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In this chapter we present a nonlinear continuum theory of flexoelectric-
ity. Due to the scaling of strain gradients with structural feature size,
flexoelectricity is expected to show a strong size dependency in elec-
tromechanical coupling. Aside from several illustrative and pedagogical
boundary value problems, we present examples that highlight the appli-
cations of flexoelectricity e.g. creation of piezoelectric materials without
using piezoelectric materials, energy harvesting, soft active materials and
biological membranes.

1. Introduction

Recently, a somewhat understudied electromechanical coupling, flexoelec-

tricity, has attracted a fair amount of attention from both fundamental and

applications points of view leading to intensive experimental1–9 and theo-

retical10–22 activity in this topic. To understand flexoelectricity better, it
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is best first to allude to the central mathematical relation that describes

piezoelectricity:

Pi ∼ dijkεjk (1)

In equation (1), the polarization vector Pi is related to the second order

strain tensor εjk through the third order piezoelectric material property

tensor dijk. Tensor transformation properties require that under inversion-

center symmetry, all odd-order tensors vanish. Thus, most common crys-

talline materials, e.g. Silicon, and NaCl are not piezoelectric whereas ZnO

and GaAs are. Physically, however, it is possible to visualize how a non-

uniform strain or the presence of strain gradients may potentially break

the inversion symmetry and induce polarization even in centrosymmetric

crystals.23–27 This is tantamount to extending relation (1) to include strain

gradients:

Pi ∼ dijkεjk + fijkl
dεjk
dxl

(2)

where fijkl are the components of the so-called flexoelectric tensor. While

the piezoelectric property is non-zero only for selected materials, the strain

gradient-polarization coupling (i.e. flexoelectricity tensor) is in principle

non-zero for all (insulating) materials. This implies that under a non-

uniform strain, all dielectric materials are capable of producing a polariza-

tion.28 The flexoelectric mechanism is well-illustrated by the non-uniform

straining of a graphene nanoribbon—a manifestly non-piezoelectric mate-

rial (Fig.1(a)).22,29 As another widely studied two dimensional soft mate-

rials, biological membranes also show flexoelectricity (Fig.1(b)).30–32 Flex-

oelectricity has been experimentally confirmed in several crystalline ma-

terials such as NaCl, ferroelectrics like Barium Titanate among others.8,9

Recent works, some of which are summarized elsewhere in this book, have

provided important insights into the atomistic origins of flexoelectricity in

crystalline solids.12,33–39 The mechanisms of flexoelectricity in polymers

(while experimentally proven) still remain unclear40–42 and atomistic mod-

eling (being conducted by the authors) is expected to shed light on this

issue in the near future. We speculate that the presence of frozen dipoles

and their thermal fluctuations is the cause of flexoelectricity in soft mate-

rials, however, we cannot offer a more definitive explanation at this point

and simply emphasize that this phenomenon has been experimentally con-

firmed40–42 and further elucidation is a subject of future research.
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Fig. 1. Flexoelectricity in membranes. (a) Bending of graphene: upon bending, the

symmetry of the electron distribution at each atomic site is broken, which leads to
the polarization normal to the graphene ribbon; An infinite graphene sheet is semi-

metallic however finite graphene nanoribbons can be dielectric depending upon surface

termination. (b) Bending of a lipid bilayer membrane: Due to bending, both the charge
and dipole densities in the upper and lower layers become asymmetric. This asymmetry

causes the normal polarization in the bilayer membrane. Reprinted with permission from

ELSEVIER.43 Copyright 2014.

