction force by several orders of magnitude. Our result may

provide at least one plausible reason behind why in some computational and experimental studies, a net

attractive force between proteins is in evidence.

1 Introduction
Cell membranes are often regarded as passive or inert specta-
tors to various biological processes that are governed by pro-
teins. There is however compelling evidence from a multitude
of works that appear to suggest that the mechanical deforma-
tion of membranes controls the long-range forces between
proteins.1–26 Most proteins are often thought to be elastically
‘‘rigid’’. Accordingly an embedded protein in a soft biological
membrane causes significant mechanical deformation in its
vicinity which is ‘‘felt’’ by the neighboring proteins. Thus, the
membrane plays an essential role in communicating the force
between proteins over (comparatively speaking) fairly long
distances. Protein clustering, or in general, spatial organization
of proteins, is one such consequence of this mechanical inter-
action;4,10,27–30 cooperative behavior of mechanosensitive ion
channels is yet another consequence.31–36

The two key mechanisms that lead to membrane-mediated
forces between proteins are: (i) membrane thickness deformation

due to hydrophobic mismatch, and (ii) curvature deformation.
Extensive work has been carried out on both topics and the
present work is focussed on revisiting the currently accepted
knowledge-base for curvature-mediated force between proteins.
Interested readers may refer to the following articles for further
details on the hydrophobic mismatch problem.18–26 In particular,
two recent articles by Deserno et al. and Deserno provide a very
thoughtful review of this subject.16,17

Both membranes and proteins are microscopically quite
complex. However, the mechanical behavior of membranes
can be fairly well described by the (thermodynamically based)
phenomenological theory of elasticity. This so-called Helfrich–
Canham curvature elasticity theory can be expressed mathematically
as:37–41

UHC ¼
ð

U

2kb H "H0ð Þ2 þ kg K " K0ð Þ: (1)

Here kb and kg are the bending moduli that, respectively,
parametrize the energy change due to changes in the mean (H)
and Gaussian (K) curvatures. The corresponding spontaneous
curvatures are denoted by H0 and K0.† The elastic energy scale is
set by the bending modulus and surface tension. Their typical
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† We have ignored surface tension in this expression and throughout the paper
as it is not central to the main objective of this work.
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values are such that membranes are usually hard to stretch but
bend (curve) quite easily.42,43 Furthermore, the embedded proteins
are (nearly always) regarded as mechanically rigid.

Despite the apparent simplicity of the Helfrich–Canham
Hamiltonian in eqn (1), the elastic solution of even a single rigid
protein embedded in a membrane is difficult although obtainable
under some simplifying conditions.4 An exact solution to the
interaction force between two inclusions is unknown even in the
linearized case let alone for the fully nonlinear problem. Predicated
in eqn (1), numerous works have attempted to elucidate the force
between two membrane proteins using a variety of methods and
approximations.1–3,5,11–15 A fairly recent and comprehensive review
of the literature as well as the subtleties of this topic may be found
in two articles by Deserno and Deserno et al.16,17 In particular, we
would like to here cite some very clever expositions by Deserno and
co-workers where, using a covariant differential geometric
formulation,44,45 they have even been able to obtain information
on the effect of nonlinearity on the protein interactions in certain
asymptotic limits.

The currently prevalent viewpoint, starting from the initial
work by Goulian et al.2 and from the perspective of the linearized
version of eqn (1), is that two rigid proteins repel each other with
an interaction potential inversely proportional to the fourth

power of the distance (R) separating the inclusions: & 1

R4
. Aside

from corrections to the pre-factor of this repulsive interaction,
the qualitative nature of this result has been derived and verified
extensively in the literature.1–3,5,11,12 The interaction force or
potential between two inclusions can be used as a starting point
for numerical calculations for self-assembly and related problems
as for example exploited by researchers such as Fournier, Oster
and others.‡ 3,4,10

Based on both numerical (atomistic) simulations and at
least in one case, some experimental observations,46 it is not
clear whether we can even fully believe the sign of the force
between proteins. While most works appear to confirm a
repulsive ground-state force, some authors have argued that it
is much less repulsive than what is believed or even suggested
that it may be attractive – see, for example, a detailed discussion
in the following review articles.16,17 How might proteins cluster
together if the force is purely repulsive? One possible reason is
that curvature-mediated interaction cannot be added pairwise.4,47

When multi-body interactions are appropriately accounted for,
screening of the repulsive force occurs and the effective repulsive
force may be reduced. Together with the weak thermal-fluctuation
induced attraction,48,49 self-organization can occur.27

While this topic is likely to remain an active area of research
for the near future and perhaps can only be elucidated by a
strong combination of experiments and detailed atomistic
simulations, in this work we attempt to modify the continuum
model to improve one aspect that is pertinent to the problem.

A key assumption in the various continuum derivations of the
repulsive force presented in the literature so far is that the
proteins are mechanically rigid and inert entities that do not
interact chemically with the surrounding membrane. In other
words, one particular mechanically rigid protein is no different
than another one. Indeed, the solutions to this problem that
currently exist in the literature lack specificity and any two
proteins (no matter how different they may be) interact with the
same force as long as the bending modulus of the membrane is
the same. We believe that treating proteins merely as rigid
objects is flawed and that each protein has a unique mechanical
signature based on its coupling with the surrounding lipid
membrane. In this work, we present a theoretical framework –
essentially a modified version of the classical Helfrich–Canham
theory – that introduces some specificity to protein–membrane
interactions and thus provides an approach to compute a
specific force between two proteins. In particular, we show that
the phenomenological parameters of our new model can be
obtained readily through atomistic simulations. Our results
appear to provide a strong plausibility basis for the possibility
of a dramatic reduction in the repulsive force between proteins.

The outline of this paper is as follows: we discuss the central
idea in Section 2 and present a modified version of Helfrich–
Canham theory that adds protein–membrane specificity. Using
the developed theory, we present the solution to the interaction
force between two proteins in Section 3. After a brief discussion,
in Section 4, of how atomistic simulations may be used to obtain
the phenomenological parameters of our theory, we present
numerical results in Section 5. Our results appear to provide a
different perspective on how the ground-state force between
proteins may be modulated by membranes and this, along with
other insights, is discussed in Section 6 where we also conclude
this work.

