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a b s t r a c t 
Soft robotics, energy harvesting, large-deformation sensing and actuation, are just some of 
the applications that can be enabled by soft dielectrics that demonstrate substantive elec- 
tromechanical coupling. Most soft dielectrics including elastomers, however, are not piezo- 
electric and rely on the universally present electrostriction and the Maxwell stress effect 
to enable the aforementioned applications. Electrostriction is a one-way electromechanical 
coupling and the induced elastic strain scales as ( ∝ E 2 ) upon the application of an electric 
field, E . The quadratic dependence of electrostriction on the electric field and the one-way 
coupling imply that, (i) A rather high voltage is required to induce appreciable strain, (ii) 
reversal of an applied bias will not reverse the sign of the deformation, and (iii) since it is 
a one-way coupling i.e. electrical stimuli may cause mechanical deformation but electricity 
cannot be generated by mechanical deformation, prospects for energy harvesting are rather 
difficult. An interesting approach for realizing an apparent piezoelectric-like behavior is to 
dope soft dielectrics with immobile charges and dipoles. Such materials, called electrets, 
are rather unique composites where a secondary material (in principle) is not necessary. 
Both experiments and supporting theoretical work have shown that soft electrets can ex- 
hibit a very large electromechanical coupling including a piezoelectric-like response. In this 
work, we present a homogenization theory for electret materials and provide, in addition 
to several general results, variational bounds and closed-form expressions for specific mi- 
crostructures such as laminates and ellipsoidal inclusions. While we consider the nonlinear 
coupled problem, to make analytical progress, we work within the small-deformation set- 
ting. The specific conditions necessary to obtain a piezoelectric-like response and enhanced 
electrostriction are highlighted. There are very few universal, microstructure-independent 
exact results in the theory of composites. We succeed in establishing several such relations 
in the context of electrets. 
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1. Introduction 

The simple act of a robotic arm lifting an object requires the underlying material to be capable of large mechanical 
deformations and that it deform in response to a stimulus with moderate energetic cost. This example epitomizes the im- 
perative to develop soft materials that exhibit strong electromechanical coupling. In addition to robotics, electromechanical 
soft materials have exciting applications in many other contexts also: energy harvesting, stretchable electronics, prostheses, 
nano-electromechanical-systems and others cf. Carpi et al. (2008) , Carpi et al. (2010) , Erturk and Inman (2011) , Xu (2010) , 
Bauer et al. (2014) , Rogers et al. (2010) , Huang et al. (2013) , Yang et al. , Muralt et al. (2009) , Trolier-McKinstry and Mu- 
ralt (2004) , Long et al. (2005) . 

The ideal electromechanical coupling is the well-known phenomenon of piezoelectricity which is the linear coupling 
between electrical fields and mechanical deformation. Piezoelectrics can be actuated by a small voltage, mechanical motion 
can be converted into electricity making energy harvesting possible and the reversal of stimuli (whether mechanical or 
electrical) leads to a reversal of the response (respectively electrical or mechanical). Unfortunately, only a rather limited set 
of materials—mostly hard and crystalline—possess this remarkable property. Examples include materials like barium titanate 
and lead zirconium titanate. Such piezoelectrics, with elastic moduli in the order of 100’s of GPa, are all but useless for 
applications that require large deformations. Polymers like polyvinylidene difuoride (PVDF) are among the few polymers 
that exhibit piezoelectricity ( Murayama et al., 1976 ) but the effect is rather weak and PVDF is not quite as soft as some of 
the applications would necessitate. 

Dielectric elastomers are, at the moment, arguably the most intensely researched class of materials as far as soft elec- 
tromechanical materials are concerned. Upon application of a suitably high voltage, an area increase of nearly 1700% has 
recently been demonstrated for an acrylic membrane ( Keplinger et al., 2012 ). Indeed, through clever design, dielectric elas- 
tomers have been successfully used for myriad applications like braille displays, adaptive optics, and energy harvesting (cf. 
Bauer et al., 2014; Huang et al., 2013; Keplinger et al., 2012; Koh et al., 2009; Shankar et al., 2007; Trivedi et al., 2008; Yang 
et al., 0 0 0 0 ). What is notable however is that dielectric elastomers are not piezoelectric. Their electromechanical coupling 
emerges entirely from an effect that is universally present in all dielectrics — the so-called Maxwell stress effect and/or 
electrostriction 1 . In these phenomena, an electric field exerts a force on all dielectrics proportional to E 2 where E is the 
applied electric field. This force is small and accordingly, the induced deformation in hard dielectrics is negligible 2 . This 
scenario changes drastically for soft dielectric elastomers; as demonstrated convincingly in several works ( Keplinger et al., 
2012; Li et al., 2004; Pelrine et al., 20 0 0 ). There are some drawbacks however. Electrostriction is a one-way coupling. An 
electric field will produce deformation but a mechanical stress, in its naive form of application, will not coax any electricity 
from the material—unlike piezoelectric materials. The absence of this direct converse effect im plies that ener gy harvesting 
is rather difficult 3 . Furthermore, the quadratic dependence of the deformation on electric fields implies that upon reversal 
of the applied voltage, the deformation will not reverse and very high voltages are required for actuation. 

The development of another class of materials — the so-called electrets — appears to be a promising route to create 
soft materials that are piezoelectric-like, capable of large deformation 4 and may be prospects for engineering high elec- 
tromechanical coupling. Electrets are, simply put, dielectrics that have trapped “quasi-permanent” immobile charges and/or 
dipoles 5 . Although the “modern” discovery of electrets dates back to the work by the Japanese scientist, Mototaro Eguchi 
in 1919, as far as the authors are aware, this field received new life in the eighties by groups in Germany at the hands 
of research groups ( Gerhard-Multhaupt, Bauer et al., 2004; Buchberger et al., 2008; Sessler, 1987; Sessler and Hillenbrand, 
1999; Wegener and Bauer, 2005 ) led by Sessler, Gerhard-Multhaupt, Gross and Bauer 6 . Perhaps the most striking example 
of an electret material is the creation of polypropylene foams—which have a distinct cellular structure characterized by the 
presence of micron sized voids ( Fig. 1 ). Charges are embedded (and trapped) on the void surface via a process that leads 
to electrical breakdown of the air in the voids. Apparent piezoelectric coefficient as high as 1200 pC/N have been reported 
( Hillenbrand and Sessler, 2008 ) for such optimally fabricated soft foams—which is six times that of the well-known piezo- 
electric, lead zirconium titanate. 

What is the principle underpinning the apparent piezoelectricity of electrets? The basic notion can be explained in a 
rather simple manner by considering a bilayer film structure as shown in Fig. 2 . Consider a quasi-permanent immobile 

1 Strictly speaking, electrostriction and the Maxwell-stress effect are physically distinct, however, mathematically similar ( Tian, 2007; Tian et al., 2012; 
Zhao and Suo, 2008 ). In what follows, we will simply use the terminology “electrostriction” and it is to be understood that both effects can be lumped 
together. 

2 For example, under similar conditions as used for the acrylic dielectric elastomer membrane that led to a 1700% areal change, the well-known hard 
dielectric, silicon, will barely change its area by 0.001% 

3 We remark that there are some exceptional works by Bauer, Koh, Zhao, Suo, among other (cf. Koh et al., 2011, 2009 ) who, using certain design are able 
to scavenge electricity from elastomers. In one instance, the demonstration involves harvesting from ocean waves. 

4 Unfortunately, not to the level of elastomers. Stabilizing charges and dipoles in elastomers for a usable time-period remains to be an open experimental 
challenge 

5 By immobile we mean that embedded charges and dipoles only shift position due to deformation. In the time-period of interest or observation, the 
charges do not flow or move and are thus “quasi-permanent”; a term coined by the early pioneers in electret research. The word “quasi” is used to indicate 
that an electret material is in a metastable state. The charges have a driving force to “flow” and leak away but due to the presence of interfaces or trapping 
states, are locked in place for an appreciable amount of time. 

6 A nice historical account leading up to the eighties may be found in a paper by Gerhard-Multhaupt and the book by Sessler (1987) . 



L. Liu, P. Sharma / Journal of the Mechanics and Physics of Solids 112 (2018) 1–24 3 

Fig. 1. A schematic of an electret based on polymer foam with embedded dipoles on the void surfaces. This artistic rendition is inspired from a figure in 
Bauer et al. (2004) . 

Fig. 2. The basic principle underlying the apparent piezoelectric behavior of electrets. 
charge layer q embedded at the interface between the two different soft elastic materials. There will exist, due to the 
presences of this charge, a state of residual electrical field as well as induced charges q a and q b at the opposite electrodes. 
Due to electrostriction, even prior to an external mechanical or electrical load, a thickness change !h ∼ q 2 is expected. 
Therefore, in addition to a residual electrical field, there also exists a state of residual strain and stress. If now, an external 
stress is applied to this electret construction, the resulting deformation will convect the existing electric field state in the 
body and change the induced charges at the electrodes. This resulting change in electric field can be shown to be linearly 
proportional to the applied stress and appears therefore as an emergent piezoelectric effect. A similar situation ensues upon 
the application of an applied voltage difference, V . In that case, the total thickness change scales as: !h ∼ a · q 2 + b · V 2 + c ·
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qV where ( a, b, c ) are geometry and material-dependent constants. The first term, as indicated earlier, is due to the Maxwell 
stress caused by the electrical field due to the embedded charge ( q ), the second term is the deformation due to the Maxwell 
stress caused by the applied voltage, V and finally, a term, linear in V , emerges due to the interaction between the applied 
field and the presence of charge q . This linear term in V manifests as an apparent converse piezoelectric effect (—and in 
fact, cq can be shown to be proportional to the piezoelectic constant). 

Surprisingly, relatively fewer modeling efforts have been dedicated to electrets. Simple (but certainly insightful) formulae 
on the lines of what has been described in the preceding paragraph pertaining to simple bilayer structures have been long 
known ( Kacprzyk et al., 1995 ). More recently, Deng et al. (2014b ), Deng et al. (2014a ) have provided systematic (nonlinear) 
solutions to boundary value problems such as the one shown in Fig. 2 . In particular, the linearized solution while different 
from the simpler estimates in the literature, confirm the basic scaling. However, that being said, solutions to bilayers such as 
in Fig. 2 , while useful for illustrative purposes, do not present the homogenization solution for the calculation of bulk emer- 
gent properties of macroscopic electret materials 7 . The homogenization of electret materials appears to have received scant 
attention in the literature — with the notable (and perhaps sole) exception of the work by Lefevre and Lopez-Pamies (2017) . 
In this work, using a variational approach and two-scale asymptotics, we present a homogenization theory for soft electret 
materials and establish general relations for the emergent piezoelectric and electrostrictive response. Specifically, we provide 
insights into the conditions under which apparent piezoelectricity may be expected from an electret material. To make de- 
cisive progress, using a scaling established by Tian, Bhattacharya and co-workers ( Tian, 2007; Tian et al., 2012 ), we work in 
a linearized setting although remark that the coupled problem is nonlinear. We present variational bounds and closed-form 
expressions for specific microstructures such as laminates and ellipsoidal inclusions and finally establish some, in our view, 
remarkable and unexpected exact results. 

The outline of the paper is as follows: in Section 2 , we summarize a nonlinear continuum theory for electrostatics of 
deformable media and outline the linearization assumptions that will be adopted in the present work. While, the central 
goal of the our work is to derive the homogenized piezoelectric response of electrets, the corresponding consideration of 
electrostriction is a necessary route to such a calculation as piezoelectricity in electrets emerges from the interaction of 
electrostriction and pre-existing residual electrical and mechanical fields. Accordingly, Section 3 is devoted to the homoge- 
nization of electrostriction where we have re-defined the effective electrostrictive tensor in Tian (2007) , Tian et al. (2012) by 
a variational principle. We address the effective electro-elastic properties and homogenization of electrets in Section 4 by the 
standard method of two-scale convergence ( Allaire, 1992; Cioranescu and Donato, 1999 ), and remark that Ref. Lefevre and 
Lopez-Pamies (2017) considered a more general system that includes the effects of “active charges”. We focus specifically on 
the piezoelectric response in Section 5 . In Section 6 , we present variational bounds, some exact relations between effective 
electro-elastic properties, and closed-form results for specific microstructures such as laminates and ellipsoidal inclusions. 
2. A summary of a nonlinear continuum theory for electrostatics of deformable materials 

In this section, we briefly summarize the continuum theory we will use to describe the coupled electromechanical behav- 
ior of electrets. The electro-elastic theory for a continuum body has been the theme of a number of earlier works including 
Toupin (1956) , Eringen and Maugin (1990) , Dorfmann and Ogden (2005) , Suo and co-workers ( Suo et al., 2008 ), Suo (2010) , 
McMeeking and Landis (2005) , and Xiao and Bhattacharya (2008) . The polarization-based formulation and the systematic 
linearization of constitutive relations have been addressed by Tian and co-workers ( Tian, 2007; Tian et al., 2012 ). A re- 
cent exposition which compares various flavors of electro-elastic theories can be found in the two papers by Liu (2013) , 
Liu (2014) . Below we briefly outline the general nonlinear theory, clarify the assumptions for a linearized theory of elec- 
trostriction, and derive the implications of material symmetry on the electrostrictive tensor. 