Flexoelectricity results in the size-dependency of electromechanical cou-

pling and researchers (including us) have advocated several tantalizing ap-

plications that can result through its exploitation. For example, the no-

tion of creating piezoelectric materials without using piezoelectric materi-

als,9,17,18,29 giant piezoelectricity in inhomogeneously deformed nanostruc-

tures,13,15 enhanced energy harvesting,14,16 the origins of nanoindentation

size effects,20 renormalized ferroelectric properties,6,10,11,44 the origins of

the dead-layer effect in nano capacitors45 among others. In fact, Chan-

dratre and Sharma29 have recently shown that graphene can be coaxed

to behave like a piezoelectric material merely by creating holes of certain

symmetry. The artificial piezoelectricity thus produced was found to be

almost as strong as that of well-known piezoelectric substances such as

quartz. Such a constructed graphene nano ribbon may be considered to

be the thinnest known piezoelectric material. We briefly elaborate on this

notion (Fig. 2). Consider a material consisting of two or more different

non-piezoelectric dielectrics—as a concrete example that has been studied

in the past we may think of a (dielectric) graphene nano ribbon impreg-

nated with holes (Fig.2(a)).29 Upon the application of uniform stress, dif-

ferences in material properties at the interfaces of the materials will result

in the presence of strain gradients. Those gradients will induce polariza-

tion due to the flexoelectric effect. As long as certain symmetry rules are
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followed, the net average polarization will be nonzero. Thus, the artificially

structured material will exhibit an electrical response under uniform stress

behaving therefore like a piezoelectric material. The length scales must be

“small”since this concept requires very large strain gradients and those for

a given strain are generated easily only at the nanoscale. Here we mention

that the precise scale at which this effect becomes prominent depends on

the strength of the flexoelectric coefficients. For several materials studied,

sub-10 nm characteristic length scales are required albeit (as this study

will also show) this effect can also manifest with feature size of less than a

micron. Regarding symmetry: Topologies of only certain symmetries can

realize the aforementioned concept. For example, circular holes distributed

in a material will not yield apparently piezoelectric behavior even though

the flexoelectric effect will cause local polarization fields. Due to circular

symmetry, the overall average polarization is zero. A similar material but

containing triangular shaped holes (or inclusions) for example, and aligned

in the same direction, will exhibit the required apparent piezoelectricity. In

a similar vein, a finite bilayer or multilayer configuration may also be used

(Fig.2(b))–see discussions in.18

Fig. 2. Creating a piezoelectric material without using piezoelectric materials. (a) A

material with a second phase, under a uniform stress, will produce local strain gradients

and hence local polarization due to flexoelectricity. If the shape of the second phase is
non-centrosymmetrical, the average polarization will be non-zero as well thus, from a
macroscopic viewpoint, exhibiting a piezoelectric like effect. In this figure, this concept

is illustrated by riddling a sheet with triangular holes. Such a sheet, with circular holes
will yield a net zero average polarization. (b) The concept may also be realized by

using a superlattice of differing materials. However, here care must be taken. A bilayer

superlattice will result in a zero average polarization and (c) a trilayer superlattice is
required to break the requisite symmetry. Nevertheless, finite bilayers (due to symmetry
breaking at the free surfaces) will produce this effect. Reprinted with permission from

ELSEVIER.43 Copyright 2014.
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In this chapter we present a nonlinear continuum framework for flex-

oelectricity. It is worthwhile to mention that in finite dielectrics, because

of the breaking of symmetry at the surfaces and interfaces, the so-called

surface flexoelectric and piezoelectric effects may also play an important

role.24,46–48 However, in our current framework, we have just considered

bulk flexoelectricity and ignored surface effects. In addition to the discus-

sions by Tagantsev and others,24,46–48 a recent work by one of us has also

highlighted some aspects of this surface behavior.49 Through the solution

to various illustrative boundary value problems, we highlight the notable

features and the applications of the presented framework. In Section 2, the

governing equations and the associated boundary conditions are derived. In

Section 3, we illustrate the notion of creating piezoelectric materials with-

out using piezoelectric materials by solving the boundary value problem

of a thin film layered superlattice structure. In Section 4, we present the

solution of a truncated cone under uniaxial compression. This solution is

useful in the experimental extraction of flexoelectric properties. In Section

5, we consider the bending and dynamical vibration of a beam and impli-

cations for energy harvesting are explored. In Section 6, we analyze the

flexoelectric response of a biological membrane and finally, in Section 7, we

consider nonlinear effects in the context of flexoelectricity in soft materials.