2 Central idea and theoretical
formulation
Let U C R2 be an open bounded domain in the xy-plane.
Consider a thin fluid membrane occupying U ' ("h/2,h/2) C R3,
where h is the thickness of the membrane. If the thickness h is
much less than the lateral area of the membrane, then the
membrane may be idealized as a two-dimensional body; and the
thermodynamic state is described by the out-of-plane displace-
ment w: U - R. At the outset we work in the Monge gauge and
linearized setting. As introduced in the previous section, the
Helfrich–Canham elastic energy of the membrane in the absence
of lateral tension is given by:§

UHC½w) ¼
ð

U

kb
2

Dwj j2 þ kg detðrrwÞ
h i

: (2)

We note here that 2H B Dw and K B det(rrw). Also, for the
physically relevant case of rigid inclusions, the energy term
related to the Gaussian modulus is ignored for simplicity in

‡ Throughout this work, we will refer to only the ground-state i.e. zero-
temperature limit of the force between proteins. Thermal fluctuations may induce
a Casimir-like attractive force48,49 also as described in some recent works.27 This
aspect is not central to the main point of our work however we will revisit it in
Section 6.

§ We have ignored the spontaneous curvature here for our derivation. However, it
can be added easily if necessary.
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the remainder of the work.4 Future generalization of the work to
the finite elastic modulus must account for this.¶

We propose that at the molecular scale, the insertion of a
protein in the membrane involves several chemical and physical
processes. First, the insertion of a protein breaks the original
in-plane lipid–lipid interactions and protein–water molecule
(ambient medium) bonds and forms new bonds between protein
and lipids. This causes the structural rearrangement of lipids
around the protein. In other words, we expect each protein to
have a unique interfacial coupling to the surrounding lipid bilayer.
To account for protein specificity, we phenomenologically incorpo-
rate this interfacial coupling into the classical Helfrich model. To
achieve this, we introduce a jump of displacement and rotation
angles in the continuum model. Let the jump of a quantity (*)
across qO (qO is the boundary between protein and lipids as shown
in Fig. 1) be denoted by ð*Þ½ )½ ):¼ð*Þj@Oþ"ð*Þj@O" . We remark that
the jump in the rotation angle has also been discussed previously
(in a different context) by Baumgart et al.50 So the jump in the
displacement and the rotation angle can be denoted as w½ )½ ) and
n *rw½ )½ ), respectively. Here n is the outward normal to the domain

U\O. We further propose that these jumps cost energy and the
energy due to these jumps can be approximated as follows:

Ujmp½w) ¼
ð

@O

1

2
k1 w½ )½ )2 þ 1

2
k2 n *rw½ )½ )2

" #
(3)

where k1 and k2 are phenomenological parameters like the bending
stiffness kb, and can be obtained from experiments or atomistic
simulations. Summing up the effects of lipid protein interaction,
we propose the total elastic energy of the protein–bilipid membrane
system as follows:

Ue½w) ¼
ð

U

kðxÞb

2
Dwj j2

" #
þ
ð

@O

1

2
k1 w½ )½ )2 þ 1

2
k2 n *rw½ )½ )2

" #
(4)

where k(0)
b is the bending modulus of the membrane and k(1)

b is the
bending modulus of the protein. In short, in the proposed energetic
model, the newly introduced interfacial parameters, (k1,k2), phenom-
enologically account for the protein–lipid membrane interaction and
specificity. In some sense, the interfacial jumps represent a more
sophisticated way of incorporating a constant interface energy.8

Moreover, the classic Helfrich–Canham model that does not
allow the discontinuity of displacement w and rotation angle
n*rw can be regarded as the asymptotic limit of the generalized
model (4) at k1, k2 - +N.

To mimic a uniformly bent homogeneous membrane we
impose the boundary conditions:

w = 0, n*rw = Hextx*n on qU, (5)

where Hext can be regarded as the macroscopic curvature of the
membrane and x is the position vector on the outer boundary of
the membrane. By the principle of minimum free energy, the
equilibrium state of the membrane is determined by the
variational principle:

min{Ue[w]: w satisfies (5)}. (6)

We now calculate the Euler–Lagrange equations and boundary
conditions associated with the above variational principle (6).
Let w satisfying (5) be a minimizer. Then for any perturbation
w - w + ew1 we have (0 o e { 1)

Ue[w + ew1] Z Ue[w], (7)

which implies

d

de
Ue wþ ew1½ )je¼0¼ 0: (8)

Upon integration by parts, the above equation can be
rewritten as

ð

U

w1D kðxÞb ðDwÞ
h i

þ T1
" þ T1

þ þ T2
" þ T2

þ ¼ 0; (9)

Fig. 1 The thin interface between the peptide and the lipid is shown as a
gradient of red and yellow. When a protein is inserted in a membrane,
there is a structural rearrangement of lipids around the peptide. Old
interactions between some lipids are lost and new interactions between
the lipids surrounding the peptide and the peptide are formed. This leads
to the creation of a thin interface which has the hybrid properties of lipids
and proteins. k(0)

b and k(1)
b are the corresponding bending modulus of the

lipid membrane and protein. The interface between the membrane and
the protein is represented as qO.

¶ We remark here that, as clearly highlighted in past papers e.g. Baumgart et al.,50

even if there is no change in the topology, the Gaussian curvature cannot be
ignored if boundaries are present. However, there is indeed no exception to this
insight – when the proteins are rigid, then the Gaussian curvature energy
becomes irrelevant. Had we considered proteins of a finite bending modulus,
then we would have to consider the contribution of the Gaussian curvature also.
We have avoided this by making (a reasonable) assumption that most proteins are
mechanically rigid compared to the surrounding lipid bilayer. However our
derivation will be the full general case and we will only make the simplifying
assumption to obtain results. The issue of neglecting the Gaussian curvature in
the case of rigid proteins was discussed in detail in the paper of Kim et al.4

8 We emphasize here that a finite thickness layer of material with some inter-
mediate properties could be used however then what thickness should be
chosen? Our current approach draws a connectivity with interfacial or surface
energy and assumes a zero thickness interface. The requisite physics is then
embodied in the boundary conditions. Having said all this, there are more ways
than one to achieve the same result, introduction of protein–lipid specificity via
some type of interfacial coupling.
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where T1
", T2

" (T1
+, T2

+) are integrals over the interior interface
qO" (exterior interface qO+) and given by

T1
" ¼

ð

@O"
"n *r kðxÞb ðDwÞ

h i
" k1 w½ )½ )

n o
w1;

T2
" ¼

ð

@O"
n *rw1ð Þ kðxÞb ðDwÞ " k2 n *rw)½ )½ )

h i
;

T1
þ ¼

ð

@Oþ
n *r kðxÞb ðDwÞ

h i
þ k1 w½ )½ )

n o
w1;

