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Abstract The elastic state of an embedded inclusion undergoing a stress-free transfor-
mation strain was the subject of John Douglas Eshelby’s now classical paper in 1957.
This paper, the subject of which is now widely known as “Eshelby’s inclusion problem”,
is arguably one of the most cited papers in solid mechanics and several other branches
of physical sciences. Applications have ranged from geophysics, quantum dots to com-
posites. Over the past two decades, due to an interest in all things “small”, attempts
have been made to extend Eshelby’s elastic analysis to the nanoscale by incorporating
capillary or surface energy effects. In this note, we revisit a particular formulation that
derives a very general expression for the elasto-capillary state of an embedded inclusion.
This approach, that closely mimics that of Eshelby’s original paper, appears to have the
advantage that it can be readily used for inclusions of arbitrary shape (for numerical
calculations) and provides a facile route for approximate solutions when closed-form
expressions are not possible. Specifically, in the case of inclusions of constant curvature
(sphere, cylinder) subject to some simplifications, closed-form expressions are obtained.

Keywords Elasto-capillary; surface energy; Eshelby’s inclusion.

1. Introduction

Homogenization of composites, quantum dots, plasticity, among others are just
some examples of the physical problems that have been tackled by Eshelby’s solu-
tion to the elastic state of an embedded inclusion. Given the vast literature on the
topic including several review papers and books, we avoid a detailed review of the
literature and merely point to some relatively recent textbooks on this topic [Qu
and Cherkaoui, 2006; Li and Wang, 2008; Cai and Nix, 2016]. In parallel, the cap-
illary phenomenon has attracted attention from scientists from various disciplines

‡Corresponding author.
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and permeates disciplines ranging from catalysis to self-assembly, see, for example,
a review by Müller and Saúl [2004].

The Eshelby’s inclusion problem is the following: what is the elastic state of
an embedded inclusion undergoing an inelastic transformation strain? This trans-
formation strain may be due to thermal mismatch, phase transformation, plastic
event, lattice mismatch among many other sources. The transformation strain, also
known as eigenstrain (a term coined by Mura [1987]), is the strain state that will
be achieved by the inclusion were it to be removed from the surrounding matrix
body. However, due to the matrix constraint, the actual strain state is different.
The fourth-order tensor that relates the eigenstrain to the actual strain state is
known as “Eshelby’s tensor”. For certain shapes of inclusions, ellipsoids and the
so-called E-inclusions [Liu et al., 2007; Liu, 2008], this tensor reflects the fact that
the strain state in the interior of such an inclusion is uniform (provided that we
are under the realm of linearized elasticity and the eigenstrain is uniform). This
fact greatly facilitates the solution to the problem where the inclusion and matrix
region have differing elastic properties and has become the basis for much of the
homogenization schemes for composites.

Eshelby’s original work [Eshelby, 1957, 1959] did not include the capillary phe-
nomenon and surface energy effects are expected to become significant at the
nanoscale. Several works have extended Eshelby’s idea to include surface energy
including a few by the second author [Sharma et al., 2003; Sharma and Ganti, 2004;
Sharma and Wheeler, 2007]. In this short note, we revisit the formulation where
a Green’s function approach is used to derive a general expression for Eshelby’s
tensor. This approach, in our opinion, has the advantage that the expression itself
is general and even if closed-form expression may not be possible in some context,
it can be used as a starting point for an approximate solution. This paper follows
much of the details outlined in the work by Sharma and Ganti [2004].

We would, in particular, like to single out a very thorough book chapter by
Huang and Wang (in the book by Li and Gao [2013]) and other papers [Huang
and Wang, 2006; Huang and Sun, 2007] which present several subtleties regarding
surface energy effects (including a few that we gloss over in this present paper).