2. Continuum Theory of Flexoelectricity

2.1. Continuum kinematics

Consider a deformable continuum body as shown in Fig. 3. Let the three-

dimensional region occupied by the undeformed body be denoted ΩR, with

the boundary ∂ΩR. The position of a material point A in ΩR can be de-

scribed by the coordinate system XK (K = 1, 2, 3). After deformation

χ, the material point A(XK) moves to the new position a(xk), where xk
(k = 1, 2, 3) denotes a new coordinate system associated with the deformed

body that occupies the region Ω. These two coordinate systems need not

be identical. In traditional continuum mechanics, we call XK the mate-

rial or Lagrangian coordinates and xk the spatial or Eulerian coordinates.

Three base vectors for material coordinate system and the spatial coordi-

nate system are respectively denoted by IK and ik.The deformation χ may

be understood as a mapping from the material coordinates to the spatial

coordinates, χ = x(X). We will also refer to the undeformed body as the

reference configuration and the deformed body as the current configura-
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tion. In this chapter, all the quantities in the reference configuration are

denoted by capital letters and the lower-case letters are used to describe

those quantities in the current configuration.

Based on the above setup, the deformation gradient FkK ≡ xk,K =

∂xk/∂XK is introduced here. In the rest of this chapter, for the convenience

of presentation, we use “,K” and “, k” to represent the partial derivatives

with respect to the coordinates XK and xk, respectively. Unless specified

otherwise, the Einstein summation convention is applied throughout the

chapter. The determinant of the deformation gradient is the so-called Ja-

cobian which is denoted by J ≡ det(xk,K). This scalar field describes the

change of a infinitesimal volume dV after deformation through the rela-

tionship dv = JdV . Thus the mass density field ρ0(XK) of the undeformed

body is related to its counterpart ρ(xk(XK)) in the deformed body by

ρ0(XK) = Jρ(XK) due to the assumption of local mass conservation. A

similar relationship also holds between the charge density field ρe0(XK) and

ρe(xk(XK)), ρe0(XK) = Jρe(XK).

Fig. 3. (a) Reference and (b) current configurations.

2.2. Maxwell’s equations

To account for energies associated with electric fields and loading devices,

we shall first solve for the electric field via the Maxwell equations, i.e., the

electric field ek = −φ,k in the current configuration is determined by

dk,k = ε0ek,k + pk,k + pek,k = ρe (3)

where φ is the electrostatic potential, dk = ε0ek + pk + pek is the electric

displacement field, ε0 is the permittivity of free space, pk is the intrinsic
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polarization, pek is the external polarization and ρe is the external charge

density. By external we refer to polarization or charge density that does not

change during the deformation or electrical stimulus process. In standard

electrostatics textbooks, in the context of charge, this would be identical

to the so-called free-charge.

Before proceeding further, it is worthwhile to examine our use of the

notion of a polarization density field. While this is fairly standard in clas-

sical continuum mechanics (as evident in most field theory papers cited in

this chapter), recent developments in the physics literature, in the context

of periodic solids, have brought to light the fact that the polarization den-

sity field depends on the choice of the unit cell. The reader is referred to

the paper by Resta and Vanderbilt50 and references therein for a detailed

discussion on this matter and how the concept of the so-called Berry phase

has been used to resolve this controversy. Notwithstanding this and other

related works, we wish to point out a very important observation made

by Marshall and Dayal:51 If we start with a finite periodic solid and then

examine its limit (to an infinite size) correctly accounting for surface and

bulk bound charges, the physically relevant quantities (such as the energies

and forces) are uniquely determined—independent of the choice of the unit

cell used to compute the polarization field density. A different choice of the

unit cell will lead to a different polarization density field. However, cor-

responding to this change in the bulk bound charges, the surface charges

will change accordingly to yield exactly the same electric field and energy.

Marshall and Dayal51 draw an analogy analogy of this situation to the def-

inition of the strain field. Calculation of the strain field depends on the

choice of the reference configuration. Nevertheless, as long as the calcula-

tions are then carried out consistently, the physically relevant quantities,

such as the change in the elastic energy, are uniquely determined.