T2
þ ¼

ð

@Oþ
" n *rw1ð Þ kðxÞb ðDwÞ " k2 n *rw½ )½ )

h i
:

(10)

Since w1 and n*rw1 in qO" and qO+ can be specified independently,
eqn (9)–(10) imply the following Euler–Lagrange equations and
boundary conditions associated with (6):

D½kðxÞb ðDwÞ) ¼ 0 on Un@O;

n *r kðxÞb ðDwÞ
h i

þ k1 w½ )½ ) ¼ 0 on @O";

kðxÞb ðDwÞ " k2 n *rw½ )½ ) ¼ 0 on @O";

n *r kðxÞb ðDwÞ
h i

þ k1 w½ )½ ) ¼ 0 on @Oþ;

kðxÞb ðDwÞ " k2 n *rw½ )½ ) ¼ 0 on @Oþ:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

(11)

In the case of rigid proteins, we will study the asymptotic
behavior as k(1)

b - +N. In this limit, using (11) the boundary
value problem implied by (6) can be written as:

w ¼ hþ bxþ b0y on O;

DDw ¼ 0 on UnO;

kð0Þb n * ðrDwÞ þ k1 w½ )½ ) ¼ 0 on @Oþ;

kð0Þb Dw" k2 n *rw½ )½ ) ¼ 0 on @Oþ;

w ¼ 0; n *rw ¼ Hextx * n on @U;

8
>>>>>>>>>>><

>>>>>>>>>>>:

(12)

where the first equation follows from the rigid motion of the
protein, h A R describes the translation, and b (resp. b0) is the
(infinitesimal) tilt angle around the y (resp. x)-axis.

3 Interaction energy and force
between two proteins embedded in a
membrane
As discussed earlier, the insertion of a protein causes the
structural rearrangement of lipids around the protein. The
effects of this thin re-arranged layer of lipids may be captured
by penalizing the jump of the displacement and the rotation
angle in a continuum model. The total elastic energy of
the membrane with two proteins (as shown in Fig. 2) is given

by (cf. (4))

Ue½w) ¼
ð

R2n O1[O2ð Þ

kð0Þb

2
Dwj j2

þ
X

p¼1;2

ð

@Op

1

2
k1 w½ )½ )2 þ 1

2
k2 n *rw½ )½ )2

" #
:

(13)

where p labels the first or second protein, and for simplicity, Op

(p = 1, 2) are assumed to be circular of radius a. By symmetry,
we expect that two proteins would tilt in the same direction. On
account of the spontaneous curvature of proteins, we specify
the boundary displacement as (cf. (12)1)

w ¼ hp þ abp cosfp

n *rw ¼ apbp cosfp

on @Op
"; ðp ¼ 1; 2Þ

(
: (14)

where fp denotes the polar angle with respect to the centre of
inclusion p (see Fig. 3), hp describes the out-of-plane translation,
ap is the given contact angle between the protein and the
membrane that arises from the spontaneous curvature, and bp

is the tilt angle of the protein to be determined. We are interested

Fig. 2 The mid-plane of a membrane–protein system, in which two
proteins are embedded in a membrane. Note that the deformation lines
around the two proteins are identical and as the distance from the
membrane tends to infinity, the membrane becomes flat, which is one
of our boundary conditions.

Fig. 3 As outlined in the work of Weikl et al.,1 we convert the polar
coordinates of first inclusion (r1,f1) in terms of that of the second inclusion
(r2,f2); the relationship between the two polar coordinates is depicted in
this figure. Here R is the center to center distance between the two
proteins.
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in the interaction energy and force between the two proteins
and how they depend on separation distance R and contact
angles ap ( p = 1, 2). To this end, we consider the variational
problem:

Ue* = min{Ue[w]: w satisfies (14) and |rrw| - 0 as |x| - N}.
(15)

Using (12) and (14), we obtain the associated boundary value
problem for the membrane with two interacting proteins
(Fig. 2) as:

DDw¼ 0 on R2n O1 [O2ð Þ;

kð0Þb n * ðrDwÞþ k1 w" hpþ abp cosfp

$ %$ %
¼ 0 on @Op

þ;

kð0Þb Dw" k2 n *rw" ap"bp cosfp

$ %
¼ 0 on @Op

þ;

rrwðxÞj j ! 0 as jxj !þ1:

8
>>>>>>><

>>>>>>>:

(16)

Explicit series solutions to (16) can be achieved by the
method of multipole expansions. Following the solution
strategy laid out by Weikl et al.,1 we first find the general
form of solution for a single inclusion, and denote by w1

(resp. w2) the solution induced by the first (resp. second)
inclusion. For brevity, we establish two polar coordinate
systems (rp,fp) as illustrated in Fig. 3. By the separation of
variables, we can write the general solution to D2wp = 0 in
R2\Op (p = 1, 2) as:

wp rp;fp

$ %
¼ cp0 ln

rp
a
þ cp1rp cosfp

þ cp2rp ln rp cosfp þ cp3 cos 2fp

þ
cp4 cos fp

$ %

rp
þ
cp5 cos 2fp

$ %

rp2
þ * * * :

(17)

We then consider the superposition of solutions induced by
two proteins:

w = w2(r2,f2) + w1(r1,f1) (18)

as a trial solution to (16). Upon applying the variational
principle (15) or the boundary conditions (16)2,3, we can
determine unknown constants cpi in (17) and obtain physical
quantities including the interaction energy and force between
proteins.

For explicit approximate solutions, we truncate the expan-
sion (17) at O(1/rp

2) and evaluate the total elastic energy of
the system in terms of unknown coefficients cpi in (17), tilt
angles bp and displacements hp in (14). For asymptotically
flat membrane n*rw - 0 for rp - +N, we infer that cp2 = 0
for p = 1, 2 and that c11 + c21 = 0. Also, it is easy to check that
r1 cos f1 " r2 cos f2 = R is constant on the entire plane R2.
Therefore, without the loss of generality, we set cp1 = 0 for p =
1, 2. It will be useful to rewrite w1 in terms of r2 and f2 for
r2 { R, which can be achieved by Taylor expansions in terms

of the small parameter e = r2/R (see Fig. 3):

r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ r22 " 2Rr2 cosf2

q
(19)

and

cosf1 ¼
R" r2 cosf2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 þ r22 " 2Rr2 cosf2

p (20)