2. Formulation

The mechanical behavior of curved interfaces between solid phases incorporating
surface energy, tension and stress has been well studied based on the mathematical
framework developed by Gurtin and Murdoch [1975, 1978] and Gurtin et al. [1998].
Huang and Wang [2006] proposed a variational formulation for finite-deformation
hyperelastic solids with the surface/interface energy effect:

Π(u) =
∫

∂Ω
J2γ(CS ) +

∫

D
ρ0ψ0(C̃) −

∫

D
ρ0f · u−

∫

∂Dt

t̄0 · u, (2.1)
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where u is the displacement with the prescribed displacement ū0 on the boundary
∂Du, ρ0f is the body force in D, t̄0 is the traction on the traction boundary ∂Dt =
∂D \ ∂Du, J2 is the ratio of the area element between the current and reference
configurations, γ is the surface energy per unit area in the current configuration,
and ρ0ψ0 is the hyperelastic potential. Moreover, CS = FT

S
FS is the right Cauchy–

Green tensor of the interface and FS is the surface deformation gradient that has
the polar decomposition FS = RSUS = VSRS . In contrast to CS , C̃ is defined as
(FF∗)T (FF∗) that considers the “residual” elastic field induced by interface energy.

Vanishing of the first variation of the energy functional of Eq. (2.1) gives

∇ · σB + ρ0f = 0 in D, (2.2)

σBn = t̄0 on ∂Dt, (2.3)

n · !σB"n + σS
(in) : b0 + ∇S · [n · σS

(ou)] = 0 on ∂Ω, (2.4)

PS!σB"n + ∇S · σS
(in) + n · σS

(ou)b0 = 0 on ∂Ω, (2.5)

!σS"n = 0 on ∂Ω0 ⊂ ∂Ω, (2.6)

where the superscripts B and S indicate respectively bulk and surface, σB is the
(nominal) bulk stress, σS is the (nominal) surface stress, σS

(in) is the “in-plane
term” while σS

(ou) is the “out-plane term” of σS , n is the outward unit normal
to the corresponding surfaces, and the jump !·" denotes the difference (·)+ − (·)−
across the surfaces. Detailed derivations of Eqs. (2.2)–(2.6) can be found in the
work of Huang and Wang [2006] or in the book chapter by Huang and Wang [Li
and Gao, 2013].

Note that PS in Eq. (2.5) is the surface projection tensor that transforms vectors
into the tangent space and vice versa is defined as [Gurtin and Murdoch, 1975, 1978;
Gurtin et al., 1998]

PS = I − n ⊗ n, (2.7)

where I is the unit tensor. The surface divergence (∇S ·) and the surface gradient
(∇S) are defined by

∇S · v = Tr(∇Sv) (2.8)

and

∇Sv = (∇v)PS , (2.9)

where v(x) is a smooth field with v vector valued, “Tr” denotes the trace of a
tensor, and ∇ is the well-known gradient in three dimensions. In particular, the
surface divergence of the surface projection tensor PS is given by [Gurtin and
Murdoch, 1975; Gurtin et al., 1998]

∇S ·PS = −(∇S · n)n = Tr(L)n = 2κn, (2.10)

where L = −∇Sn is the curvature tensor and κ is the mean curvature.

1630002-3

J. 
M

ic
ro

m
ec

h.
 M

ol
. P

hy
s. 

20
16

.0
1.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 1
07

.1
36

.1
80

.7
8 

on
 0

8/
26

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

December 1, 2016 16:9 WSPC/303-JMMP 1630002

S. Yang & P. Sharma

From the hyperelastic potential ρ0ψ0(C̃) and the surface energy J2γ(CS) in
Eq. (2.1), the (nominal) bulk stress σB and the (nominal) surface stress σS in
Eqs. (2.2)–(2.6), can be written, like Huang and Wang [2006] and Li and Gao
[2013], as

σB = 2ρ0FF∗ ∂ψ0

∂C̃
F∗T (2.11)

and

σS = 2FS
∂(J2γ)
∂CS

. (2.12)