Notation. For brevity, wherever possible, we employ direct notation. Vectors are denoted by bold symbols such as e, 
u , etc. When index notation is used, the convention of summation over repeated indices is followed. The tensor prod- 
uct between two vectors a , b ∈ R 3 is defined as (a ! b ) i j = (a ) i (b ) j whereas the inner (or dot) product is defined as 
⟨ a, b ⟩ ≡ a · b := ( a ) i ( b ) i , and the inner (or dot) product between matrices A and B of the same size is defined as A · B := 
Tr (A T B ) = (A ) i j (B ) i j . For a domain D , ∫ −D ( ) denote the average of the integrand on D . From the viewpoint of matrices, the 
i th row vector of the gradient of a vector field, e.g., ∇u , is the gradient of the i th component of u (with respect the La- 
grangian coordinates x , unless stated otherwise) whereas the “div” operates on the row vectors of a matrix field. Therefore, 
div ∇u = !u and div [(∇u ) T ] = ∇( div u ) . For a scaling parameter 0 < ε ≪ 1 and a real number n, O ( εn ) implies the asymptotic 
behavior O ( ε n )/ ε n → C ̸ = 0 as ε → 0 where as o ( ε n )/ ε n → 0 as ε → 0. 

Consider a deformable dielectric body with reference configuration D ⊂ R 3 . To adequately account for electret materials 
we will need to consider the interaction of embedded charges and dipoles with electrostriction and therefore those aspects 
are emphasized in the outline of the continuum theory. We begin with the kinematics and assume that the thermodynamic 
state of the body is described by the deformation and nominal polarization (y , p ) : D → R 3 × R 3 . By the Maxwell equations, 
we introduce the electric potential ξ , and for simplicity, consider the Dirichlet boundary conditions: 

ξ = ξb on ∂D and y = x + u b on ∂D, (1) 
7 In due course, in this work, we will carefully distinguish between what we have termed as “apparent” piezoelectricity and “true effective piezoelec- 

tricity”. 
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where ξb : ∂D → R (resp. u b : ∂D → R 3 ) is the imposed boundary potential (resp. boundary displacement). As usual, we 
denote by 

F = ∇y , J = det F , C = F T F 
the deformation gradient, Jacobian, and Cauchy–Green tensor, respectively. 

The nominal polarization p represents the dipole density per unit volume in the reference configuration. Therefore, the 
Maxwell equation can be written as ( ϵ0 is the vacuum permittivity) 

div y (−ϵ0 ∇ y ξ + p /J) = 0 in y (D ) , (2) 
where subscript y means that the derivatives are taken with respect to the Eulerian coordinates y . In what follows, to 
conveniently couple deformation to electrical quantities, it is expedient to work in the reference configuration where the 
Maxwell’s Eq. (2) is transformed to: 

∇ · (−ϵ0 JC −1 ∇ξ + F −1 p ) = 0 in D, (3) 
where (for now) we have assumed that there are no external charges or dipoles. 

The free energy of the system is postulated as Tian (2007) , Liu (2014) : 
F [ y , p ] = ∫ 

D 
[ 
&(∇ y , p ) + ϵ0 

2 ∇ ξ · JC −1 ∇ ξ] 
dx + ∫ 

∂D ξb n · (−ϵ0 JC −1 ∇ ξ + F −1 p ) dx , (4) 
where the internal energy density function & : R 3 ×3 × R 3 → R prescribes the electro-elastic constitutive laws of the ma- 
terial, the second term is equivalent to the electric field energy ∫ y (D ) ϵ0 

2 |∇ y ξ | 2 , and the last term is the potential energy 
associated with the electric device (e.g., the battery) used for maintaining the boundary potential (1) 1 . By (3) and the diver- 
gence theorem, we may rewrite the free energy functional (4) as 

F [ y , p ] = ∫ 
D 
[ 
&(∇ y , p ) − ϵ0 

2 ∇ ξ · JC −1 ∇ ξ + ∇ ξ · F −1 p ] dx . (5) 
From the principle of minimum free energy, the equilibrium state of the body is determined by the variational problem ( ξ
is determined by (3) and (1) 1 ): 

min 
(y , p ) 

{ 
F [ y , p ] : y satisfies (1) 2 and ∫ 

D | p | 2 < + ∞ } 
. (6) 

The Euler–Lagrange equations associated with (6) are given by Liu (2014) 
{ 

F −T ∇ξ + ∂&
∂p = 0 in D, 

div ( ∂&(∇y , p ) 
∂∇y + !MW ) = 0 in D, (7) 

where !MW denotes the Piola–Maxwell stress and is given by 
!MW = −ϵ0 

2 J(∇ ξ · C −1 ∇ ξ ) F −T + (F −T ∇ ξ ) ! (−ϵ0 JC −1 ∇ ξ + F −1 p ) . (8) 
We remark that (7) , together with the Maxwell Eq. (3) and boundary conditions (1) , form a closed system of nonlinear 
differential equations for ( y, p , ξ ), and would presumably admit solutions reflecting the electro-mechanical behavior of the 
material. 

For a simplified theory of electrostriction, we choose the natural state of the body as the reference configuration, meaning 
that ( I is the identity matrix in R 3 ×3 ) 

∂&

∂F 
∣∣∣
(F , p )=(I , 0) = ∂&

∂p 
∣∣∣
(F , p )=(I , 0) = 0 . (9) 

Also, we assume the material is intrinsically non-piezoelectric in the sense that 
∂ 2 &
∂ F ∂ p 

∣∣∣
(F , p )=(I , 0) = 0 . (10) 

Third, we restrict ourselves to the regime of small deformation and moderately small electric field ( u (x ) = y (x ) − x is the 
displacement): 

∇u ∼ ε ≪ 1 , p ∼ ε 1 / 2 ( and hence − ∇ξ ∼ ε 1 / 2 by (3)) . (11) 
Then, as shown by Tian and co-workers Tian (2007) , Tian et al. (2012) and Liu (2014) we can formally decompose the free 
energy (5) according to their order of magnitude as compared with the small parameter ε. To this end, by (11) we recall the 
algebraic identities 

F −1 = (I + ∇u ) −1 = I − ∇u + O (ε 2 ) , 
J = 1 + I · ∇u + O (ε 2 ) , 
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C −1 = I − ∇u − (∇u ) T + O (ε 2 ) , 

JC −1 = I + (∇ · u ) I − ∇u − (∇u ) T + O (ε 2 ) . 
Inserting the above equations into (4) , by (11) we obtain 

F [ y , p ] = F (0) + F (1) + F (2) + o(ε 2 ) , (12) 
where the first term F (0) := F [ y = x , p = 0] is independent of the state variables ( u, p ), 

F (1) [ p ] = ∫ 
D 
[ 

1 
2 p · χp + ϵ0 

2 |∇ξ | 2 ] dx + ∫ 
∂D ξb n · (−ϵ0 ∇ξ + p ) dx ∼ ε, 

F (2) [ u , p ] = ∫ 
D 
[ 

1 
2 ∇u · C ∇u + ∇u · M (p ! p ) + ∇u · σMW ] dx ∼ ε 2 . (13) 

Also, by (8) the (leading-order) Maxwell stress is given by 
!MW = σMW + o(ε) , σMW = −ϵ0 

2 |∇ξ | 2 I + ϵ0 ∇ξ ! ∇ξ − ∇ξ ! p , (14) 
and the tensors χ, C , M are defined as (all derivatives are evaluated at (F , p ) = (I , 0) ) 

χ = ∂ 2 &
∂ p ∂ p , C = ∂ 2 &

∂ F ∂ F , M = 1 
2 ∂ 3 &

∂ F ∂ p ∂ p . (15) 
Similarly, we can rewrite Eq. (3) as 

∇ · (−ϵ0 ∇ξ + p ) + o(ε 1 / 2 ) = 0 in D. (16) 
Then the variational principle (6) , together with the constraint (3) , implies the sequential minimization problems 

min 
p { F (1) [ p ] : ξ satisfies (1) 1 and (16) } , and 

min 
u { F (2) [ u , p ] : u satisfies (1) 2 } . (17) 

Immediately, we find that the associated Euler–Lagrange equations for ( p, u ) are given by 
{
∇ξ + χp = 0 , 
div [ C ∇u + M (p ! p ) + σMW ] = 0 . (18) 

Taking into account (16) to the leading order and eliminating p by (18) 1 , we conclude the following system of differential 
equations for ( u , ξ ): 

{
∇ · ( ϵ∇ξ ) = 0 in D, 
div [ C ∇u + A (∇ξ ! ∇ξ )] = 0 in D, (19) 

where ϵ = ϵ0 I + χ−1 , 
(A ) i jkl = (M ) i jk ′ l ′ ( χ−1 ) kk ′ ( χ−1 ) l l ′ + ϵ0 

2 T i jkl + 1 
2 [ δik ( χ−1 ) jl + δil ( χ−1 ) jk ] , (20) 

and the fourth-order tensor T : R 3 ×3 → R 3 ×3 is defined as 
T F = F + F T − ( Tr F ) I ∀ F ∈ R 3 ×3 , 

T i jkl = δik δ jl + δil δ jk − δi j δkl . (21) 
The following aspects are notable: 
• We recognize the tensor ϵ ∈ R 3 ×3 

sym as the permittivity or dielectric tensor and refer to the fourth-order tensor A (or M ) as 
the electrostrictive tensor. 

• The scaling introduced in (11) enables us to go from a fully coupled nonlinear system of equations to a semi-coupled 
linear one. That is, we may now first solve (19) 1 for the electrical quantities without regard for deformation, and those 
then enter as “forcing” terms for the mechanical equilibrium equations (19) 2 . 

• The system (19) , together with the boundary conditions (1) , forms a boundary value problem for ( u , ξ ) whose existence, 
uniqueness and regularity can be addressed by the classical theory for elliptic systems ( Evans, 2010 ). 

• The sequential variational problem (17) obtained by the above formal calculations can be rigorously justified as the 
asymptotic limit of (6) by the (-convergence method, see Tian (2007) , Tian et al. (2012) . To summarize, in the regime 
of small deformation and moderately small electric field and at the absence of intrinsic piezoelectricity (i.e. (10) ), the 
leading electro-mechanical coupling arises from the electrostriction and is governed by the variational principle (17) or 
the associated Euler–Lagrange equations (19) . 
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Remark 1. The principles of frame indifference and material symmetries imply that the internal energy density function 
& = &(F , p ) has to satisfy 

{
&(RF , Rp ) = &(F , p ) ∀ R ∈ SO (3) , 
&(FQ , p ) = &(F , p ) ∀ Q ∈ G , (22) 

where G ⊂ SO (3) is the point group associated with the material symmetries. It is well-known that (22) places nontrivial 
restrictions on the material property tensors appeared in a linearized theory. In present context, we are particularly inter- 
ested in the restrictions on the electristrictive tensor A (cf., (20) ) or M (cf., (15) ) since the restrictions on C (resp. χ) can be 
obtained by setting p = 0 (resp. F = I ) in (22) and have been addressed in standard textbooks (e.g., Gurtin et al., 2010 ). 