Therefore, using (17), (20)–(19) we can write w1 as a function
of (r2,f2) as

w1 r2;f2ð Þ , c10 log
R

a

' (
þ r23 cos f2ð Þ

R3
" r22 cos 2f2ð Þ

2R2
" r2 cos f2ð Þ

R

' (

þ c14
r22 cos 2f2ð Þ

R3
þ r2 cos f2ð Þ

R2
þ 1

R

' (

þ c13 "
4r2

2 cos f2ð Þ
R3

" r2
2 1" cos 2f2ð Þð Þ

R2
þ1

' (
þ c15
R2
:

(21)

Moreover, we recall that

w2 r2;f2ð Þ ¼ c20 log
r2
a

$ %
þ c23 cos 2f2ð Þþ c24 cos f2ð Þ

r2
þ c25 cos 2f2ð Þ

r22
:

(22)

We now proceed to calculate the energy of the trial solution
(18). By the divergence theorem, the bending energy of the
membrane can be written as

kbð0Þ

2

ð

R2= O1[O2ð Þ
Dwj j2dA ¼ S þ G;

where

S ¼ kbð0Þ

2

ð

R2nO1

Dw1j j2dAþ kbð0Þ

2

ð

R2nO2

Dw2j j2dA;

G ¼ "kb
ð0Þ

2

ð

O2

Dw1j j2dA" kbð0Þ

2

ð

O1

Dw2j j2dA

þ kbð0Þ

2

ð

R2n O1[O2ð Þ
2Dw1Dw2dA:

(23)

Physically, we recognize that S is the self-energy of the
membrane (independent of R) and G is the membrane mediated
interaction energy of the two proteins (function of R). Since

Dwp ¼ "
4cp3 cos 2fp

$ %

rp2
on R2nOp; (24)

integrating (23)1 we obtain

S ¼ 4pc132kbð0Þ

a2
þ 4pc232kbð0Þ

a2
: (25)

The first two integrals of G in (23)2 can be directly evaluated.
Using (21), we find that

Dw1 , "4c13
)
R2 on O2;

@

@r2
Dw1 ,

8c13 r2 " R cosf2ð Þ
R4

on O2;

8
><

>:
(26)

Soft Matter Paper

Pu
bl

is
he

d 
on

 1
9 

Se
pt

em
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f H
ou

st
on

 o
n 

24
/0

5/
20

17
 0

3:
11

:0
4.

 
View Article Online

http://dx.doi.org/10.1039/c6sm01572g


8912 | Soft Matter, 2016, 12, 8907--8918 This journal is©The Royal Society of Chemistry 2016

and hence,

kbð0Þ

2

ð

O2

Dw1j j2dA , 8pa2c132kbð0Þ

R4
: (27)

By the divergence theorem, we rewrite the third integral of G as:
ð

R2= O1[O2ð Þ
Dw1Dw2dA ¼ "

ð

@O2

w1;iiw2;jnj " w1;iijw2nj
* +

ds

"
ð

@O1

w1;iiw2;jnj " w1;iijw2nj
* +

ds

¼ 8pc20c13
R2

þ 8pc10c23
R2

;

(28)

where nj is the outward normal on qOp and the last equality
follows from (21) and (26) and the symmetry. In conclusion,
we have

G ¼ "8pa
2c132kbð0Þ

R4
" 8pa2c232kbð0Þ

R4
þ 8pc20c13kbð0Þ

R2
þ 8pc10c23kbð0Þ

R2
:

(29)

The energy (3) due to the jumps in rotation angles and
displacements has contributions from the first or second
inclusion, which, using (14), can be written as

U
ðpÞ
jmp ¼

ð

@Op

1

2
k2 n *rw" ap " bp cosfp

$ %2"

þ 1

2
k1 w" hp " abp cosfp

$ %2#
:

(30)

First focusing on the second inclusion, by (16)3 we have
ð

@O2

1

2
k2 n *rw" a2 " b2 cosf2ð Þ2

¼ akbð0Þ2

2k2

ð2p

0
Dwj j2r2!adf2

, akbð0Þ2

2k2

ð2p

0

4c23 cos 2f2ð Þ
a2

" 4c13
R2

,,,,

,,,,
2

df2;

(31)

where the last equality follows from (24) and (26)1. Moreover, by
(16)2 we find that

ð

@O2

1

2
k1 w" h2 " ab2 cosf2ð Þ2 ¼ akbð0Þ2

2k1

ð2p

0

@Dw
@r2

,,,,

,,,,
2

r2!a

df2

, akbð0Þ2

2k1

ð2p

0

8c23 cos 2f2ð Þ
a23

þ 8c13 r2 " R cosf2ð Þ
R4

,,,,

,,,,
2

df2;

, akbð0Þ2

2k1

ð2p

0

8c23 cos 2f2ð Þ
a23

,,,,

,,,,
2

df2;

(32)

where the last equality follows from (24) and (26)2. The con-
tribution U (1)

jmp from the first inclusion can be evaluated in a
similar manner.

In summary, by adding up self-energy (25), interaction
energy (29) and jump energy (31) and (32), we obtain the total
energy (13) of the system:

Ue = S + G + U (1)
jmp + U (2)

jmp. (33)

From the right-hand sides of (25), (29), (31) and (32) we
observe that the total energy is an algebraic function of twelve
unknown parameters c10, c20, c13, c23, c14, c24, c15, c25, b1, b2, h1

and h2. One can determine these unknowns by applying the
boundary conditions (16)3,4. Alternatively, we can come back
to the original variational principle (15) and minimize the
total energy (33) Ue = Ue(cpi,bp,hp) against these unknown
parameters. The necessary condition for a minimizer is given
by (cf. (43))

@Ue

@cpi
¼ 0;

@Ue

@bp
¼ 0;

@Ue

@hp
¼ 0: (34)

Upon solving the above equations (i.e. (34)) for all unknowns,
we can obtain the total energy Ue, the interaction force
between proteins and its dependence on R. The details of
these calculations are presented in A1 and the solution is
represented graphically in the Results section. The analy-
tical expression for interaction energy with jumps is presented
in A2.