Linearization of σB in Eq. (2.11) at F = I gives

σB = σ∗B + C : ε, (2.13)

where σ∗B = σB|F=I is the residual stress, C = ρ0
∂2ψ0
∂E2 |E=0 is the elastic stiffness

tensor, and the infinitesimal strain tensor is defined by

ε =
1
2
(∇u + ∇uT ). (2.14)

Neglecting the residual stress and considering homogeneously linear elastic
isotropic materials, Eq. (2.13) can be further written as

σB = C : ε = λ(Trε)I + 2µε, (2.15)

where λ and µ are the Lamé constants for the isotropic bulk material.
Similarly, the linearization of σS in Eq. (2.12) at F = I gives

σS = σ∗S + CS : εS , (2.16)

where σ∗S = τoPS and τo is the deformation independent surface/interfacial ten-
sion, and CS is the elastic stiffness tensor of the surface, and

εS = PSεPS . (2.17)

For infinitesimal deformation, the relation between the interface/surface stress
tensor, σS , and the interface/surface strain tensor, εS , can be written by Gurtin
and Murdoch [1975, 1978] as

σS = [τo + (λS + τo)Tr(εS)]Ps + 2(µS − τo)εS + τo∇Su, (2.18)

where τo is the residual surface tension (under unstrained conditions), λS and µS

are the surface Lamé constants for isotropic interfaces or surfaces. Without body
force, the equilibrium and isotropic constitutive equations in the bulk and on the
surface are written as usual:

∇ · σB = 0 in D \ ∂Ω (2.19)

and

!σBn" + ∇S · σS = 0 on ∂Ω. (2.20)
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Fig. 1. Schematic of the problem.

Based now on the framework of the deformation of curved interfaces incorpo-
rating the surface/interface energy effect described earlier, we revisit the classical
problem of Eshelby’s inclusion [Eshelby, 1957, 1959]. An inclusion is defined as a
subdomain Ω in a domain D, where eigenstrain ε⋆(x) is given in Ω and is zero in
D \Ω (shown schematically in Fig. 1). The material properties, such as the stiffness
tensor C, in Ω and in D \Ω are the same, namely

{
ε⋆(x) ̸= 0 in Ω,

ε⋆(x) = 0 in D \Ω.
(2.21)

The constitutive law, Eq. (2.15), becomes

σB = C : (ε − ε⋆(x)). (2.22)

In particular, if the eigenstrain ε⋆(x) is uniform and equal to ε∗ in Ω, a more
concise expression of the eigenstrain admits the form

ε⋆(x) = H [z(x)]ε∗ in D, (2.23)

where H is the Heaviside function, and
{

z(x) > 0 in Ω,

z(x) < 0 in D \Ω.
(2.24)

Introducing capillary effects into the picture, the interface conditions on the
displacement and the interfacial traction across the interface ∂Ω are

{
!u" = 0

!σBn" = −∇S · σS
on ∂Ω. (2.25)

Note that the displacement and the interfacial traction across the interface must
be continuous for perfect interfaces in the classical inclusion problem.
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Consider the Dirac delta function δ and take the constitutive law in Eq. (2.22)
and the interface condition in Eq. (2.25). The equation of equilibrium, Eq. (2.19),
is given by [Sharma and Ganti, 2004]

∇ · σB = ∇ · (C : ε)−∇ · [C : ε⋆(x)]︸ ︷︷ ︸
fI

−δ[z̄(x)]!σBn"︸ ︷︷ ︸
fS

= 0. (2.26)

It can be readily seen that both the first underlined term (from eigenstrain) and
the second underlined term (from surface effects) appear as body forces f I and fS .
The interface is defined by z̄(x) = 0. Note that in classical inclusion problem the
last underlined expression in Eq. (2.26) is typically omitted since the jump in the
normal traction on perfect interfaces is zero.