First, we consider an infinitesimal rigid rotation with R = I + W and R 3 ×3 
skew := { M ∈ R 3 ×3 : M T = −M } ∋ W ∼ ε. By (22) 1 

and (11) we find that 
(H i j + W i j ) M i jkl p k p l + W i j p j χil p l = H i j M i jkl p k p l 

for all H ∈ R 3 ×3 , W ∈ R 3 ×3 
skew , p ∈ R 3 , and hence 

M i jkl + χil δ jk = M jikl + χ jl δik , M i jkl = M i jlk , (23) 
where the last equality follows from the definition of M -tensor (15) 3 . Moreover, by (22) we have 

&(F , p ) = &(RF , Rp ) = &(RFQ , Rp ) = &(Q T FQ , Q T p ) ∀ Q ∈ G, 
where the second equality follows from (22) 2 and the last follows by setting R = Q T . In account of the classic restrictions 
on C and χ, by (11) we conclude that 

M i ′ j ′ k ′ l ′ Q ii ′ Q j j ′ Q kk ′ Q l l ′ = M i jkl ∀ Q ∈ G. (24) 
From (23) and (24) we observe that as compared with the elasticity tensor C , the electrostrictive tensor M does not enjoy 
the minor or major symmetry i.e. in general, M i jkl ̸ = M jikl and M i jkl ̸ = M kli j . However, for isotropic materials with G = SO (3) , 
the electrostrictive tensor M has to be of the same form as an isotropic elasticity tensor and can be written as 

M i jkl = m µ(δik δ jl + δ jk δil ) + m λδi j δkl , 
where m µ, m λ are two material constants in analogy with the Lamé constants of an isotropic elastic material. 
Remark 2. For an ideal dielectric material whose electric permittivity tensor ϵ is independent of deformation, the internal 
energy density function & = &(F , p ) has to be of the following form ( Liu, 2014 ): 

&(F , p ) = W (U ) + 1 
2 J p · R χR T p , 

where W = W (U ) is the elastic energy density, U = C 1 / 2 , χ = ( ϵ − ϵ0 I ) −1 , and R = FU −1 ∈ SO (3) . To calculate the tensor M 
defined by (15) , we expand the scalar function (ε, η) 3→ &(I + εF 1 , ηp 1 ) for fixed (F 1 , p 1 ) ∈ R 3 ×3 × R 3 at (ε, η) = 0 : 

&(I + εF 1 , ηp 1 ) = W (U ε ) + η2 1 
2 p 1 · χp 1 + η2 ε 

2 [ −p 1 · χp 1 Tr F 1 − F 1 · ( χp 1 ) ! p 1 + F T 1 · ( χp 1 ) ! p 1 ] + o(η2 ε) , 
where we have employed the following algebraic identities: 

C ε = (I + εF 1 ) T (I + εF 1 ) = I + ε(F 1 + F T 1 ) + o(ε) , 
U −1 

ε = C −1 / 2 
ε = I − ε 

2 (F 1 + F T 1 ) + o(ε) , 
R ε = (I + εF 1 ) U −1 

ε = I + ε 
2 (F 1 − F T 1 ) + o(ε) , 

J −1 
ε = 1 / det (I + εF 1 ) = 1 − ε Tr F 1 + o(ε) , 

p 1 · R ε χR T ε p 1 = ε 
2 F 1 · [ p 1 ! ( χp 1 ) − ( χp 1 ) ! p 1 ] + o(ε) . 

Therefore, 
F 1 · M (p 1 ! p 1 ) = 1 

2 F 1 · [ p 1 ! ( χp 1 ) − ( χp 1 ) ! p 1 ] − 1 
2 p 1 · χp 1 Tr F 1 , 

and hence the electrostrictive tensor A defined by (20) satisfies 
A (∇ ξ ! ∇ ξ ) = 1 

2 [ ∇ ξ ! ( ϵ∇ ξ ) + ( ϵ∇ ξ ) ! ∇ ξ − I (∇ ξ · ϵ∇ ξ )] . (25) 
If the material is isotropic with permittivity tensor ϵ = ϵI , we have 

(A ) i jkl = ε 
2 T i jkl , i . e . , A (∇ ξ ! ∇ ξ ) = ϵ∇ ξ ! ∇ ξ − ϵ

2 |∇ ξ | 2 . (26) 
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Fig. 3. A schematic of a periodic microstructure. The color in each unit cell could be, in case of electrostrictive composites, heterogeneities, or (in the case 
of electrets) represent external, immobile positive and negative charges. 
Remark 3. In contrast to the M -tensor, the tensor A defined by (19) and (20) in general does enjoy the minor symmetry, 
i.e., (A ) i jkl = (A ) jikl , though the Maxwell stress σMW itself does not have to be symmetric. For example, if the electric 
susceptibility tensor χ is anisotropic, the Maxwell stress σMW defined by (14) is nonsymmetric but the electrostrictive stress 
(25) is symmetric. 

Our interest in this work lies in the electrets, i.e., dielectric soft materials with external immobile charges and dipoles 
(p e , ρe ) : D → R 3 × R attached to material points. We assume that the presence of these external charges and dipoles do not 
alter the material constitutive properties in the sense that the internal energy density function & remains the same as (4) , 
and hence the variational principle (6) for the equilibrium state remains valid. However, the presence of external charges 
and dipoles does alter the electric field since, by the Maxwell equation, Eq. (3) should be revised to 

∇ · [ −ϵ0 JC −1 ∇ξ + F −1 (p + p e )] = ρe in D. (27) 
Again, in the regime of small deformation and moderately small electric field as prescribed by (11) , and hence the counter- 
part of (19) 1 can be written as 

∇ · (−ϵ∇ξ + p e ) = ρe in D. (28) 
Our key physical observation is that the external charges and dipoles ( ρe , p e ) break the symmetry, change the qualitative 
behavior of electrets, and give rise to effective piezoelectricity even in isotropic materials. We will elaborate on this in due 
course. 
3. Effective properties of electrostrictive composites: A variational definition 

The homogenization of electrets, which will be discussed in the next section, requires the consideration of electrets and 
electrostriction. Accordingly, it is instructive first to establish the effective properties of purely electrostrictive composites 
assuming that external charges and dipoles are absent. In particular, we emphasize here a variational definition which offers 
several advantages in terms of establishing bounds and approximations. Several important references exist on this topic 
( Lefèvre and Lopez-Pamies, 2017; Castañeda, 2001; Smith et al., 2015; Tian, 2007; Tian et al., 2012 ) and the reader may 
access much of the literature through these papers and references therein. 

Consider an electrostrictive composite with periodic microstructure as shown in Fig. 3 . Let D ⊂ R 3 be the open bounded 
domain occupied by the composite body and denote the local electric permittivity tensor, stiffness tensor, and electrostrictive 
coupling tensor by ( ϵ(δ) (x ) , C (δ) (x ) , A (δ) (x )) . Let Y = (0 , 1) 3 ⊂ R 3 be the rescaled unit cell (or RVE) of the composite. By 
periodic microstructure we mean that 

(
ϵ(δ) (x ) , C (δ) (x ) , A (δ) (x ) ) = (ϵ# (x 

δ

)
, C # (x 

δ

)
, A # (x 

δ

))
, (29) 
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where ˜ x 3→ (ϵ# ( ̃ x ) , C # ( ̃ x ) , A # ( ̃ x ) ) are Y -periodic functions. 

We denote the effective permittivity tensor by ϵeff, the effective stiffness tensor by C eff , and the effective electrostrictive 
tensor by A eff . For the periodic composite specified by (29) , Tian (2007) and Tian et al. (2012) have shown that these 
effective tensors are such that for any ē ∈ R 3 and H̄ ∈ R 3 ×3 , 

ϵeff ̄e = ∫ −
Y [ ϵ# ( ̃ x )(−∇ξē )] , 

C eff ̄H = ∫ −
Y [ C # ( ̃ x ) ∇u ̄H ] , and 

H̄ · A eff ( ̄e ! ē ) = ∫ −
Y [ ∇ u ̄H · A # ( ̃ x )(∇ ξē ! ∇ ξē )] . (30) 

Here, the electric potential ξē ∈ P ̄e (resp. displacement u ̄H ∈ U ̄H ) satisfy the unit cell problem 
div [ ϵ# ( ̃ x )(−∇ξē )] = 0 (

resp. div [ C # ( ̃ x ) ∇u ̄H ] = 0 ) in Y, (31) 
and the admissible space P ̄e (resp. U ̄H ) is defined as 

P ̄e ≡ { 
ξ : −∫ 

−
Y ∇ξ = ē and ∇ξ is Y -periodic } 

(
U ̄H ≡ { 

u : ∫ −
Y ∇u = H̄ and ∇u is Y -periodic } )

. (32) 
As is well-known in the classic homogenization theory for linear systems, the effective permittivity tensor ϵeff and the 
effective stiffness tensor C eff can be alternatively defined by the variational principles ( Berdichevsky, 2010a, 2010b; Milton, 
2002, 2016; Willis, 1981 ) that for any ē ∈ R 3 and H̄ ∈ R 3 ×3 : 

⎧ 
⎪ ⎨ 
⎪ ⎩ 

ē · ϵeff ̄e = min { ∫ 
−

Y ∇ ξ · ϵ# ( ̃ x ) ∇ ξ : ξ ∈ P ̄e } 
, 

H̄ · C eff ̄H = min { ∫ 
−

Y ∇u · C # ( ̃ x ) ∇u : u ∈ U ̄H } 
. (33) 

Our first observation is that the effective electrostrictive tensor A eff , together with the effective stiffness tensor C eff , can be 
alternatively defined via a variational principle 

-eff 
0 ( ̄H , ̄e ) := min { ∫ 

−
Y ∇u · [ 1 

2 C # ( ̃ x ) ∇u + A # ( ̃ x ) ∇ξē ! ∇ξē ] : u ∈ U ̄H } 
, 

-eff 
0 ( ̄H , ̄e ) =: 1 

2 H̄ · C eff ̄H + H̄ · A eff ( ̄e ! ē ) − φ0 ( ̄e ) , (34) 
where ξē ∈ P ̄e is determined by the first of (31) and φ0 ( ̄e ) will be specified later by (42) . In other words, the effective 
stiffness tensor C eff and effective electrostrictive coupling tensor A eff can be defined as 

C eff = ∂ 2 -eff 
0 

∂ ̄H ∂ ̄H 
∣∣∣
( ̄H , ̄e )=0 and A eff = 1 

2 ∂ 3 -eff 
0 

∂ ̄H ∂ ̄e ∂ ̄e 
∣∣∣
( ̄H , ̄e )=0 , (35) 

respectively. 
To see the consistency between (34) and (35) and (30) 2, 3 , we notice that a minimizer u ∗

H̄ ∈ U ̄H of the variational problem 
(34) satisfies 

div [ C # ∇u ∗
H̄ + A # ∇ξē ! ∇ξē ] = 0 in Y. (36) 

Let u 0 = u ∗
H̄ − u ̄H . By the second of (31) and (36) , we see that u 0 ∈ U 0 satisfies 

div [ C # ∇u 0 + A # ∇ξē ! ∇ξē ] = 0 in Y, (37) 
implying that the displacement u 0 is independent of the average strain H̄ . By the divergence theorem, the second of (31) and 
(37) imply the following identities: 

∫ 
−

Y ∇ u 0 · C # ∇ u ̄H = −∫ 
−

Y u 0 · div (C # ∇ u ̄H ) = 0 , (38) 
∫ 
−

Y ∇ u ̄H · C # ∇ u ̄H = H̄ · ∫ 
−

Y C # ∇ u ̄H = H̄ · C eff ̄H , (39) 
and 

∫ 
−

Y ∇ u 0 · [ C # ∇ u 0 + A # ∇ ξē ! ∇ ξē ] = −∫ 
−

Y u 0 · div [ C # ∇u 0 + A # ∇ ξē ! ∇ ξē ] = 0 . (40) 
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Therefore, 

-eff 
0 ( ̄H , ̄e ) = ∫ −

Y ∇ u ∗
H̄ · [ 1 

2 C # ( ̃ x ) ∇ u ∗
H̄ + A # ( ̃ x ) ∇ ξē ! ∇ ξē ] 

= ∫ −
Y ∇(u 0 + u ̄H ) · [ 1 

2 C # ( ̃ x ) ∇(u 0 + u ̄H ) + A # ( ̃ x ) ∇ξē ! ∇ξē ] 
= ∫ −

Y 
{ 

1 
2 ∇ u ̄H · C # ( ̃ x ) ∇ u ̄H + ∇ u 0 · C # ( ̃ x ) ∇ u ̄H + ∇ u ̄H · A # ( ̃ x ) ∇ ξē ! ∇ ξē 

+ ∇ u 0 · [ 1 
2 C # ( ̃ x ) ∇ u 0 + A # ( ̃ x ) ∇ ξē ! ∇ ξē ] } 

= 1 
2 H̄ · C eff ̄H + H̄ · A eff ( ̄e ! ē ) − φ0 ( ̄e ) , (41) 

where the last equality follows from the definitions in (30), (38) and (39) . In addition, by (40) we identify 
φ0 ( ̄e ) = −∫ 

−
Y ∇u 0 · [ 1 

2 C # ( ̃ x ) ∇u 0 + A # ( ̃ x ) ∇ξē ! ∇ξē ] = 1 
2 

∫ 
−

Y ∇u 0 · C # ( ̃ x ) ∇u 0 . (42) 
We reiterate that the variational definition (34) and (35) of the effective electrostrictive coupling tensor A eff is useful, par- 
ticularly for obtaining rigorous bounds on the effective properties. Moreover, it implies the interpretation of the effective 
stiffness tensor C eff and the effective electrostrictive coupling tensor A eff as the linear mappings such that 

C eff ̄H + A eff ( ̄e ! ē ) = ∫ −
Y [ C # ( ̃ x ) ∇u ∗

H̄ + A # ( ̃ x ) ∇ ξē ! ∇ ξē ] , (43) 
which may be regarded as a generalization of the classic Hill’s relation ( Hill, 1963 ) to electrostrictive composites. To see 
this, we differentiate (41) with respect to H̄ . The last line of (41) yields the left-hand side of (43) whereas the first line of 
(41) yields the right-hand side of (43) . 
4. Effective electro-elastic properties of electrets 
4.1. Problem formulation 

We now consider electrets, i.e., electrostrictive composites with pre-doped external immobile charges and dipoles. Let 
(p (δ) , ρ(δ) ) : D → R 3 × R be the density of the external dipoles and charges. Here and subsequently, we drop the superscript 
e on ( p ( δ) , ρ( δ) ) for clarity and tacitly understand that they are “external” source terms for the electric field. Moreover, the 
scaling parameter δ reflects the fine microstructure of the composite as compared with the macroscopic length-scale of the 
domain D . We are interested in the macroscopic behavior of the electret in the asymptotic limit δ → 0. 