4 Atomistic determination of model
parameters
There is a rather simple way to estimate the newly introduced
phenomenological parameters (k1,k2) in the definition of
energy (3). Insertion of proteins in the membrane ought to
change the apparent bending modulus of the membrane.
Mechanically, proteins are usually regarded as rigid inclu-
sions. In most theoretical models, such a notion immediately
suggests that a membrane will stiffen due to the presence of
these rigid inclusions (provided that the inclusions are
anchored in the membrane and do not diffuse). However,
this leads to some rather interesting paradoxes. A conven-
tional Helfrich–Hamiltonian based approach yields the
result that the apparent bending modulus of a membrane

in the presence of anchored rigid proteins is
kð0Þb

1" f
, where

k(0)
b is the bending modulus of a pure membrane and f is the

area fraction of the protein. This naive result suggests that all
proteins (which are essentially rigid compared with the
membrane) will stiffen the membrane in an identical man-
ner. In other words, there is no protein specificity. Experi-
ments suggest otherwise; experiments performed on proteins
like Alamethicin, Magnanin, HIV Fusion Peptide, RESA and
many others show that different proteins affect the bending
modulus of a membrane in a different way.52–56 We now
derive the expression for the effective bending modulus of a
protein–membrane system using our modified theoretical
formulation.51
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We consider a representative area of a protein–membrane
system which, for simplicity, is selected as a single circular rigid
inclusion (protein) of radius a embedded in a circular membrane
of radius b. The mid-plane profile w of the membrane is deter-
mined using the variational problem (6); the associated boundary
value problem is given by (11) with U = {(x,y):r o b}. In the limit
that the inclusion is rigid, i.e., k(1)

b - +N, the boundary value
problem can be rewritten as (12). By symmetry we infer that the
solution to (12) can be written as w = w(r). Using (12)1,2 we can
write the solution as

wðrÞ ¼
A0 if ro a;

B0 þ B1 ln rþ B2r2 þ B3r2 ln r if ao ro b:

(

(35)

By (12)3,4,5, we have

w½ )½ ) ¼ 0; B3 ¼ 0; kð0Þb 4B2 " k2
B1

a
þ 2B2a

' (
¼ 0;

B1

b2
þ 2B2 ¼ Hext:

(36)

Solving the above set of equations we obtain

B1 ¼
ab2Hext 2kð0Þb " ak2

$ %

b2 " a2ð Þk2 þ 2akð0Þb

;

B2 ¼
ab2Hext ak2 " 2kð0Þb

$ %

b2 " a2ð Þk2 þ 2akð0Þb

;

n *rw½ )½ )j@O ¼
2b2Hextk

ð0Þ
b

2akð0Þb þ k2 b2 " a2ð Þ
:

(37)

Inserting (35)–(37) into (4), we obtain the total elastic energy of
the system:

Ue½w) ¼
2pb4k2k

ð0Þ
b Hext

2

2akð0Þb þ k2 b2 " a2ð Þ
: (38)

In the homogenization framework, the lipid–protein system
is replaced by an equivalent homogeneous membrane with an
effective bending modulus keff

b . With the same boundary con-
ditions as in the last of (12), the homogeneous membrane

admits the solution w ¼ 1

2
Hext r2 " b2

- .
and its total elastic

energy is given by
1

2
pb2keff 2Hextð Þ2. Equating this energy to that

of the lipid–protein system, i.e. (38), we identify the effective
bending modulus of the protein–membrane system as:

keffb ¼
kð0Þb

ð1" f Þ þ
2f kð0Þb

k2a

: (39)

We remark that for k2 - N, we recover the classical Helfrich
solution which (as already mentioned) provides no protein
specificity and predicts that all rigid proteins will stiffen the
membrane in an identical manner. The parameter k2 may now
be found through either fitting the measured bending mod-
ulus result with either experiments or atomistic simulations.

We used published data on the experimentally determined
bending modulus of the following protein membrane systems:
HIV Fusion Peptide – DOPC,52–54 Alamethicin – DOPC55 and
Magnanin – POPC.56 We fit our theoretical model to the
experimental data to obtain k2 values for different membrane
protein systems.51 Alternatively, the value of k2 can also be
extracted from atomistic simulations (see (Fig. 4)), performed
for several areas of fractions of protein. The methodology of
calculating the bending modulus of a membrane from ato-
mistics is detailed in ref. 57–59. This method makes use of the
fact that the bending modulus of a membrane and its lipid tilt
and splay are closely related. Once k2 is obtained, we can now
obtain the curvature mediated force of interaction between
two proteins using simulations ref. 27. The theoretical expres-
sion for force involves both k1 and k2. The value of k2 is
substituted in the expression for force and k1 is obtained by
matching it with simulation values.

5 Results and discussion
In what follows, we non-dimensionalize our results to compre-
hensively study the effect of k1 and k2 on Ue, by introducing
dimensionless quantities c and s:

c ¼ kbð0Þ

ak2
; s ¼ kbð0Þ

a3k1
(40)

Furthermore, the force of interaction between proteins is

F ¼ "@Ue

@R
and we present the variation of F with inclusion

separation R for different values of k1 and k2. The contact angles
a1 and a2 are taken to be 0.5 as in the work of Weikl et al.1

From Fig. 5, we observe that FH (force derived from the
conventional Helfrich Hamiltonian) is really an upper bound
to the repulsive force between the two transmembrane

Fig. 4 16 HIV Fusion peptides embedded in a lipid membrane containing
1600 lipids. Atomistic simulations were performed on this system and the
bending modulus was evaluated using lipid tilt and splay.57–59 The bending
modulus thus obtained was matched with theoretical results51 to obtain
the value of parameter k2.
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proteins and corresponds to the case when k1 and k2 are
infinitely large. For finite values of k1 and k2, this repulsive
interaction is always weaker than what the classical Helfrich
model predicts. Also, for all k1 and k2, the repulsive force is
inversely proportional to the interprotein distance. Fig. 6
presents the variation of Fm with s and c which are inversely
proportional to k1 and k2. As fully expected, Fm is comparable
to FH at large values of k1 and k2. We applied our modified
theory to calculate the force of interaction between two HIV
fusion peptides. As evident from Fig. 7 the modified theory predicts
a force that is almost two orders of magnitude less repulsive than
the classical Helfrich force.

We take the limit k1 -N, k2 -N in the expression of total
energy, Ue, to obtain the classical Helfrich energy:

Uejk1!1;k2!1 ¼
12p a12 þ a22
- .

a4kbð0Þ

R4
" 64pa1a2a6kbð0Þ

R6

þ
24pa4 a12a4 þ a22a4

- .
kbð0Þ

R8

(41)

We also obtain a very important result when k1 and k2 tend
to zero:

Ue|k1-0 = 0; Ue|k2-0 = 0 (42)

This means that, depending on the specific nature of the
protein–bilayer coupling which may result in values of k1 and
k2 that are close to zero, the repulsive interaction between two
membrane proteins can be close to negligible also.