It is known that the electric field ek, polarization pk, and even charge

density ρe can experience a change due to the deformation of the dielectric

material. This renders the variational calculations of the field equations

a bit tedious. To facilitate such calculations, it is beneficial to pull back

all field quantities to the reference configuration (prior to deformation).

Particularly in the case of polarization and other electrical quantities, this is

a mathematical artifact but a useful one—-and a standard one in continuum

mechanics of electromechanical deformable media. The quantities after the
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pull-back are given by:

EK = ekxk,K , PK = JpkαkK ,

DK = JXK,kdk, P eK = JpekαkK ,

ρe0 = Jρe (4)

where αkK = ik ·IK is called the shifter which may be viewed as the rotation

from the coordinate frame IK to ik.

Upon a change of variables, in the reference configuration, we can

rewrite the Maxwell equations (3) as

DK,K = (ε0JXK,kXL,kEL +XK,kαkLPL +XK,kαkLP
e
L),K = ρe0 (5)

where DK = JXK,kdk = ε0JXK,kXL,kEL+XK,kαkL(PL+P eL) is the nom-

inal electric displacement which corresponds to the electric displacement if

there is only electric field but no deformation applied to the dielectric body.

The identity52 (JXK,k),K = 0 is used to obtain the last equality of (5).

2.3. Free energy of an electromechanical system

To model flexoelectricity, we postulate that the internal/stored energy of

the system is given by

U [xk, PK ] =

∫
ΩR

ψ(FkK , GkKL, PK ,ΠKL) (6)

where GkKL = xk,KL and ΠKL = PK,L correspond to the gradient of defor-

mation gradient FkK and the nominal polarization PK , respectively. Note

that if we remove the dependency of the internal energy on the terms GkKL
and ΠKL, our formulation will reduce to classical elasticity of soft dielectric

materials.52,53 As will be shown later in this section, the dependence of the

internal energy on GkKL = xk,KL and ΠKL = PK,L, leads to high order

flux terms that enter both the Euler-Lagrange equations and the boundary

conditions.

The boundary conditions also contribute to the free energy of the de-

formable dielectric system. Fig.4 depicts the schematic of the problem

where the (generally possible) electrical and mechanical boundary condi-

tions are indicated. For this system, we identify the total free energy of the

system as54

F [xk, PK ] = U [xk, PK ] + εelect[xk, PK ] + Pmech[xk] (7)
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Fig. 4. A deformable dielectric system with electrical and mechanical boundary condi-

tions (N̂ denotes the normal vector of ∂V ∗R).

where

εelect[xk, PK ] =
ε0
2

∫
Ω+V ∗

ekekdv +

∫
ΓD

φbNKDKdA (8)

is the total electric energy associated with the electric field and the bound-

ary electric device, V ∗ is the space outside the body Ω, ΓD is the Dirichlet

boundary where the potential is set to φb, nk is the normal vector of ΓD,

and

Pmech[xk] = −
∫
SN

teKxkαKkdA−
∫

ΩR

BeKxkαKkdV (9)

is the potential energy of mechanical loading with teK being the surface

traction applied on SN and BeK being the applied body force.

It is also worthwhile to mention that, for given polarization pk, we

can solve the Maxwell equation (3) with boundary conditions for a unique

electric field ek, and hence the electric energy (8) is well defined.

2.4. Governing equations

By the principle of minimum free energy, the equilibrium state of the system

is determined by

min
(xk,PK)∈S

F [xk, PK ] (10)
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with the constraint of Maxwell equation (3) or (5), where S is a suitable

space for the state variables such that sufficient smoothness and bounded-

ness is ensured.

To find the Euler-Lagrange equations associated with a minimizer (10),

we consider variations of

(1) polarization

xk → xk, PK → PK + δQK (11)

(2) deformation

xk → xk + δuk, PK → PK (12)

where δ is a small number which controls the magnitude of the variations,

QK and uk are admissible variations of the field variables PK and xk,

respectively.