With Eq. (2.20) or Eq. (2.25)2, Eq. (2.26) can be rewritten as

∇ · σB = ∇ · (C : ε)−∇ · {C : ε⋆(x)} + δ[z̄(x)]∇S · σS

︸ ︷︷ ︸
f total = fI+fS

= 0. (2.27)

Consider the symmetry of C and the infinitesimal strain tensor ε = 1
2 (∇u +

∇uT ) = sym(∇u). Here sym(·) denotes the symmetric part of a tensor, such that
sym(A) = 1

2 (A + AT ). Using the underlined term in Eq. (2.27) as representing a
total body force f total in conjunction with the elastic Green’s function, we can write
the displacement field and the strain tensor due to both the eigenstrain and the
surface effect as [Sharma and Ganti, 2004]

u(x) =
∫

D
(C : ε⋆) : (∇x ⊗ GT (y − x)) dV (y)

+
∫

∂Ω
GT (y − x) · [∇S · σS(y)] dS(y) (2.28)

and

ε(x) = S : ε⋆ + sym
{
∇x ⊗

∫

∂Ω
GT (y − x) · [∇S · σS(y)] dS(y)

}
. (2.29)

Eshelby’s interior tensor S in Eq. (2.29) is defined as

S = PΩ : C, (2.30)

where PΩ is a fourth-order tensor with the components

PΩ
ijkl(x) =

∫

Ω
Σijkl(x − y) dV (y) (2.31)

with

Σijkl(x − y)

=
1
4

[
∂2Gki(x − y)

∂xj∂yl
+
∂2Gkj(x − y)

∂xi∂yl
+
∂2Gli(x − y)
∂xj∂yk

+
∂2Glj(x − y)

∂xi∂yk

]
.

(2.32)
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Here the reciprocal theorem, Gij(x − y) = Gji(y − x), is used and the Green’s
function for isotropic material is given by [Qu and Cherkaoui, 2006; Li and Wang,
2008]:

Gij(x − y) =
1

16πµ(1 − ν)|x − y|

{
(3 − 4ν)δij +

(xi − yi)(xj − yj)
|x − y|2

}
.

(2.33)

Further simplification of Eq. (2.29) does not appear feasible without additional
assumptions regarding the shape of inclusion. Note that Eq. (2.29) implicitly gives
the modified Eshelby tensor for inclusions incorporating the surface effects. This
modified relation is implicit since the surface stress depends on the surface strain,
which in turn is the projection of the conventional strain ε on the tangent plane of
the inclusion–matrix interface. In the next section, using Eq. (2.29), we will derive
explicit expressions for spherical and cylindrical inclusions. For now, however, it is
worth noting some general features of the new Eshelby inclusion tensor.

Recall the relation εS = PSεPS and the surface constitutive law Eq. (2.18). The
surface divergence of surface stress tensor in the modified Eshelby tensor Eq. (2.29)
can only be uniform if the bulk strain ε and the projection tensor PS are uniform
over the inclusion surface. This is because the surface divergence of the projection
tensor is given by ∇S ·PS = 2κn in Eq. (2.10).

It is known that the curvature is non-uniform and varies depending upon the
location at the surface of a general ellipsoid. Only for the two special cases of
spherical and cylindrical inclusions admit a uniform mean curvature. Sharma and
Ganti [2004] gave the following important proposition:

Proposition: “Eshelby’s original conjecture that only inclusions of the ellipsoid
family admit uniform elastic state under uniform eigenstrains must be modified in
the context of coupled surface/interface-bulk elasticity. Only inclusions that are of
a constant curvature admit a uniform elastic state, thus restricting this remarkable
property to spherical and cylindrical inclusions.”

3. Spherical and Cylindrical Inclusions

Note now that further simplification of the modified Eshelby tensor in Eq. (2.29)
can be made by regarding the shape of inclusion with a constant curvature. The new
Eshelby tensor will be size-dependent by regarding the surface effects of inclusions.