In various computational and experimental studies, a net
attractive force between proteins27,60–62 and colloids46 is in
evidence. At zero temperature, the classical Helfrich theory
predicts strong repulsive membrane mediated interaction
between proteins which is inversely proportional to the fourth
power of the distance separating the inclusions. At finite
temperature there are fluctuation mediated interactions or
Casimir forces that result in weak attraction between proteins.
However, these attractive forces are not strong enough to
overcome the strong repulsive forces predicted by the classical
Helfrich theory. Hence, the existing theories struggle to

Fig. 5 Variation of membrane mediated transmembrane protein–
protein interaction force F (normalized) as a function of normalized
inter-protein distance R for different values of k1 and k2. The classical
Helfrich case is represented by dotted pink lines. The results indicate the
decrease in F, as the distance between proteins increases. (a) Shows the
variation of F when k1 - N. Among all values of k2, the maximum
repulsive force is observed for the Helfrich case (i.e. when k2 - N). The
force decreases significantly when the value of k2 becomes very small.
(b) Shows the variation of F when k2 - N. Here again, among all values
of k1, the maximum repulsive force is observed for the Helfrich case
(i.e. when k1 -N). The force also decreases dramatically, when the value
of k1 becomes very small.

Fig. 6 The plot compares normalized F as a function of s and c for a
constant value of inter-protein distance (R/a = 2). s and c are inversely
proportional to k1 and k2. Fm (force derived from our model) is compar-
able to FH (force derived from the classical Helfrich Hamiltonian) at large
values of k1 and k2. When we decrease k1 and k2 the Fm is still
comparable to FH for a certain range, after which Fm starts decreasing
exponentially and ultimately becomes zero when either k1 or k2 tends to
zero.

Fig. 7 The pink curve shows the modified force of interaction between
two HIV peptides as a function of interprotein distance R/a normalized
with the classical Helfrich force at R/a = 2. The green curve represents the
classical force of interaction between the peptides normalized with
classical Helfrich force at R/a = 2.

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

Se
pt

em
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f H
ou

st
on

 o
n 

24
/0

5/
20

17
 0

3:
11

:0
4.

 
View Article Online

http://dx.doi.org/10.1039/c6sm01572g


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 8907--8918 | 8915

explain the aggregation and clustering of proteins caused by
membrane mediated interactions.

Our theory takes into account the protein membrane
specificity into curvature mediated force of interaction and
introduces two material parameters for the membrane protein
interface, i.e. k1 and k2 into the theoretical formulation.
According to our modified theory, the membrane mediated
force of interaction between proteins can be even 10 orders of
magnitude less repulsive than the classical result as evident in
Fig. 5. The force can even be zero if for a particular membrane
protein system the parameters k1 and k2 are zero. Hence, the
ground state force of interaction calculated using our modified
theory when combined with force due to thermal fluctuations
can result in a net attractive force, which is observed for many
membrane–protein systems. The inclusion of thermal fluctua-
tions within the framework of our proposed model will be
pursued in future studies.

6 Concluding remarks
The mechanical behavior of membrane protein systems can
be described by the phenomenological theory of elasticity.
However, the conventional theory fails to adequately explain
phenomena such as softening of the lipid membrane due to
rigid proteins and aggregation and clustering of membrane
proteins. Keeping the limitations of the classical theory in
mind, we proposed a modified approach by taking into
account the membrane protein interface and hence introdu-
cing a specificity of the protein and the membrane into the
classical model. The specificity in the system is established
through introducing new material parameters which can be
determined through atomistics or experiments just like the
bending modulus. Our modified theory predicts that the force
of interaction between two transmembrane proteins can be
several orders of magnitude lower than the force predicted by
the classical models and in the extreme case can even vanish.
For the specific case of HIV peptides, we show that the
classical model overestimates the repulsive force by two orders
of magnitude. The weak repulsive force for some protein
membrane systems (as predicted by the modified theory)
when combined with Casimir attractive forces can result in a
net attractive force, which causes protein aggregation and
clustering.

Appendix
A1 Solution of boundary conditions involving jump
conditions

For the explicit approximate solution represented in (18), (21)
and (22) we need to evaluate the twelve variables, c10, c20, c13,
c23, c14, c24, c15, c25, b1, b2, h1 and h2. Enforcing (16)3,4 with
respect to the leading Fourier modes, we obtain the 12

equations as follows:

8c23kbð0Þ

a3
þ a2c14k1

R3
" a2c10k1

2R2
þ a2c13k1

R2
þ c25k1

a2
þ c23k1 ¼ 0

a3c10k1
R3

" 4a3c13k1
R3

þ ac14k1
R2

" ac10k1
R
þ c24k1

a
" ab2k1 ¼ 0

"a
2c13k1
R2

þ c10k1 log
R

a

' (
þ c15k1

R2
þ c14k1

R
þ c13k1 " h2k1 ¼ 0

8c13kbð0Þ

a3
þ a2c24k1

R3
" a2c20k1

2R2
þ a2c23k1

R2
þ c15k1

a2
þ c13k1 ¼ 0

a3c20k1
R3

" 4a3c23k1
R3

þ ac24k1
R2

" ac20k1
R
þ c14k1

a
" ab1k1 ¼ 0

"a
2c23k1
R2

þ c20k1 log
R

a

' (
þ c25k1

R2
þ c24k1

R
þ c23k1 " h1k1 ¼ 0

2c25k2
a3
" 4c23kbð0Þ

a2
" 2ac14k2

R3
þ ac10k2

R2
" 2ac13k2

R2
¼ 0

"3a
2c10k2
R3

þ 12a2c13k2
R3

þ c24k2
a2
" c14k2

R2
þ c10k2

R
þ b2k2 ¼ 0

2ac13k2
R2

" c20k2
a
" 4c13kbð0Þ

R2
þ a2k2 ¼ 0

2c15k2
a3
" 4c13kbð0Þ

a2
" 2ac24k2

R3
þ ac20k2

R2
" 2ac23k2

R2
¼ 0

"3a
2c20k2
R3

þ 12a2c23k2
R3

þ c14k2
a2
" c24k2

R2
þ c20k2

R
þ b1k2 ¼ 0

2ac23k2
R2

" c10k2
a
" 4c23kbð0Þ

R2
þ a1k2 ¼ 0:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(43)

Solving the above set of equations we get:

c10 ¼
2a7 aa1k1k2 " 2a1k1kbð0Þ
- .

R4 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ
þ a1a

c20 ¼
2a7 aa2k1k2 " 2a2k1kbð0Þ
- .