We first consider the variation of polarization (11). Standard variational

calculations yield:

d

dδ
F [xk, PK + δQK ]|δ=0

=
d

dδ
U [xk, PK + δQK ]|δ=0 +

d

dδ
εelect[xk, PK + δQK ]|δ=0

= 0 (13)

Physically, the variation of polarization PK should result in the change

of pk, ek, dk, EK , DK , and φ because of the Maxwell equations and the

pull back relationships (3)-(5). This implies that the variation QK results

in:

pk → pk + δp̃k + o(δ), φ→ φ+ δφ̃+ o(δ),

ek → ek + δẽk + o(δ), dk → dk + δdk + o(δ),

EK → EK + δẼK + o(δ), DK → DK + δDK + o(δ).

Furthermore, the following equations are valid for their leading order

terms p̃k, ẽk, d̃k, ẼK , D̃K and φ̃:

d̃k = ε0ẽk + p̃k, d̃k,k = 0,

p̃k = J−1αkKQK , ẼK = ẽkxk,K ,

D̃K = JXK,kd̃k, ẽk = φ̃,k.
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Using divergence theorem, we can rewrite the first term in the RHS of

(13) in the following form

d

dδ
U [xk, PK+δQK ]|δ=0 =

∫
ΩR

[
∂ψ

∂PK
−(

∂ψ

∂ΠKL
),L]QKdV+

∫
∂ΩR

∂ψ

∂ΠKL
QKNLdA

(14)

where NL represents the normal vector of the boundary ∂ΩR.

The Dirichlet boundary ΓD, where the electric potential is specified, is

the boundary for both ΩR and V ∗R. By divergence theorem, the second

term in the RHS of (13), the variation of electric energy, can be written as

d

dδ
εelect[xk, PK + δQK ]|δ=0 =

∫
Ω+V ∗

(ε0ekẽk)dv +

∫
ΓD

φbNKD̃KdA

=

∫
Ω+V ∗

(ε0ekẽk)dv +

∫
ΩR+V ∗

R

(φD̃K),KdV

=

∫
Ω+V ∗

(ε0ekẽk)dv +

∫
Ω+V ∗

(φd̃k),kdv

=

∫
Ω+V ∗

(−ekp̃k)dv

=

∫
Ω

(−ekp̃k)dv

=

∫
ΩR

(−XL,kELαkKQK)dV. (15)

Then the first Euler-Lagrange equation and the associated boundary

conditions can be obtained by substituting (14) and (15) into (13){
∂ψ
∂PK
− ( ∂ψ

∂ΠKL
),L −XL,kELαkK = 0 in ΩR

∂ψ
∂ΠKL

NL = 0 on ∂ΩR
(16)

Now we consider the variation of deformation (12). The variational

calculations for this case lead to

d

dδ
F [xk + δuk, PK ]|δ=0 =

d

dδ
U [xk + δuk, PK ]|δ=0 +

d

dδ
εelect[xk + δuk, PK ]|δ=0

+
d

dδ
Pmech[xk + δuk]|δ=0 = 0 (17)

Associated with the variation (12), there will also be changes for FkK ,

GkKL, J and F−1
Kk

FkK → FkK + δF̃kK , GkKL → GkKL + δG̃kKL,

J → J + δJ̃ + o(δ), F−1
Kk → F−1

Kk + δ ˜F−1
Kk + o(δ).
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Their leading terms are given by

F̃kK = uk,K , G̃kKL = uk,KL,

J̃ = JXK,kuk,K , ˜F−1
kK = −XL,kXK,lul,L. (18)

We note that the reference quantities PK , EK , and DK do not change

with the variation uk. However, the current quantities pk, ek and dk are

affected by the variation of uk because of the equations (4). For this reason,

it is simpler to use PK , EK and DK in the variational calculations.