For simplicity, we consider electrets with periodic distribution of materials (i.e., (29) ) and external charges and dipoles 
(cf., Remark 5 ): 

(p (δ) , ρ(δ) ) = χD (p̄ + p # ( x δ ) , ρ̄ + 1 
δ ρ# ( x δ ) ), (44) 

where (p # , ρ# ) : R 3 → R 3 × R are Y -periodic functions , χD ( = 1 on D ; = 0 otherwise) is the characteristic function of do- 
main D , and 

∫ 
−

Y (p # , ρ# ) = 0 . 
We remark that the scaling (44) represents the particular physical scenario that the density and magnitude of external 
charges and dipoles are invariant for any subdomain D 1 ⊂ D as δ → 0: 

∫ 
−D 1 (p ( δ) , ρ( δ) ) → ( p , ρ) . (45) 

Also, all multipoles beyond the dipole induced by ( p ( δ) , ρ( δ) ) vanish as δ → 0 ( | α| = α1 + α2 + α3 ): 
∫ 
−

D 1 x α1 
1 x α2 

2 x α3 
3 p (δ) → 0 if | α| ≥ 1 , 

∫ 
−

D 1 x α1 
1 x α2 

2 x α3 
3 ρ(δ) → 0 if | α| ≥ 2 . (46) 

Because of the particular scaling (44) and properties (45) and (46) , the asymptotic fields and energy can be conveniently 
calculated by the method of two-scale convergence. There are, however, physical situations where the scalings (44) may not 
be appropriate ( James and Muller, 1994 ), requiring more careful considerations. 

Without loss of generality, we consider the Dirichlet-type boundary conditions (1) for the electrostatic potential and 
displacement on ∂D . In the regime of “small strain and moderately small electric field”, the local electric field is uncoupled 
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with the elasticity and determined by 

{
div [ −ϵ(δ) ∇ξ (δ) + p (δ) ] = ρ(δ) in D, 
ξ (δ) = ξb on ∂D. (47) 

The electric field induces a Maxwell stress given by A (δ) ∇ ξ (δ) ! ∇ ξ (δ) and henceforth, the mechanical equilibrium equations 
take the form of {

div [ C (δ) ∇u (δ) + A (δ) ∇ξ (δ) ! ∇ξ (δ) ] = 0 in D, 
u (δ) = u b on ∂D. (48) 

In the next three sections, we proceed to the multiscale analysis of (47) and (48) based on the method of two-scale conver- 
gence ( Cioranescu and Donato, 1999; Milton, 2002 ). 
Remark 4. From the viewpoint of the electrostatic problem (47) , a distribution of dipoles p (δ) : D → R 3 is equivalent to a 
distribution of charges ρ′ (δ) = −∇ · (p (δ) χD ) . Conversely, for a given charge distribution ρ(δ) : D → R 3 we can solve for a 
dipole distribution p ′ (δ) : D → R 3 such that 

−∇ · (p ′ (δ) χD ) = ρ(δ) − ρ̄ in D. (49) 
where ρ̄ = ∫ −D ρ(δ) is the average charge distribution. Therefore, if ρ̄ = 0 , there should be no difference in the electric field 
and associated mechanical effect induced by ρ ′ ( δ) and p ( δ) or by ρ( δ) and p ′ ( δ) . 
4.2. Multiscale analysis: Electrostatics 

We first focus on the electrostatic problem (47) . Our goal is to understand the asymptotic limit of the solution ξ ( δ) to 
(47) as δ → 0. According to the formal procedure of multiscale analysis, we introduce the ‘fast variables’ ˜ x = x /δ and write 
the solution ξ ( δ) to (47) as 

ξ (δ) (x ) = ξ (0) (x , ̃  x ) + δξ (1) (x , ̃  x ) + · · · , (50) 
where ˜ x 3→ ξ (i ) (x , ̃  x ) is assumed to be Y -periodic for all i and ∫ −Y ξ (i ) = 0 if i ̸ = 0. Also, from the definition and chain rule, we 
have the relations: 

∇ → ∇ x + 1 
δ
∇ ̃ x , div → div x + 1 

δ
div ̃ x . (51) 

Then the original problem (47) implies the following. First, the leading term is of O ( 1 
δ2 ) : 

1 
δ2 div ̃ x [ϵ# ( ̃ x ) ∇ ̃ x ξ (0) ] = 0 . (52) 

Since ˜ x 3→ ξ (0) (x , ̃  x ) is Y -periodic, a solution to the above equation has to be independent of the fast variable ˜ x : 
ξ (0) = ξ (0) (x ) . 

The next term is of O ( 1 δ ) : 
1 
δ div ̃ x { − ϵ# ( ̃ x )[ ∇ x ξ (0) + ∇ ̃ x ξ (1) ] + p # ( ̃ x ) } = 1 

δ ρ# ( ̃ x ) ∀ (x , ̃  x ) ∈ D × Y, (53) 
which motivates the unit cell problem for ξ (1) 

ē ∈ P 0 and ē ∈ R 3 : 
div ̃ x [ ϵ# ( ̃ x )(−∇ ̃ x ξ (1) 

ē + ē ) + p # ] = ρ# in Y. (54) 
We remark that the unit cell problem (54) determines the local oscillatory electric field −∇ ̃ x ξ (1) as implied by (53) with 
−∇ x ξ (0) = ē at a fixed point x ∈ D . Further, we introduce 

ξ ′ := ξ (1) 
ē − ē · ˜ x − ξē , i . e . , 

ē − ∇ ̃ x ξ (1) 
ē = −∇ ̃ x (ξē + ξ ′ ) , (55) 

where ξē ∈ P ̄e is a solution to the first of (31) . The difference between (54) and (31) implies that ξ ′ ∈ P 0 satisfies 
div ̃ x [ ϵ# ( ̃ x )(−∇ ̃ x ξ ′ ) + p # ] = ρ# in Y. (56) 

It is clear that a solution to (56) is independent of the average electric field ē which. We by 
d̄ ′ = ∫ −

Y [ ϵ# ( ̃ x )(−∇ ̃ x ξ ′ ) + p # ] = ∫ −
Y ϵ# ( ̃ x )(−∇ ̃ x ξ ′ ) . (57) 

Then by (30) 1 , (55) , and (57) , we have 
∫ 
−

Y [ϵ# ( ̃ x )( ̄e − ∇ ̃ x ξ (1) 
ē ) + p # ] = ∫ −

Y {ϵ# ( ̃ x )[ −∇ ̃ x (ξē + ξ ′ )] + p # ( ̃ x ) } = ϵeff ̄e + d̄ ′ , (58) 
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where ϵeff is the effective permittivity tensor defined by (30) 1 . Finally, the O (1)-terms in (47) yield that ∀ (x , ̃  x ) ∈ D × Y, 

div x [ − ϵ# ( ̃ x )[ ∇ x ξ (0) + ∇ ̃ x ξ (1) ] + p̄ + p # ( ̃ x ) ] + div ̃ x [ − ϵ# ( ̃ x ) ∇ ̃ x ξ (2) ] = ρ̄ + ρ# ( ̃ x ) . (59) 
Integrating the above equation over the unit cell Y , by (58) and (47) 2 we obtain the boundary value problem for the macro- 
scopic electric potential ξ (0) : 

{
div x (ϵeff ∇ x ξ (0) + ( ̄p + d̄ ′ ) χD ) = ρ̄ in D, 
ξ (0) = ξb on ∂D. (60) 

Remark 5. For a given composite in applications with RVE of length scale δ0 (0 ̸ = δ0 ≪ 1 is fixed), according to the assump- 
tion (44) the external charge and dipole distributions can be written as 

(ρ(δ0 ) (x ) , p (δ0 ) (x )) = (ρ̄ + 1 
δ0 ρ# ( x 

δ0 
)
, p̄ + p # ( x 

δ0 
))

, ∫ 
−

Y ρ# ( ̃ x ) = 0 . (61) 
From the viewpoint of fundamental physics and taking cognizance of Remark 4 , the microscopic oscillatory electric field 
−∇ ̃ x ξ ′ as determined by (56) can be attributed to an oscillatory charge distribution alone: 

div ̃ x [ ϵ# ( ̃ x )(−∇ ̃ x ξ ′ )] = ˜ ρ# ( ̃ x ) := ρ# ( ̃ x ) − ∇ ̃ x · p # ( ̃ x ) . 
Conversely, if p ′ # satisfies that −∇ ̃ x · (p ′ # ( ̃ x )) = ρ# ( ̃ x ) in Y , we can alternatively attribute the microscopic oscillatory electric 
field to an oscillatory dipole distribution alone 

div ̃ x [ ϵ# ( ̃ x )(−∇ ̃ x ξ ′ ) + ˜ p # ( ̃ x )] = 0 , 
where ˜ p # ( ̃ x ) = p # ( ̃ x ) + p ′ # ( ̃ x ) . 
4.3. Multiscale analysis: Elasticity 

For the elasticity problem (48) , in analogy with the analysis of electrostatic problem (47) we write the solution as 
u (δ) (x ) = u (0) (x , ̃  x ) + δu (1) (x , ̃  x ) + · · · , (62) 

where we recall that ˜ x = x /δ is the ‘fast’ variable and u (n ) (x , ̃  x ) are periodic functions of ˜ x with period Y and ∫ −Y u (n ) = 0 if 
n ̸ = 0. Inserting (62) into (48) 1 , by (51) we obtain the leading O ( 1 

δ2 ) -terms: 
1 
δ2 div ̃ x [ C # ( ̃ x ) ∇ ̃ x u (0) (x , ̃  x )] = 0 ∀ (x , ̃  x ) ∈ D × Y. 

Being periodic in ˜ x , a solution to the above equation has to be independent of ˜ x : 
u (0) = u (0) (x ) . 

Next we collect all the O (1/ δ)-terms: 
0 = 1 

δ div ̃ x { 
C # ( ̃ x )[ ∇ ̃ x u (1) (x , ̃  x ) + ∇ x u (0) (x )] + A # ( ̃ x )(∇ x ξ (0) + ∇ ̃ x ξ (1) ) ! (∇ x ξ (0) + ∇ ̃ x ξ (1) ) } 

. (63) 
In analogy with (53) , the above equation motivates the following unit cell problem for u (1) 

H̄ ∈ U 0 : 
div ̃ x { 

C # ( ̃ x )(∇ ̃ x u (1) 
H̄ + H̄ ) + A # ( ̃ x )( ̄e − ∇ ̃ x ξ (1) 

ē ) ! ( ̄e − ∇ ̃ x ξ (1) 
ē ) } 

= 0 . (64) 
where the average strain H̄ ∈ R 3 ×3 in the unit cell Y can be arbitrarily prescribed. Recall that u ∗

H̄ is defined by (36) . Parallel 
to (55) we introduce 

u ′ = u (1) 
H̄ + H̄ ̃ x − u ∗

H̄ , i . e . , 
∇ ̃ x u (1) 

H̄ + H̄ = ∇ ̃ x (u ∗
H̄ + u ′ ) , (65) 

and by (55) , rewrite (64) as 
div ̃ x { 

C # ( ̃ x )[ ∇ ̃ x (u ∗
H̄ + u ′ )] + A # ( ̃ x )[(∇ ̃ x ξ ′ + ∇ ̃ x ξē ) ! (∇ ̃ x ξ ′ + ∇ ̃ x ξē )] } 

= 0 . (66) 
By (36) we obtain 

div ̃ x { 
C # ( ̃ x ) ∇ ̃ x u ′ + A # ( ̃ x )[ ∇ ̃ x ξ ′ ! ∇ ̃ x ξ ′ + 2 ∇ ̃ x ξ ′ ! ∇ ̃ x ξē ] } 

= 0 . (67) 
Clearly, a solution u ′ ∈ U 0 to the above equation is independent of the average strain H̄ . 