Consider an inclusion with constant mean curvature κ. The surface divergence of
the surface stress is remarkably reduced in the modified Eshelby tensor in Eq. (2.29),
such that

ε(x) = S : ε⋆ + sym
{
∇x ⊗

∫

∂Ω
GT (y − x) · (2κsn) dS(y)

}
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= S : ε⋆ + 2κs

(
sym

{
∇x ⊗

∫

Ω
∇y ·G(y − x) dV (y)

})

= S : ε⋆ − 2κsC−1 :
(

sym
{
∇x ⊗ C :

∫

Ω
∇x ⊗ G(y − x) dV (y)

}
: I

)
.

(3.1)

Here, we use the divergence theorem and some basic tensor algebra as well as
the rule of the Green’s function, ∇x ⊗G(y − x) = −∇y ⊗G(y − x). Additionally,
the surface constitutive law is used and the scalar “s” is defined from the relation
σS = sPS [Sharma and Ganti, 2004], such that

s = τo + (λS + µS)Tr(PSεPS). (3.2)

Recall the form of the classical Eshelby tensor, such as Eqs. (2.30)–(2.32). The
term enclosed in the curly brackets in Eq. (3.1) is exactly the classical Eshelby
tensor, and then Eq. (3.1) can be cast into a more attractive form:

ε(x) = S : ε⋆ − 2κsC−1 : (S : I). (3.3)

Some basic tensor algebra are introduced here for convenience [Qu and
Cherkaoui, 2006]. A fourth-order isotropic tensor A can be written as A = 3aIh +
2bId, where a and b are scalars, and the two fourth-order tensors are Ih

ijkl = 1
3δijδkl

and Id
ijkl = 1

2 (δikδjl + δilδjk − 2
3δijδkl). Here δij is the Kronecker delta. The inverse

is A−1 = 1
3a Ih + 1

2b Id. Introduce a second-order symmetric tensor ϵ. It can be easily
shown that A : ϵ = 3aϵmI + 2bϵ′, where ϵmI and ϵ′ are the spherical part and
the deviatoric part of ϵ, such that ϵm = 1

3Trϵ and ϵ′ = ϵ − ϵmI. In particular,
A : I = 3aI, where I is the second-order identity tensor.

It is known that the fourth-order stiffness tensor for isotropic materials can be
written as C = 3KIh + 2µId and the corresponding compliance tensor is given by
C−1 = 1

3K Ih + 1
2µId, where K and µ are the bulk and shear moduli. Moreover, the

Eshelby tensor S for a spherical inclusion in an isotropic material is a fourth-order
isotropic tensor:

S =
3K

3K + 4µ
Ih +

6(K + 2µ)
5(3K + 4µ)

Id. (3.4)

Using Eq. (3.2) and the stiffness tensor as well as the property of the fourth-
order isotropic tensor, Eq. (3.3) for spherical inclusions can be written as

ε(x) = S : ε⋆ − KS

3KRo
Tr(PSεPS)(S : I) − 2τo

3KRo
(S : I), (3.5)

where KS is defined by us to be the surface elastic modulus that is equal to 2(λS +
µS) and K = λ + 2µ/3 is the bulk modulus. We also have used the fact that the
curvature of a spherical inclusion with radius Ro is κ = 1/Ro.
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Similarly, for an infinite circular cylindrical inclusion in plane strain, Eq. (3.3)
can be written as [Sharma and Ganti, 2004]

ε(x) = S : ε⋆ − K ′S

3K ′Ro
Tr(PSεPS)(S : I) − τo

3K ′Ro
(S : I), (3.6)

where K ′S = λS + 2µS is the plane-strain surface elastic modulus and K ′ =
2(λ+ µ)/3.

In the following, we will show the components of the strain tensors in Eqs. (3.5)
and (3.6) incorporating the surface effects. Note that Eshelby’s interior tensor S is
used in the solution of interior strains while for exterior strains the corresponding
exterior version D is required [Eshelby, 1959; Mura, 1987; Li and Wang, 2008].
Here we just show the detailed solution of the interior strain of spherical inclusions.
For detailed solutions of the exterior strain of spherical inclusions and the strain of
cylindrical inclusions, one can refer to the work by Sharma and Ganti [2004].