R4 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ
þ a2a

c13 ¼

a6a2k1k2
R2 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ

" 2a11a1k12k22

R4 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ2

c23 ¼

a6a1k1k2
R2 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ

" 2a11a2k21k2
2

R4 a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ2
:

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

(44)
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A2 The interaction energy of proteins with jumps

The interaction energy of proteins embedded in a membrane
(with jumps) can be written in the following way:

Ue ¼
A k1; k2ð Þ

R4
þ B k1; k2ð Þ

R6
þ C k1; k2ð Þ

R8
: (45)

where

A k1; k2ð Þ ¼
12pa7 a12 þ a22

- .
k1k2kbð0Þ

a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þ
;

B k1; k2ð Þ ¼ " 64pa12a1a2k12k22kbð0Þ

a3k1k2 þ 2a2k1kbð0Þ þ 8k2kbð0Þð Þ2
;

C(k1,k2) = 8pa13k1
2k2kb

(0)(3a1
2a4k1k2

2 + 3a2
2a4k1k2

2

" 4a1
2a2k1kb

(0)2 " 4a2
2a2k1kb

(0)2 + 8a1
2ak2

2kb
(0) + 8a2

2ak2
2kb

(0)

" 16a1
2k2kb

(0)2 " 16a2
2k2kb

(0)2)/(a3k1k2 + 2a2k1kb
(0) + 8k2kb

(0))3.

Acknowledgements
H. A. gratefully acknowledges financial support from the
Schlumberger Foundation Faculty for the Future Fellowship and
the University of Houston. P. S. Acknowledges support from the
M. D. Anderson Professorship. L. L. gratefully acknowledges the
support of NSF-CMMI-135156, DMS-1410273, AFOSR-FA9550-16-1-
0181 and NSFC-1152800009.

References
1 T. R. Weikl, M. M. Kozlov and W. Helfrich, Interaction of

Conical Membrane Inclusions: Effect of Lateral Tension,
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip.
Top., 1998, 57(6), 6988.

2 M. Goulian, R. Bruinsma and P. Pincus, Long-range forces
in heterogeneous fluid membranes, Europhys. Lett., 1993,
22(2), 145.

3 D. Bartolo and J. B. Fournier, Elastic interaction between ‘‘hard’’
or ‘‘soft’’ pointwise inclusions on biological membranes, Eur.
Phys. J. E: Soft Matter Biol. Phys., 2003, 11(2), 141–146.

4 K. S. Kim, J. Neu and G. Oster, Curvature-mediated interactions
between membrane proteins, Biophys. J., 1998, 75(5), 2274–2291.

5 J. M. Park and T. C. Lubensky, Interactions between
membrane inclusions on fluctuating membranes, J. Phys.
I, 1996, 6(9), 1217–1235.

6 C. Nielsen, M. Goulian and O. S. Andersen, Energetics of
inclusion-induced bilayer deformations, Biophys. J., 1998,
74(4), 1966–1983.

7 N. Dan, P. Pincus and S. A. Safran, Membrane-induced
interactions between inclusions, Langmuir, 1993, 9(11),
2768–2771.

8 N. Dan, A. Berman, P. Pincus and S. A. Safran, Membrane-
induced interactions between inclusions, J. Phys. II, 1994,
4(10), 1713–1725.

9 H. Aranda-Espinoza, A. Berman, N. Dan, P. Pincus and
S. Safran, Interaction between inclusions embedded in
membranes, Biophys. J., 1996, 71(2), 648.

10 P. G. Dommersnes and J. B. Fournier, N-body study of
anisotropic membrane inclusions: Membrane mediated
interactions and ordered aggregation, Eur. Phys. J. B, 1999,
12(1), 9–12.

11 J. B. Fournier and P. G. Dommersnes, Comment on, Euro-
phys. Lett., 1997, 39(6), 681.

12 M. S. Turner and P. Sens, Inclusions on fluid membranes
anchored to elastic media, Biophys. J., 1999, 76(1), 564–572.

13 A. R. Evans, M. S. Turner and P. Sens, Interactions between
proteins bound to biomembranes, Phys. Rev. E: Stat., Nonlinear,
Soft Matter Phys., 2003, 67(4), 041907.

14 T. R. Weikl, Indirect interactions of membrane-adsorbed cylin-
ders, Eur. Phys. J. E: Soft Matter Biol. Phys., 2003, 12(2), 265–273.

15 M. M. Müller, M. Deserno and J. Guven, Geometry of surface-
mediated interactions, Europhys. Lett., 2005, 69(3), 482.

16 M. Deserno, Membrane elasticity and mediated interactions
in continuum theory: a differential geometric approach, In
Biomembrane Frontiers, Humana Press, 2009, pp. 41–74.

17 M. Deserno, K. Kremer, H. Paulsen, C. Peter and F. Schmid,
Computational studies of biomembrane systems: Theoretical
considerations, simulation models, and applications, Springer
International Publishing, 2013.

18 J. A. Killian, Hydrophobic mismatch between proteins and
lipids in membranes, Biochim. Biophys. Acta, Rev. Biomembr.,
1998, 1376(3), 401–416.

19 F. Dumas, M. C. Lebrun and J. F. Tocanne, Is the protein/lipid
hydrophobic matching principle relevant to membrane organi-
zation and functions? FEBS Lett., 1999, 458(3), 271–277.

20 C. Nielsen and O. S. Andersen, Inclusion-induced bilayer
deformations: effects of monolayer equilibrium curvature,
Biophys. J., 2000, 79(5), 2583–2604.

21 T. A. Harroun, W. T. Heller, T. M. Weiss, L. Yang and H. W.
Huang, Experimental evidence for hydrophobic matching
and membrane-mediated interactions in lipid bilayers con-
taining gramicidin, Biophys. J., 1999, 76(2), 937–945.

22 M. R. de Planque and J. A. Killian, Protein-lipid interactions
studied with designed transmembrane peptides: role of
hydrophobic matching and interfacial anchoring (review),
Mol. Membr. Biol., 2003, 20(4), 271–284.

23 G. Brannigan and F. L. Brown, A consistent model for
thermal fluctuations and protein-induced deformations in
lipid bilayers, Biophys. J., 2006, 90(5), 1501–1520.

24 D. Marsh, Energetics of hydrophobic matching in lipid-
protein interactions, Biophys. J., 2008, 94(10), 3996–4013.

25 L. E. Cybulski and D. de Mendoza, Bilayer hydrophobic
thickness and integral membrane protein function, Curr.
Protein Pept. Sci., 2011, 12(8), 760–766.

26 E. Strandberg, S. Esteban-Martı́n, A. S. Ulrich and J. Salgado,
Hydrophobic mismatch of mobile transmembrane helices:
Merging theory and experiments, Biochim. Biophys. Acta,
Biomembr., 2012, 1818(5), 1242–1249.