L. Liu, P. Sharma / Journal of the Mechanics and Physics of Solids 112 (2018) 1–24 13 
For convenience in what will follow, we decompose the solution to (67) into two parts, u ′ = u ′ 1 + u ′ 2 , so that u ′ 1 depends 

on ē (linearly) while u ′ 2 is independent of ē . That is 
{ 

div ̃ x [C # ( ̃ x ) ∇ ̃ x u ′ 1 + 2 A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξē )] = 0 , 
div ̃ x [C # ( ̃ x ) ∇ ̃ x u ′ 2 + A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξ ′ )] = 0 . (68) 

Solutions to the above linear differential equations enable us to introduce a third-order tensor B eff and a second order tensor 
σ0 as 

B eff ̄e = ∫ −
Y [C # ( ̃ x ) ∇ ̃ x u ′ 1 + 2 A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξē )] (69) 

and 
σ0 = ∫ −

Y [C # ( ̃ x ) ∇ ̃ x u ′ 2 + A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξ ′ )], (70) 
respectively. From the above definitions, it is clear that ( B eff , σ0 ) are independent of the average electric field and strain 
( ̄e , H̄ ) . 

We now calculate the average stress in the unit cell 
∫ 
−

Y 
{ 

C # ( ̃ x ) [∇ ̃ x u (1) 
H̄ ( ̃ x ) + H̄ ] + A # ( ̃ x ) (ē − ∇ ̃ x ξ (1) 

ē )
!

(
ē − ∇ ̃ x ξ (1) 

ē )} 
= ∫ −

Y 
{ 

C # ( ̃ x ) ∇ ̃ x u ∗
H̄ + A # ( ∇ ̃ x ξē ! ∇ ̃ x ξē ) + C # ( ̃ x ) ∇ ̃ x u ′ + A # ( ̃ x ) [∇ ξ ′ ! ∇ ξ ′ + 2 ∇ ξ ′ ! ∇ξē ]} 

= C eff ̄H + A eff ( ̄e ! ē ) + B eff ̄e + σ0 , (71) 
where the first equality follows from inserting (55) and (65) , and the last equality follows from (43) and (69) . Finally, the 
O (1)-terms of (48) 1 implies that ∀ (x , ̃  x ) ∈ D × Y, 

div x { 
C # ( ̃ x ) [∇ ̃ x u (1) (x , ̃  x ) + ∇ x u (0) (x ) ]

+ A # ( ̃ x ) (∇ x ξ (0) + ∇ ̃ x ξ (1) ) !
(
∇ x ξ (0) + ∇ ̃ x ξ (1) )} 

= 0 . 
Upon integrating over Y , by (71) and (48) 2 we obtain the boundary value problem for the macroscopic displacement u (0) : 

{
div x σ = 0 , in D, 
u (0) = u b on ∂D, (72) 

where 
σ ≡ C eff ∇ x u (0) − B eff ∇ x ξ (0) + A eff (∇ x ξ (0) ! ∇ x ξ (0) ) + σ0 

can be interpreted as the total stress in the electret. 
Remark 6. From the definition (69) , we see that heterogeneity in either elastic properties or dielectric properties is nec- 
essary for a nontrivial effective piezoelectricity tensor B eff . However, the experimental measurements of piezoelectricity of 
electrets also include another contribution which, termed “apparent piezoelectricity”, does not require elastic or dielectric 
heterogeneity. The distinction between these will be carefully discussed in Section 5 . 
4.4. Multiscale analysis: Variational approach 

It is instructive to carry out the multiscale analyses in Sections 4.2 and 4.3 from a variational perspective. Besides being 
useful for rigorous bounds, the variational approach yields relations for effective properties that are convenient for extending 
the present definitions of effective properties to include elastic and electrostatic effects of interfaces. 

We first consider the electrostatic problem (47) and introduce the classical Dirichlet energy functional 
I (δ) [ ξ ] = ∫ 

D 
[ 

1 
2 ∇ ξ · ϵ(δ) ∇ ξ − p (δ) · ∇ξ + ρ(δ) ξ] 

(73) 
By the standard calculation of first variations, we see that (47) is precisely the Euler–Lagrange equation associated with the 
variational principle 

min 
ξ∈H I (δ) [ ξ ] , H := { 

ξ : D → R ∣∣∣ ∫ 
D |∇ξ | 2 < + ∞ , ξ = ξb on ∂D } 

. (74) 
In account of the fine microstructure of the composite, we restrict ourselves to test solutions ξ ( δ) that admit the multiscale 
expansion (50) and recall the identity that for any Y -periodic function ˜ x 3→ f (x , ̃  x ) , 

∫ 
D f 

(
x , x 

δ

)
dx = ∫ 

D 
∫ 
−

Y f (x , ̃  x ) d ̃  x dx + o(1) . (75) 
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Inserting (50) into (73) , by (75) we have 

I (δ) [ξ (δ) ] = 1 
2 δ2 ∫ 

D 
∫ 
−

Y ∇ ̃ x ξ (0) · ϵ# ( ̃ x ) ∇ ̃ x ξ (0) 
+ 1 

δ

∫ 
D 

∫ 
−

Y [∇ ̃ x ξ (0) · (2 ϵ# ( ̃ x ) ∇ x ξ (0) − p # ) + ξ (0) ρ# ] + I 2S [ξ (0) , ξ (1) ] + o(1) , (76) 
where 

I 2S [ξ (0) , ξ (1) ] := ∫ 
D 
[ ∫ 

−
Y 1 

2 (∇ x ξ (0) + ∇ ̃ x ξ (1) ) · ϵ# ( ̃ x ) (∇ x ξ (0) + ∇ ̃ x ξ (1) )
−p # ( ̃ x ) · (∇ x ξ (0) + ∇ ̃ x ξ (1) ) − p̄ · ∇ x ξ (0) + ρ# ξ (1) + ρ̄ξ (0) ] . (77) 

To keep the functional (76) finite as δ → 0, we infer that ∫ −Y |∇ ̃ x ξ (0) | 2 = 0 , i.e., ξ (0) = ξ (0) (x , ̃  x ) must be independent of the 
fast variable ˜ x . Neglecting the higher-order term o (1) in (76) , the variational problem (74) can be recast as 

min 
ξ (0) ∈H min {I 2S [ξ (0) , ξ (1) ] : ξ (1) (x , ̃  x ) is Y -periodic in ˜ x }. (78) 

The inner minimization problem in (78) against microscopic oscillatory electric potential ξ (1) (x , ̃  x ) motivates the following 
definition of unit cell energy functional: 

Q eff ( ̄e ) := min 
ξ∈P 0 

∫ 
−

Y 
[ 

1 
2 ( ̄e − ∇ ̃ x ξ ) · ϵ# ( ̃ x ) ( ̄e − ∇ ̃ x ξ ) + p # ( ̃ x ) · ( ̄e − ∇ ̃ x ξ ) + ρ# ξ] 

. (79) 
It is not hard to see that a solution to the variational problem (79) , denoted by ξ (1) 

ē , will satisfy the associated Euler–
Lagrange equation, i.e., the unit cell problem (54) . Therefore, 

Q eff ( ̄e ) = ∫ −
Y 
[ 

1 
2 (ē − ∇ ̃ x ξ (1) 

ē )
· ϵ# ( ̃ x ) (ē − ∇ ̃ x ξ (1) 

ē )
+ p # ( ̃ x ) · (ē − ∇ ̃ x ξ (1) 

ē )] 

= ∫ −
Y 
[ 

1 
2 ∇ ̃ x (ξē + ξ ′ ) · ϵ# ( ̃ x ) ∇ ̃ x (ξē + ξ ′ ) − p # ( ̃ x ) · ∇ ̃ x (ξē + ξ ′ )] 

= ∫ −
Y 
{ 

1 
2 ∇ ̃ x ξē · ϵ# ( ̃ x ) ∇ ̃ x ξē + ∇ ̃ x ξē · [ϵ# ( ̃ x ) ∇ ̃ x ξ ′ − p # ( ̃ x ) ]} 

+ Q 0 
= 1 

2 ē · ϵeff ̄e + ē · d̄ ′ + Q 0 , (80) 
where the second equality follows from (55) , and the last equality follows from (33) 1 , (57) and the following definition of 
constant Q 0 : 

Q 0 := ∫ −
Y 
[ 

1 
2 ∇ ̃ x ξ ′ · ϵ# ( ̃ x ) ∇ ̃ x ξ ′ − p # ( ̃ x ) · ∇ ̃ x ξ ′ + ρ# ξ ′ ] . 

Comparing the integrands in (79) and (77) , we see that 
min 
ξ (0) ∈H min {I 2S [ξ (0) , ξ (1) ] : ξ (1) (x , ̃  x ) is Y -periodic in ˜ x }

= min 
ξ (0) ∈H 

∫ 
D [Q eff (∇ξ (0) ) − p̄ · ∇ x ξ (0) + ρ̄ξ (0) ]

= min 
ξ (0) ∈H 

{ ∫ 
D 
[ 

1 
2 ∇ x ξ (0) · ϵeff ∇ x ξ (0) − (

d ′ + p̄ ) · ∇ x ξ (0) + ρ̄ξ (0) ] dx + const. } 
, 

from which we observe that the macroscopic electric field −∇ x ξ (0) satisfies the boundary value problem (60) . 
Similarly, for the elastic problem we consider the “linearized” energy functional for the composite body D : 

F (δ) [ u ] = ∫ 
D 
[ 

1 
2 ∇u · C (δ) ∇u + ∇u · A (δ) (∇ξ (δ) ! ∇ξ (δ) )] , (81) 

where ξ ( δ) is the solution to the variational problem (74) or the boundary value problem (47) . By the standard calculation 
of first variations, we see that (48) is precisely the Euler–Lagrange equation associated with the variational principle: 

min 
u ∈W F (δ) [ u ] , W := { 

u : D → R 3 ∣∣∣ ∫ 
D |∇u | 2 < + ∞ , u = u b on ∂D } 

. (82) 
Restricting ourselves to test solutions u ( δ) that admit multiscale expansion (62) , by (81) and (75) we again infer that u (0) = 
u (0) (x , ̃  x ) must be independent of the fast variable ˜ x to keep F ( δ) [ u ( δ) ] finite, and find that 

F (δ) [u (δ) ] = F 2S [u (0) , u (1) ] + o(1) , 
(83) 
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where 

F 2S [ u (0) , u (1) ] : = ∫ 
D 

∫ 
−

Y (∇ x u (0) + ∇ ̃ x u (1) ) ·
[ 

1 
2 C # ( ̃ x ) (∇ x u (0) + ∇ ̃ x u (1) )

+ A # ( ̃ x ) [(∇ x ξ (0) + ∇ ̃ x ξ (1) ) !
(
∇ x ξ (0) + ∇ ̃ x ξ (1) )]] . (84) 

Neglecting the higher-order term o (1) in (83) , the variational problem (82) can be recast as 
min 

u (0) ∈W min {F 2S [u (0) , u (1) ] : u (1) (x , ̃  x ) is Y -periodic in ˜ x }. (85) 
The inner minimization problem in (85) against microscopic oscillatory displacement u (1) (x , ̃  x ) motivates the following def- 
inition of unit cell energy function: 

-eff ( ̄H ; ē ) : = min 
u ∈U 0 

∫ 
−

Y (H̄ + ∇ ̃ x u ) ·
[ 

1 
2 C # ( ̃ x ) (H̄ + ∇ ̃ x u )

+ A # ( ̃ x ) [(ē − ∇ ̃ x ξ (1) 
ē )

!
(
ē − ∇ ̃ x ξ (1) 

ē )]] 
, (86) 

where ξ (1) 
ē satisfies the unit cell problem (54) . A solution to the above variational problem, denoted by u (1) 

H̄ , satisfies the 
associated Euler–Lagrange equation, i.e., the unit cell problem (64) . Therefore, 

-eff (H̄ ; ē ) = ∫ −
Y (∇ ̃ x u ∗

H̄ + ∇ ̃ x u ′ ) ·
[ 

1 
2 C # ( ̃ x ) (∇ ̃ x u ∗

H̄ + ∇ ̃ x u ′ )
+ A # ( ̃ x ) [∇ ̃ x (ξē + ξ ′ ) ! ∇ ̃ x (ξē + ξ ′ )]] 