For a spherical inclusion with a constant eigenstrain ε⋆(r) = ε∗I, |r| < Ro,
in spherical polar coordinates (r, θ,φ), the trace of the surface strain tensor is
Tr(PSεPS) = εθθ + εφφ and then Eq. (3.5) becomes

ε(r) =
{
ε∗ − KS(εθθ + εφφ)

3KRo
− 2τo

3KRo

}
(S : I), for |r| < Ro, (3.7)

which, by using the Eshelby tensor S in Eq. (3.4) and the property of fourth-order
isotropic tensors, can be further written as

ε(r) =
1

3K + 4µ

{
3Kε∗ − KS(εθθ + εφφ)

Ro
− 2τo

Ro

}
I, for |r| < Ro. (3.8)

Since the second-order identity tensor in spherical polar coordinates is I =
er ⊗ er + eθ ⊗ eθ + eφ ⊗ eφ, the components of ε(r) in Eq. (3.8) can be easily
obtained as

⎧
⎪⎨

⎪⎩

εrr(r) = εθθ(r) = εφφ(r) =
3Kε∗ − 2τo/Ro

3K + 4µ + 2KS/Ro
,

εrθ(r) = εrφ(r) = εθφ(r) = 0,

for |r| < Ro. (3.9)

Similarly, by using Eshelby’s exterior tensor D, Sharma and Ganti [2004] gave
the strain field outside of the spherical inclusion

⎧
⎪⎨

⎪⎩

εrr(r) =
3Kε∗ − 2τo/Ro

3K + 4µ + 2KS/Ro

R3
o

r3
, εθθ(r) = εφφ(r) = −2εrr(r),

εrθ(r) = εrφ(r) = εθφ(r) = 0,

for |r| > Ro.

(3.10)
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In contrast to the spherical inclusion, the strain field of cylindrical inclusions
under plane strain in cylindrical polar coordinates (ρ,φ, z) is given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ερρ(r) = εφφ(r) =
3K ′ε∗ − τo/Ro

3K ′ + 2µ + K ′S/Ro
, for ρ < Ro,

ερρ(r) = −εφφ(r) =
3K ′ε∗ − τo/Ro

3K ′ + 2µ + K ′S/Ro

R2
o

ρ2
, for ρ > Ro,

ερφ(r) = εzz(r) = 0.

(3.11)

Equations (3.9)–(3.11) are exceptionally simple but clearly illustrate the size-
dependent elastic state. The surface/interface tension is a residual strain-type term
which, for example, should not impact the effective properties of composite unless
non-linear effects are carefully accounted for and linearization is properly per-
formed. We refer the reader to the chapter and papers by Huang and co-workers
on this matter [Li and Gao, 2013; Huang and Wang, 2006; Huang and Sun, 2007].
The effect of surface elasticity appears through KS, leading to a size-dependent
change in overall hydrostatic properties of a composite. By making the radius of
the inclusion large we can trivially retrieve the well-known classical solution. Using
an assumed displacement type method, Cahn and Lärche [1982] (only taking into
account surface tension) presented exactly the expression in Eq. (3.9) with the sur-
face elasticity effect (KS) set to zero. The application, including the size-dependent
stress concentration at a spherical void and the size-dependent overall properties of
composites, among others, can be found in the work by Sharma and Ganti [2004].

4. Concluding Remarks

Our expression Eq. (2.29) can be used as the starting point for approximations to
problems which do not yield closed-form expressions. Exact solution is only cur-
rently known for the radially symmetric case, i.e., spherical and cylindrical inclu-
sions with radial and uniform eigenstrains. Approximate solutions using multipole
expansion have been derived by Duan et al. [2005]. Our approach may also be
used to find approximate solutions, for example, for ellipsoidal or polyhedral shape
inclusions.
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