27 B. J. Reynwar, G. Illya, V. A. Harmandaris, M. M. Müller,
K. Kremer and M. Deserno, Aggregation and vesiculation of

Paper Soft Matter

Pu
bl

is
he

d 
on

 1
9 

Se
pt

em
be

r 2
01

6.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f H
ou

st
on

 o
n 

24
/0

5/
20

17
 0

3:
11

:0
4.

 
View Article Online

http://dx.doi.org/10.1039/c6sm01572g


This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 8907--8918 | 8917

membrane proteins by curvature-mediated interactions,
Nature, 2007, 447(7143), 461–464.

28 N. Ramakrishnan, P. S. Kumar and J. H. Ipsen, Membrane-
mediated aggregation of curvature-inducing nematogens and
membrane tubulation, Biophys. J., 2013, 104(5), 1018–1028.

29 N. Meilhac and N. Destainville, Clusters of proteins in
biomembranes: insights into the roles of interaction
potential shapes and of protein diversity, J. Phys. Chem. B,
2011, 115(22), 7190–7199.

30 M. Pannuzzo, A. Raudino, D. Milardi, C. La Rosa and
M. Karttunen, a-helical structures drive early stages of
self-assembly of amyloidogenic amyloid polypeptide aggre-
gate formation in membranes, Sci. Rep., 2013, 3, 2781.

31 T. Ursell, K. C. Huang, E. Peterson and R. Phillips, Cooperative
gating and spatial organization of membrane proteins through
elastic interactions, PLoS Comput. Biol., 2007, 3(5), e81.

32 C. A. Haselwandter and R. Phillips, Directional interactions
and cooperativity between mechanosensitive membrane
proteins, Europhys. Lett., 2013, 101(6), 68002.

33 T. Ursell, J. Kondev, D. Reeves, P. A. Wiggins and R. RobPhillips,
Role of lipid bilayer mechanics in mechanosensation,
In-Mechanosensitive Ion Channels, Springer, Netherlands,
2008, pp. 37–70.

34 V. Petronilli, L. Guerra and M. Zoratti, Cooperative mechan-
osensitive ion channels in Escherichia coli, Biochem. Bio-
phys. Res. Commun., 1990, 171(1), 280–286.

35 S. I. Sukharev, P. Blount, B. Martinac and A. C. Kung,
Mechanosensitive channels of Escherichia coli: the MscL gene,
protein and activities, Annu. Rev. Physiol., 1997, 59(1), 633–657.

36 Y. Ren, J. C. Effler, M. Norstrom, T. Luo, R. A. Firtel,
P. A. Iglesias, R. S. Rock and D. N. Robinson, Mechanosen-
sing through cooperative interactions between myosin II
and the actin crosslinker cortexillin I, Curr. Biol., 2009,
19(17), 1421–1428.

37 P. B. Canham, The minimum energy of bending as a
possible explanation of the biconcave shape of the human
red blood cell, J. Theor. Biol., 1970, 26(1), 61–81.

38 W. Helfrich, Elastic properties of lipid bilayers: theory and
possible experiments, Z. Naturforsch., C: J. Biosci., 1973,
28(11–12), 693–703.

39 D. J. Steigmann, Fluid films with curvature elasticity, Arch.
Ration. Mech. Anal., 1999, 150(2), 127–152.

40 M. Maleki, B. Seguin and E. Fried, Kinematics, material
symmetry, and energy densities for lipid bilayers with
spontaneous curvature, Biomech. Model. Mechanobiol.,
2013, 12(5), 997–1017.

41 M. Deserno, Fluid lipid membranes: From differential
geometry to curvature stresses, Chem. Phys. Lipids, 2015,
185, 11–45.

42 M. Deserno, Fluid lipid membranes-a primer, 2007, See http://
www.cmu.edu/biolphys/deserno/pdf/membrane_theory.pdf.

43 M. M. Kozlov, Biophysics: Joint effort bends membrane,
Nature, 2010, 463(7280), 439–440.

44 C. Yolcu and M. Deserno, Membrane-mediated interactions
between rigid inclusions: an effective field theory, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2012, 86(3), 031906.

45 B. J. Reynwar and M. Deserno, Membrane-mediated inter-
actions between circular particles in the strongly curved
regime, Soft Matter, 2011, 7(18), 8567–8575.

46 I. Koltover, J. O. Raedler and C. R. Safinya, Membrane
mediated attraction and ordered aggregation of colloidal
particles bound to giant phospholipid vesicles, Phys. Rev.
Lett., 1999, 82(9), 1991.

47 K. S. Kim, J. C. Neu and G. F. Oster, Many-body forces
between membrane inclusions: A new pattern-formation
mechanism, Europhys. Lett., 1999, 48(1), 99.

48 P. G. Dommersnes and J. B. Fournier, Casimir and mean-
field interactions between membrane inclusions subject to
external torques, Europhys. Lett., 1999, 46(2), 256.

49 W. Helfrich and T. R. Weikl, Two direct methods to calcu-
late fluctuation forces between rigid objects embedded in
fluid membranes, Eur. Phys. J. E: Soft Matter Biol. Phys.,
2001, 5(4), 423–439.

50 T. Baumgart, S. Das, W. W. Webb and J. T. Jenkins,
Membrane elasticity in giant vesicles with fluid phase
coexistence, Biophys. J., 2005, 89(2), 1067–1080.

51 H. Agrawal, M. Zelisko, L. Liu and P. Sharma, Rigid proteins
and softening of biological membranes – with application
to HIV-induced cell membrane softening, Sci. Rep., 2016,
6, 25412.

52 P. Shchelokovskyy, S. Tristram-Nagle and R. Dimova, Effect
of the HIV-1 fusion peptide on the mechanical properties
and leaflet coupling of lipid bilayers, New J. Phys., 2011,
13(2), 025004.

53 S. Tristram-Nagle, R. Chan, E. Kooijman, P. Uppamoochikkal,
W. Qiang, D. P. Weliky and J. F. Nagle, HIV fusion peptide
penetrates, disorders, and softens T-cell membrane mimics,
J. Mol. Biol., 2010, 402(1), 139–153.

54 S. Tristram-Nagle and J. F. Nagle, HIV-1 fusion peptide
decreases bending energy and promotes curved fusion
intermediates, Biophys. J., 2007, 93(6), 2048–2055.

55 G. Pabst, S. Danner, R. Podgornik and J. Katsaras, Entropy-
driven softening of fluid lipid bilayers by alamethicin,
Langmuir, 2007, 23(23), 11705–11711.
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