= : T 0 + T 1 + T 2 = T 0 + -eff 
0 (H̄ ; ē ) + H̄ · (B eff ̄e + σ0 ), (87) 

where the first equality follows from (55) and (65) , and the last equality follows from the following definitions: 
T 0 = ∫ −

Y ∇ u ′ · [ 1 
2 C # ( ̃ x ) ∇ u ′ + A # ( ̃ x ) [∇ ̃ x (ξē + ξ ′ ) ! ∇ ̃ x (ξē + ξ ′ )]] , (88) 

T 1 = ∫ −
Y ∇ ̃ x u ∗

H̄ · [ 1 
2 C # ( ̃ x ) ∇ ̃ x u ∗

H̄ + A # ( ̃ x ) ∇ ̃ x ξē ! ∇ ̃ x ξē ] = -eff 
0 (H̄ , ̄e ) ( cf., (41) ) , (89) 

and 
T 2 = ∫ −

Y ∇ ̃ x u ∗
H̄ · [C # ( ̃ x ) ∇ ̃ x u ′ + A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξ ′ + 2 ∇ ̃ x ξ ′ ! ∇ ̃ x ξē )]

= H̄ · ∫ 
−

Y [C # ( ̃ x ) ∇ ̃ x u ′ + A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξ ′ + 2 ∇ ̃ x ξ ′ ! ∇ ̃ x ξē )]
= H̄ · (B eff ̄e + σ0 ) ( cf., (67) − (69) ) . (90) 

We note that T 0 is independent of H̄ . Comparing the integrands in (86) and (84) , we see that 
min 

u (0) ∈W min {F 2S [u (0) , u (1) ] : u (1) (x , ̃  x ) is Y -periodic in ˜ x } = min 
u (0) ∈W 

∫ 
D -eff (∇u (0) )

= min 
u (0) ∈W 

{ ∫ 
D 
[ 
∇ x u (0) · ( 1 

2 C eff ∇ x u (0) + A eff (∇ x ξ (0) ! ∇ x ξ (0) ) − B eff ∇ x ξ (0) + σ0 )] 
+ C ′ 0 } 

, 
from which we immediately find that the macroscopic displacement u (0) satisfies the boundary value problem (72) . 

In conclusion, upon solving the unit cell problems (53) and (64) or directly the minimization problem (86) , we can 
determine the “effective” internal energy density -eff = -eff ( ̄H , ̄e ) as a function of average strain and electric field ( ̄H , ̄e ) . 
From (41) and (87) , we find that the functional form of the effective energy density has to be of the following form: 

-eff ( ̄H , ̄e ) = 1 
2 H̄ · C eff ̄H + H̄ · A eff ( ̄e ! ē ) + H̄ · B eff ̄e + σ0 · H̄ − φ0 ( ̄e ) + T 0 ( ̄e ) , (91) 

where σ0 is independent of ( ̄H , ̄e ) . Therefore, the fourth-order effective stiffness tensor C eff , third order piezoelectric tensor 
B eff and fourth-order effective electrostrictive tensor A eff can be alternatively defined as 

C eff = ∂ 2 -eff 
∂ ̄H ∂ ̄H 

∣∣∣
( ̄H , ̄e )=0 , B eff = ∂ 2 -eff 

∂ ̄H ∂ ̄e 
∣∣∣
( ̄H , ̄e )=0 , A eff = 1 

2 ∂ 3 -eff 
∂ ̄H ∂ ̄e ∂ ̄e 

∣∣∣
( ̄H , ̄e )=0 . (92) 
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5. The distinction between “apparent” and “effective” piezoelectricity of electrets 

As outlined in the introductory section, experiments and past theoretical works have pointed out that electrets display 
an apparent piezoelectric like effect. In this section, based on the analysis in the preceding sections, we carefully extract the 
piezoelectric properties of electrets and distinguish between “apparent” piezoelectricity—which is not a true bulk property 
in the thermodynamic sense—from “effective” piezoelectricity (which is). 

From the analyses in Section 4.2 –4.4 , we see that the macroscopic electric field and strain of the electret are determined 
by (60) and (72) , respectively. In particular, from (72) we see that the electret is effectively piezoelectric since the term 
−B eff ∇ x ξ (0) can be interpreted as the stress induced by electric field. We also notice that the doped immobile dipoles and 
charges ( p ( δ) , ρ( δ) ) have no influence on the effective permittivity tensor ϵeff, stiffness tensor C eff and electrostrictive tensor 
A eff . The third-order piezoelectric coupling tensor B eff defined by (69) does depend on the microscopic charge density and 
polarization (ρ# , p # ) in the unit cell and microstructure, but is independent of the boundary conditions (1) and the average 
dipole and charge distributions ( ̄p , ρ̄) . 

In an experimental setup, there are additional contributions to the apparent piezoelectricity due to the electrostrictive 
effect that depends on the macroscopic boundary conditions and the average charge and dipole distributions. The reason 
lies in that experiments measure the response of the electret with reference to certain initial state, e.g., the natural state of 
the electret when the body D is placed in space and free from external mechanical and electrical loading on its boundary: 

ξb = 0 and σn = 0 on ∂D, (93) 
where n is the outward unit normal on ∂D . This initial configuration may admit nonzero displacement and electric field 
with respect to the reference state defined by (9) because of the presence of externally doped charges and dipoles. From the 
analysis in prior sections, in particular, (60) and (72) , we see that the macroscopic electric field (denoted by −∇ξ ini ) and 
displacement (denoted by u ini ) in this initial configuration are respectively determined by 

{
div [ϵeff ∇ξ ini + ( ̄p + d̄ ′ ) χD ] = ρ̄ in D, 
ξ ini = ξb = 0 on ∂D, (94) 

and 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

div [ C eff ∇ x u ini − B eff ∇ x ξ ini 
+ A eff (∇ x ξ ini ! ∇ x ξ ini ) + σ0 ] = 0 in D, 

[ 
C eff ∇ x u ini − B eff ∇ x ξ ini 

+ A eff (∇ x ξ ini ! ∇ x ξ ini ) + σ0 ] n = 0 on ∂D. 
(95) 

Next, we consider an applied voltage such that the apparent average electric field in the body is given by ē 0 ∈ R 3 , i.e., the 
following boundary conditions 

ξb = −ē 0 · x and σn = 0 on ∂D. (96) 
Again, by (60) and (72) we infer that the macroscopic electric field (denoted by −∇ξfin ) and displacement (denoted by u fin ) 
in this final configuration are respectively determined by 

{
div (ϵeff ∇ξ fin + ( ̄p + d̄ ′ ) χD ) = ρ̄ in D, 
ξ fin = ξb = −ē 0 · x on ∂D, (97) 

and 
{ 

div [C eff ∇ x u fin − B eff ∇ x ξ fin + A eff (∇ x ξ fin ! ∇ x ξ fin ) + σ0 ] = 0 in D, 
[
C eff ∇ x u fin − B eff ∇ x ξ fin + A eff (∇ x ξ fin ! ∇ x ξ fin ) + σ0 ]n = 0 on ∂D. (98) 

Comparing (94) and (95) with (97) and (98) we see that 
−∇ (ξ fin − ξ ini ) = ē 0 in D, 

and that the change of strain ∇ u chg := ∇ (u fin − u ini ) satisfies the following boundary value problem: 
{ 

div [C eff ∇ x u chg + B eff ̄e 0 − 2 A eff (∇ x ξ ini ! ē 0 ) + A eff (ē 0 ! ē 0 )] = 0 in D, 
[
C eff ∇ x u chg + B eff ̄e 0 − 2 A eff (∇ x ξ ini ! ē 0 ) + A eff (ē 0 ! ē 0 )]n = 0 on ∂D. (99) 

From (99) we may identify the quantity 
B ap = B eff − 2 A eff ∇ξ ini (100) 
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as the apparent piezoelectric tensor of the composite, which in general depends on the position- x if the macroscopic initial 
electric field −∇ξ ini is nonuniform on D . We emphasize that the apparent piezoelectricity arising from the pre-existing 
electric field (i.e., the second term in (100) ) is present even in homogeneous dielectric electrostrictive materials. 

At this point, it is worthwhile to summarize the effects of the doped external immobile charges and dipoles in electrets. 
1. In the absence of external charges and polarization (i.e., p # = ρ# = 0 ), the overall composite behaves like an elec- 

trostrictive material with effective stiffness and electrostrictive tensors as defined by (92) . The determination of the 
effective electrostrictive tensor A eff (cf., (30) 3 or (35) ) requires the solution to the unit cell problems (31) or the vari- 
ational problem (34) , and is independent of the external charges or dipoles. 

2. In the presence of external charges and polarization: 
(
p (δ) , ρ(δ) ) = χD (p̄ + p # (x 

δ

)
, ρ̄ + 1 

δ
ρ# (x 

δ

))
, 

the microscopic oscillatory electric field as determined by (54) depends on the microscopic oscillatory dipole and 
charge densities (p # , ρ# ) but is independent of the average dipole and charge density ( ̄p , ρ̄) . The effective internal 
energy density (91) and the effective tensors defined in (92) (e.g., B eff ), do depend on (p # , ρ# ) but are independent 
of the average ( ̄p , ρ̄) or the macroscopic boundary conditions, e.g., (1) . 

3. If the average polarization and charge density ( ̄p , ρ̄) = 0 , for boundary condition (93) the initial electric field −∇ξ ini 
defined by (94) vanishes, and hence the apparent piezoelectricity coincides with the effective piezoelectricity by (100) . 

4. If the average external dipole and charge densities ( ̄p , ρ̄) are nonzero or the initial macroscopic boundary conditions 
are nontrivial, an important effect lies in that a nonzero macroscopic electric field is present in the initial state (cf., 
(94) ). In this case, the electro-elastic response of the composite with reference to the initial state behaves as a piezo- 
electric material with an apparent piezoelectric tensor B ap given by (100) , which may be nonzero even if B eff = 0 . 
Therefore, one must be careful in interpreting the observed piezoelectricity in the experiments of electrets and differ- 
entiating the two contributions in (100) . 

6. Applications 
The results established in the preceding sections may be used to design next-generation electret materials; espe- 

cially using numerical tools or topology optimization approaches as in the context of conventional piezoelectricity, (cf., 
Nanthakumar et al., 2016 ). Below we present some applications that can be arrived at analytically. 
6.1. Rigorous variational bounds for effective electrostrictive tensors 

As a first application, we derive rigorous bounds for the effective electrostrictive tensors A eff based on our variational 
definition (34) . It will be found convenient to make the following definitions: 

C̄ = ∫ −
Y C # , C̄ H = [ ∫ −

Y C −1 
# ] −1 

the arithmetic and harmonic mean of the elastic property tensor, respectively. It is well-known that the classic Voigt–Reuss 
bounds hold for the effective elastic tensor C eff (cf., (30) , Milton, 2002 ): 

H̄ · C̄ H ̄H ≤ H̄ · C eff ̄H ≤ H̄ · C̄ ̄H ∀ H̄ ∈ R 3 ×3 . 
Also, since the electrostatic problem (31) 1 has to be a priori solved to define the variational principle (34) 1 , we take the 
microscopic electrostatic field −∇ξē , the effective permittivity and elasticity tensors ( ϵeff, C eff ), and the nonnegative qudratic 
function φ0 ( ̄e ) defined by (42) as given quantities in our subsequent calculations. For brevity, we introduce quantities: 

P ̄e = A # ( ̃ x ) ∇ ξē ! ∇ ξē , P̄ ̄e = ∫ −
Y P ̄e , F ̄e = ∫ −

Y C −1 
# P ̄e . (101) 

In addition, we restrict ourselves to ideal dielectric materials with the electric permittivity tensor ϵ and the electrostrictive 
tensor A defined by (25) . From (25) and (30) we find that 

P̄ ̄e = 1 
2 

∫ 
−

Y 
[ 
∇ ξē ! ( ϵ# ∇ ξē ) + ( ϵ# ∇ ξē ) ! ∇ ξē − I ∇ ξē · ( ϵ# ∇ ξē ) ] 

= − I 
2 (ē · ϵeff ̄e ) + 1 

2 
∫ 
−

Y 
[ 
∇ ξē ! ( ϵ# ∇ ξē ) + ( ϵ# ∇ ξē ) ! ∇ ξē ] , 

and hence Tr ̄P ̄e = − 1 
2 ( ̄e · ϵeff ̄e ) in R 3 . 

For a Voigt-type bound on the effective electrostrictive tensor A eff , we choose a particular test strain field ∇u = H̄ for 
the minimization problem (34) 1 and obtain that 
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Fig. 4. An electret of two ideal dielectric materials: (a) A simple laminate, (b) a rescaled unit cell. 
-eff 

0 (H̄ , ̄e ) ≤
∫ 
−

Y H̄ · [ 1 
2 C # ( ̃ x ) ̄H + A # ( ̃ x ) ( ∇ ξē ! ∇ ξē ) ] 

= 1 
2 H̄ · C̄ ̄H + H̄ · ∫ 

−
Y A # ( ̃ x ) ( ∇ ξē ! ∇ ξē ) 

= 1 
2 H̄ · C̄ ̄H + H̄ · P̄ ̄e . 

By (41) we conclude that ∀ H̄ ∈ R 3 ×3 , ē ∈ R 3 , 
H̄ · A eff ( ̄e ! ē ) ≤ 1 

2 H̄ · (C̄ − C eff )H̄ + H̄ · P̄ ̄e + φ0 ( ̄e ) , (102) 
where φ0 ( ̄e ) is defined by (42) . 

For a Reuss-type bound, neglecting the differential constraint on the strain in (34) 1 we have 
-eff 

0 (H̄ , ̄e ) ≥ min { ∫ 
−

Y M ( ̃ x ) · [ 1 
2 C # ( ̃ x ) M ( ̃ x ) + A # ( ̃ x ) ∇ξē ! ∇ξē ] : M ∈ M ̄H } 

, (103) 
where the functional space M ̄H includes all Y -periodic tensor fields with average H̄ : 

M ̄H := { 
M : Y → R 3 is Y -periodic and ∫ −

Y M = H̄ } 
. 

The minimization problem on the right hand side of (103) can be explicitly solved by the method of Lagrange’s multiplier, 
and the minimum is given by 

1 
2 H̄ · C̄ H ̄H + H̄ · C̄ H F ̄e + 1 

2 
[ 

F ̄e · C̄ H F ̄e − ∫ 
−

Y P · C −1 
# P ] . 

Inserting (34) 2 into (103) , we conclude that 
H̄ · A eff ( ̄e ! ē ) ≥ 1 

2 H̄ · (C̄ H − C eff )H̄ + H̄ · C̄ H F ̄e 
+ φ0 ( ̄e ) + 1 

2 
[ 

F ̄e · C̄ H F ̄e − ∫ 
−

Y P · C −1 
# P ] , (104) 

which can be regarded as a lower bound. We remark that tighter bounds on the effective electrostrictive tensor A eff parallel 
to the classic Hashin-Strikman’s bounds can be derived by similar methods used in Liu (2010) . 

We remark that the rigorous bounds (102) and (104) are implicit and microstructure-dependent since the effective ten- 
sors C eff , ϵeff and quantities defined in (101) are unknown. Nevertheless, they still provide important benchmarks for nu- 
merical computations of effective properties for specified microstructures of electrostrictive composites. 
6.2. Effective piezoelectricity of laminated electrets 

In this section we address the two-phase simple laminate as shown in Fig. 4 for which closed-form results are possible. 
The effective electrostrictive tensor for laminates has been explicitly calculated in Tian (2007) , Tian et al. (2012) where 
external charges and dipoles are absent. Earlier works ( Deng et al., 2014a, 2014b; Lefevre and Lopez-Pamies, 2017 ) have 
addressed the effective piezoelectric responses of electrets without differentiating the apparent and effective piezoelectricity. 

Within the rescaled unit cell Y as shown in Fig. 4 (b), we assume that the two layers are made of ideal isotropic dielectric 
elastomers with Lamé constants µα , λα , electric permittivity ϵα , and volume fraction θα (α = 1 , 2) . Without loss of gen- 
erality, we assume that the normal to the layers is aligned with e 1 -direction and the external polarization on each layer is 
given by p αe 1 ( α = 1 , 2 ). From Remark 2 , (26) , the electrostrictive tensor of the two layers is given by A (α) = ϵα

2 T . 
To determine the effective piezoelectricity defined by (69) , we first consider the unit cell electrostatic problem (56) that 

determines the microscopic oscillatory electric field −∇ξ ′ : 
⎧ 
⎪ ⎪ ⎨ 
⎪ ⎪ ⎩ 

d 2 ξ ′ 
dx 2 = 0 if x ∈ (0 , θ1 ) ∪ (θ1 , 1) , 
(
−ϵ1 dξ ′ 

dx + p 1 )∣∣∣
θ1 − = (−ϵ2 dξ ′ 

dx + p 2 )∣∣∣
θ1 + , 

ξ ′ (0) = ξ ′ (1) . 
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A solution to the above equations implies that 

−dξ ′ 
dx = 

⎧ 
⎨ 
⎩ 

θ2 p 2 − p 1 
θ1 ϵ2 + θ2 ϵ1 if x ∈ (0 , θ1 ) , 

−θ1 p 2 − p 1 
θ1 ϵ2 + θ2 ϵ1 if x ∈ (θ1 , 1) . 

Next, we need to calculate the electric field −∇ξē associated with an applied average electric field ē ∈ R 3 that is determined 
by (31) 1 . For a laminate as shown in Fig. 4 (b), (31) 1 implies that 

−∇ξe 1 = 
⎧ 
⎨ 
⎩ 

ϵ2 
θ1 ϵ2 + θ2 ϵ1 e 1 if x ∈ (0 , θ1 ) , 

ϵ1 
θ1 ϵ2 + θ2 ϵ1 e 1 if x ∈ (θ1 , 1) , 

−∇ξe 2 = e 2 in Y. 
Thirdly, we consider the elastic unit cell problem (68) 1 . If ē = e 1 , the source term in (68) 1 is given by 

2 A # (∇ ξ ′ ! ∇ ξe 1 ) = 
⎧ 
⎪ ⎨ 
⎪ ⎩ 

θ2 ϵ1 ϵ2 (p 2 − p 1 ) 
(θ1 ϵ2 + θ2 ϵ1 ) 2 (2 e 1 ! e 1 − I ) if x ∈ (0 , θ1 ) , 

−θ1 ϵ1 ϵ2 (p 2 − p 1 ) 
(θ1 ϵ2 + θ2 ϵ1 ) 2 (2 e 1 ! e 1 − I ) if x ∈ (θ1 , 1) , (105) 

which is constant in each of the layers. Therefore, we expect that the strain as determined by (68) 1 is piecewise constant 
and denoted by 

∇u ′ 1 = {F 1 if x ∈ (0 , θ1 ) , 
F 2 if x ∈ (θ1 , 1) . (106) 

From the compatibility condition, the equilibrium equation (68) 1 , and the fact ∫ −Y ∇u ′ 1 = 0 we obtain that for some vector 
a ∈ R 3 , 

F 1 − F 2 = a ! e 1 , 
( C 1 F 1 − C 2 F 2 ) e 1 = − ϵ1 ϵ2 (p 2 − p 1 ) 

(θ1 ϵ2 + θ2 ϵ1 ) 2 e 1 , 
θ1 F 1 + θ2 F 2 = 0 . (107) 

From the above equations, we immediately find that 
{

F 1 = β1 θ2 e 1 ! e 1 , 
F 2 = −β1 θ1 e 1 ! e 1 , 

β1 = − ϵ1 ϵ2 (p 2 − p 1 ) 
(θ1 ϵ2 + θ2 ϵ1 ) 2 [ θ1 (2 µ2 + λ2 ) + θ2 (2 µ1 + λ1 ) ] . 

Finally, according to the definition (69) 1 we conclude that 
B eff e 1 = ∫ −

Y [C # ( ̃ x ) ∇ ̃ x u ′ 1 + 2 A # ( ̃ x ) (∇ ̃ x ξ ′ ! ∇ ̃ x ξē )]
= β1 θ1 θ2 (C 1 − C 2 ) e 1 ! e 1 
= β1 θ1 θ2 [ 2(µ1 − µ2 ) e 1 ! e 1 + (λ1 − λ2 ) I ] . (108) 

If ē = e 2 , the source term in (68) 1 for is given by 
2 A # (∇ ξ ′ ! ∇ ξe 1 ) = 

⎧ 
⎪ ⎨ 
⎪ ⎩ 

θ2 ϵ1 (p 2 − p 1 ) 
(θ1 ϵ2 + θ2 ϵ1 ) (e 1 ! e 2 + e 2 ! e 1 ) if x ∈ (0 , θ1 ) , 
−θ1 ϵ2 (p 2 − p 1 ) 

(θ1 ϵ2 + θ2 ϵ1 ) (e 1 ! e 2 + e 2 ! e 1 ) if x ∈ (θ1 , 1) , 
Again we consider a solution to (68) 1 of form (106) . By the compatibility condition, the equilibrium Eq. (68) 1 , and ∫ −Y ∇u ′ 1 = 
0 , we obtain that for some vector b ∈ R 3 , 

F 1 − F 2 = b ! e 1 , 
( C 1 F 1 − C 2 F 2 ) e 1 = −(p 2 − p 1 ) e 2 , 
θ1 F 1 + θ2 F 2 = 0 . 

Therefore, the solution to (68) 1 is given by 
∇u ′ 1 = {β2 θ2 e 2 ! e 1 if x ∈ (0 , θ1 ) , 

−β2 θ1 e 2 ! e 1 if x ∈ (θ1 , 1) , β2 = − p 2 − p 1 
µ1 + µ2 . 
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Fig. 5. An electret consisting of a soft matrix with second-phase dipolar inclusions: (a) The overall composite body, (b) a rescaled unit cell. 
Finally, by (69) 1 we find that 

B eff e 2 = β2 θ1 θ2 (C 1 − C 2 )(e 2 ! e 1 ) + θ2 θ1 (ϵ1 − ϵ2 )(p 2 − p 1 ) 
(θ1 ϵ2 + θ2 ϵ1 ) (e 1 ! e 2 + e 2 ! e 1 ) 

= B eff 
122 (e 1 ! e 2 + e 2 ! e 1 ) . 

where 
B eff 

122 = θ1 θ2 (p 2 − p 1 ) [ µ2 − µ1 
µ2 + µ1 + ϵ1 − ϵ2 

(θ1 ϵ2 + θ2 ϵ1 ) 
] 
. 

Remark 7. In practice, it is often more convenient to assess the actuation capability of an electric field by the actuating 
strain. Associated with the actuation stresses (108) and (109) , the strain tensor S e i ∈ R 3 ×3 

sym can be defined as (cf., (99) ) 
C eff S e i + B eff e i = 0 , (109) 

where C eff is the effective stiffness tensor of the electret. In particular, if the constituent materials are incompressible, i.e., 
λα → + ∞ ( α = 1 , 2 ), the associated actuation strain S e i can be found by solving the following algebraic equations: 

C eff S e i + ηI + B eff e i = 0 and Tr S e i = 0 , (110) 
where η is the Lagrange’s multiplier associated with the constraint of incompressibility. From (108) and (110) , we immedi- 
ately find that 

S e 1 = (C eff )−1 B eff e 1 
whereas 

S e 2 = S 12 ( e 1 ! e 2 + e 2 ! e 1 ) , 
S 12 = −θ1 θ2 (p 2 − p 1 )(θ1 µ2 + θ2 µ1 ) 

µ1 µ2 
[ 
µ2 − µ1 
µ2 + µ1 + ϵ1 − ϵ2 

(θ1 ϵ2 + θ2 ϵ1 ) 
] 
. 

Remark 8. Our earlier work ( Deng et al., 2014b ) presented the “effective piezoelectricity” for a finite double layer structure. 
The result (Eq. (37) in Deng et al. (2014b )) includes the apparent piezoelectricity discussed in Section 5 and the structural 
effect of double layers, and hence cannot be directly compared with the effective piezoelectricity obtained in Remark 7 . 
Nevertheless, from (105) we may recover Eq. (37) in Deng et al. (2014b ) if the associated boundary value problem is solved 
(within the same approximation). 
6.3. Effective piezoelectricity of electrets without elastic contrast or dielectric contrast 

In this section, we consider an electret of two-phase materials with single-domain inclusions embedded in a soft ma- 
trix. The permittivity and stiffness tensor of the matrix (resp. inclusion) are given by ϵm (resp. ϵp ) and C m (resp. C p ). For 
simplicity, we assume that the inclusions are uniformly polarized with polarization p s , which is a given constant vector and 
independent of the electric field. As illustrated in Fig. 5 , let Y be the rescaled unit cell and 2p ⊂ Y be the (rescaled) polarized 
inclusion, and denote by χp (resp. χm ) the characteristic function of the domain 2p (resp. R 3 \ 2p ), i.e., 

χp = {1 in 2p , 
0 in Y \ 2p ; χm = {0 in 2p , 

1 in Y \ 2p . 
To find the effective properties of this electret material, we first need to consider the electrostatic problems, and solve 

the unit cell problem (56) for ξ ′ ∈ P 0 induced by the external polarization p s : 
div [−( ϵm χm + ϵp χp ) ∇ξ ′ + p s χp ] = 0 , (111) 

and the unit cell problem (31) 1 for ξē ∈ P ̄e associated with the average electric field ē ∈ R 3 : 
div [ −( ϵm χm + ϵp χp ) ∇ξē ] = 0 . (112) 

Then we solve the elastic unit cell problem (68) 1 for microscopic periodic strain ∇u ′ 1 : 
div (C # ∇u ′ 1 + σ(e ) ) = 0 , (113) 
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where C # = C p χp + C m χm , 2 A # = ϵ# T , ϵ# = ϵm χm + ϵp χp , and 

σ(e ) ≡ ϵ# T (∇ ξ ′ ! ∇ξē ). (114) 
Physically, σ( e ) can be interpreted as an eigenstress induced by electric fields in the context of Eshelby’s inclusions prob- 
lem ( Eshelby, 1957 ). 

According to the definition (69) , the effective piezoelectricity tensor is given by 
B eff ̄e = ∫ −

Y [C # ∇u ′ 1 + σ(e ) ]. (115) 
The boundary value problems (111) –(113) are all linear and can be conveniently solved by a numerical approach. In particu- 
lar, if there is neither elastic contrast (i.e., C p = C m ) nor dielectric contrast (i.e., ϵp = ϵm ), we immediately see that B eff ≡ 0 
as mentioned in Remark 6 . Closed-form expressions for B eff seem to be elusive if both elastic and dielectric contrasts exist, 
except for simple laminates discussed in the last section. However, if one of the contrasts vanishes, we can find closed-form 
formulae of B eff for some special microstructures and some interesting exact relations between the effective tensors B eff , 
A eff , C eff and ϵeff. 
6.3.1. No elastic contrast 

If there is no elastic contrast, i.e., C p = C m , from (115) we see that 
B eff ̄e = ∫ −

Y σ(e ) = ∫ −
Y 2 A # (∇ ξ ′ ! ∇ξē ), (116) 

and hence it is unnecessary to solve the elastic unit cell problem (113) . Moreover, comparing (111) and (112) , we find that 
the two solutions are related by 

−∇ ξ ′ = −∇ ξē − ē if p s = (ϵp − ϵm ) ̄e . (117) 
By (43) , since C eff = C m = C p the effective electrostrictive tensor A eff satisfies that 

A eff ( ̄e ! ē ) = ∫ −
Y A # ∇ ξē ! ∇ ξē . (118) 

Setting ē = p s /p s ( p s = | p s | ) and comparing (116) and (118) , by (117) we see the solution to (116) satisfies 
∇ ξ ′ = p s 

ϵp − ϵm ( ∇ ξē + ē ) . 
Therefore, by (116) we obtain the following exact relation between B eff , A eff and ϵeff when ē = p s /p s : 

B eff ̄e = 2 p s 
ϵp − ϵm 

∫ 
−

Y A # [ ( ∇ξē + ē ) ! ∇ξē ] 
= p s 

ϵp − ϵm [2 A eff ( ̄e ! ē ) − T (ē ! ϵeff ̄e )]. (119) 
Further, taking trace of (116) we obtain 

Tr (B eff ̄e ) = −∫ 
−

Y ∇ ξ ′ · ϵ# ∇ξē = 0 ∀ ̄e ∈ R 3 . (120) 
We emphasize that the exact relations (119) and (120) are valid for any microstructure. 
6.3.2. No dielectric contrast 

If there is no dielectric contrast, i.e., ϵp = ϵm , we see that a solution to the unit cell problem (112) for a constant vector 
ē ∈ R 3 is given by 

−∇ξē = ē in Y, 
and that a solution to (111) is given by 

ξ ′ = 1 
ϵm p s · ∇u, 

where u is a Y -periodic potential that satisfies 
!u = (1 − θ1 ) χp − θ1 χm in Y, 

and θ1 is the volume fraction of the inclusion phase. Therefore, the gradient satisfies 
∇ξ ′ | ∂2−

p = 1 
ϵm Q −p s , (121) 

∇ξ ′ | ∂2+ 
p = 1 

ϵm Q + p s = 1 
ϵm [ Q −p s − (n · p s ) n ] , 
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where Q := ∇ ∇ u is the second gradient of the potential u , Q − = Q | ∂2−

p (resp. Q + = Q | ∂2+ 
p ) represents the interior (resp. 

exterior) boundary value, n is the outward unit normal on ∂2p , and the last equality in (121) follows from [[ Q ]] | ∂2p = 
−n ! n . 

Next, we consider the elastic unit-cell problem (113). It is clear that 
∫ 
−

Y σ(e ) = ∫ −
Y 2 A # (∇ ξ ′ ! ∇ ξē ) = ϵm T [ −∫ 

−
Y ∇ξ ′ ! ē ] = 0 , (122) 

and that both ξ ′ and ξē are harmonic except at the interface ∂2p , i.e., ξ ′ 
, j j = 0 and (ξē ) , j j = 0 in R 3 \ ∂ 2̄p . Therefore, 

σ (e ) 
i j, j = ϵm [ξ ′ 

,i j (ξē ) , j + ξ ′ 
, j (ξē ) ,i j − ξ ′ 

,ki (ξē ) ,k − ξ ′ 
,k (ξē ) ,ik ] = 0 in Y \ ∂2p . (123) 

In other words, div σ(e ) = 0 if restricted to the interior or the exterior of the domain 2p . Therefore, the eigenstress σ( e ) is 
equivalent to an interfacial traction given by 

t (s ) := [[ σ(e ) ]] n ∣∣∣
∂2p = (σ(e ) ∣∣∣

∂2+ 
p − σ(e ) ∣∣∣

∂2−
p 
)

n . 
We now calculate the interfacial traction t ( s ) . Restricted to the interior of 2p , we have 

σ(e ) ∣∣∣
∂2−

p = −T [ (Q −p s ) ! ē ] . 
Moreover, restricted to the exterior of 2p we find that (cf., (121) ) 

σ(e ) ∣∣∣
∂2+ 

p = −T [ (Q + p s ) ! ē ] = −T [ (Q −p s ) ! ē − (n · p s ) n ! ē ] . 
Therefore, the interfacial traction is given by 

t (s ) = [[ σ(e ) ]] n ∣∣∣
∂2p = T [ (n · p s ) n ! ē ] n = ( ̄e ! p s ) n = σ∗n , (124) 

where σ∗ = ē ! p s . From (123) and (124) , we see that the elastic unit-cell problem (113) is equivalent to 
div (C # ∇u ′ 1 + σ(e ) ) = div (C # ∇u ′ 1 − σ∗χp ) = 0 . (125) 

Upon solving the above equation with periodic boundary conditions, we can define a linear mapping D : R 3 ×3 → R 3 ×3 such 
that 

D σ∗ = 1 
1 − θ1 

∫ 
−

2p ∇u ′ 1 . (126) 
Then from the definition (69) we find that 

B eff ̄e = ∫ −
Y [C # ∇u ′ 1 + σ(e ) ] = ∫ −

Y {C m ∇u ′ 1 + [(C p − C m ) ∇u ′ 1 ]χp }
= (C p − C m ) ∫ −

Y (∇u ′ 1 ) χp = θ1 (1 − θ1 )(C p − C m ) D σ∗, (127) 
where C m (resp. C p ) is the stiffness tensor of the matrix (resp. inclusion), the second equality follows from (122) , and the 
last equality follows from (126) . 

Finding the tensor D defined in (126) in general requires solving the periodic inhomogeneous Eshelby inclusion problem 
(125) . There are two scenarios that are of particular interest. 
1. If σ∗ ∈ R 3 ×3 

sym and there is an average symmetric strain H̄ ∈ R 3 ×3 
sym such that (C p − C m ) ̄H = −σ∗, then (125) is equivalent 

to 
div [C # (∇u ′ 1 + H̄ )] = div [C # ∇u ′ 1 + χp ( C p − C m ) ̄H ) ] = 0 . 

From the definition of the effective stiffness tensor (30) 2 , we have 
C eff ̄H = ∫ −

Y C # (∇u ′ 1 + H̄ ) = ∫ −
Y χp (C p − C m ) ∇u ′ 1 + C̄ ̄H 

= θ1 (1 − θ1 )(C p − C m ) D σ∗ + C̄ ̄H . 
Therefore, by (127) we find that 

B eff ̄e = θ1 (1 − θ1 )(C p − C m ) D σ∗ = (C eff − C̄ ) ̄H 
= −(C eff − C̄ )(C p − C m ) −1 σ∗. 

In other words, if ē = p s /p s , the effective piezoelectric response is directly related with the effective elasticity tensor as 
B eff ̄e = −p s (C eff − C̄ )(C p − C m ) −1 ( ̄e ! ē ) . (128) 
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The above closed-form formula relating the effective piezoelectricity tensor and effective elasticity tensor can be regarded 
as an exact relation which is quite extraordinary (cf. Milton, 2002 ). We refer the reader to the following references and 
citations therein for a discussion on exact relations in the context of conventional piezoelectricity: ( Benveniste, 1994; 
Benveniste and Milton, 2004 ). 
In the case that the microstructure is a simple laminate along ē -direction, we can explicitly find C eff , and hence the 
effective piezoelectricity tensor as ( µ1 , λ1 , θ1 (resp. µ2 , λ2 , θ2 ) are the Lamé constants and volume fraction of the 
particle (resp. matrix phase)) 

B eff ̄e = −p s θ1 θ2 [ 2(µ1 − µ2 ) e 1 ! e 1 + (λ1 − λ2 ) I ] 
θ1 (2 µ2 + λ2 ) + θ2 (2 µ1 + λ1 ) , 

which agrees with our earlier result (108) . 
2. In the dilute limit, we assume the domain 2p is of the shape of an ellipsoid and the unit cell problem is well ap- 

proximated by the model of a single inclusion embedded in an infinite matrix. As is well-known in elasticity, the in- 
homogeneous problem (125) admits a closed form solution, namely, the Eshelby-Walpole’s solution. For the coordinate 
system aligned with the principle axes of the ellipsoid, the D -tensor is explicitly given by Eshelby (1957) , Walpole (1991) , 
Liu et al. (2006) : 

D = (S −1 + C p − C m )−1 
, (129) 

S piq j = 1 
4 π

∫ 
S 2 

det (5) N pq ( ˆ k )ˆ k i ̂  k j 
| 5 ˆ k | 3 d ̂  k , 

where S 2 is the unit sphere in R 3 , N pq ( ̂  k ) is the inverse matrix of the matrix (C m ) piq j ̂  k i ̂ k j , i.e., N pr ( ̂  k ) L riq j ̂  k i ̂ k j = δpq , and 
5 = diag[ a 1 , a 2 , a 3 ] ( a 1 , a 2 , a 3 is the half axis-lengths of the ellipsoid 2p ). From (129) we can immediately obtain the 
effective piezoelectricity tensor by (127) . 

7. Summary of the key observations and insights 
We have presented a careful study of the effective electroelastic properties of electret materials–materials that have 

embedded immobile external charges and/or dipoles. We briefly summarize our results below: 
1. Electret materials exhibit a measurable piezoelectric response as has been demonstrated by several experimental works. 

We have highlighted that only part of that response reflects a true “effective piezoelectric” property and should be 
distinguished from a separate contribution, termed “apparent” piezoelectricity that depends on the structural boundary 
conditions and is not a true thermodynamically defined bulk property. We provide general relations for both the effective 
and apparent piezoelectric response of electrets which can now serve as the basis for future numerical calculations and 
approximate analytical solutions for specific microstructures. 

2. We establish rigorous variational bounds for electret materials that can serve as important benchmark for future numer- 
ical computations. 

3. For the case of laminate microstructure, we obtain explicit closed-form expressions for the effective electromechanical 
properties of electrets. 

4. We find that, for an “effective” piezoelectric response, heterogeneity in either the elastic or dielectric properties is nec- 
essary. This is not the case for the contribution of the “apparent” piezoelectricity. 

5. Very few results exist in the theory of composites that are considered exact i.e. microstructure-independent. We find 
some remarkable (and unexpected) exact results in the theory of effective properties of electrets if either the elastic or 
dielectric contrast vanish. 

6. Although the coupled problem we have considered is nonlinear, we have worked within the small-deformation theory. 
Consideration of large deformation is a rather challenging endeavor—at least analytically—and should be an interesting 
future research avenue. 
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