Using the divergence theorem, we first rewrite the internal energy into

the following form

d

dδ
U [xk + δuk, PK ]|δ=0 =

∫
ΩR

−[
∂ψ

∂xk,K
− (

∂ψ

∂xk,KL
),L],KukdV

+

∫
∂ΩR

[
∂ψ

∂xk,K
− (

∂ψ

∂xk,KL
),L]ukNKdA+

∫
∂ΩR

∂ψ

∂xk,KL
uk,KNLdA(19)

It is important to note that, in equation(19), the tangential component

of uk,K is independent of uk due to the constraint∫
∂ΩR

VK,L(δKL −NLNK)dA = 0

for any vector VK on the closed boundary ∂ΩR, where δKL = IK · IL is the

Kronecker delta which is nonzero only if K = L. The term VK,L(δKL −
NLNK) may also be viewed as a surface divergence of an arbitrary vector

VK on the boundary ∂ΩR.

The last integral on the rhs of (19) can be rewritten as:

∫
∂ΩR

[
∂ψ

∂xk,KL
NL(δKI −NKNI)uk,I +

∂ψ

∂xk,KL
NLNKNIuk,I ]dV

=

∫
∂ΩR

{[ ∂ψ

∂xk,KL
ukNL(δKI −NKNI)],I − [

∂ψ

∂xk,KL
NL(δKI −NKNI)],Iuk

+
∂ψ

∂xk,KL
NLNKNIuk,I}dV

where ∂ψ
∂xk,KL

ukNL(δKI − NKNI) is a tangent vector on ∂ΩR since
∂ψ

∂xk,KL
ukNL(δKI − NKNI)NI = 0. Thus the divergence of this tangen-

tial vector is equal to its surface divergence. In other word, the integral∫
∂ΩR

[ ∂ψ
∂xk,KL

ukNL(δKI −NKNI)],I is zero.
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Let VkI = ∂ψ
∂xk,KL

NL(δKI − NKNI), then the equation (19) can be

expressed as the following form

d

dδ
U [xk + δuk, PK ]|δ=0 =

∫
ΩR

−[
∂ψ

∂xk,K
− (

∂ψ

∂xk,KL
),L],KukdV

+

∫
∂ΩR

{[ ∂ψ

∂xk,K
− (

∂ψ

∂xk,KL
),L]NK − VkI,I}ukdA

+

∫
∂ΩR

∂ψ

∂xk,KL
NLNKNIuk,IdA. (20)

Similar treatment of the higher order boundary terms may be found in

Liu54 and Yurkov.55

To do the variational calculus for the electric energy εelect, by divergence

theorem, we first rewrite it in the following form:

εelect[xk, PK ] =

∫
Ω+V ∗

ε0
2
ekekdv +

∫
ΓD

φbNKDKdA

=

∫
Ω+V ∗

(
ε0
2
ekek − ekdk)dv

=

∫
ΩR+V ∗

R

[
ε0
2
JXK,kXL,kEKEL − JXK,kEK(ε0XL,kEL + J−1αkLPL)]dV

=

∫
ΩR+V ∗

R

[−ε0
2
JXK,kXL,kEKEL −XK,kαkLEKPL]dV

Using the relations in (18), we obtain the following form for the variation

of electric field energy

d

dδ
εelect[xk + δuk, PK ]|δ=0

=

∫
ΩR+V ∗

R

[−ε0
2
JXK,kuk,K(XL,lXM,lELEM ) +XK,luk,K(ε0JXL,kXM,lELEM

+XL,kαlMELPM )]dV

=

∫
ΩR+V ∗

R

[−ε0
2
JXK,kuk,K(XL,lXM,lELEM ) + uk,KXL,kELDK ]dV

= −
∫

ΩR

[−ε0
2
JXK,k(XL,lXM,lELEM ) +XL,kELDK ],KukdV +∫

∂ΩR

[−ε0
2
JXK,k(XL,lXM,lELEM ) +XL,kELDK ]ukNKdA

−
∫
V ∗
R

[−ε0
2
JXK,k(XL,lXM,lELEM ) +XL,kELEK ],KukdV. (21)
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Let

Σ̃MW
kK = −ε0

2
JXK,k(XL,lXM,lELEM ) + ELXL,kDK (22)

which is related to the Maxwell stress expression defined in current config-

uration52,53

σMW
kl = ekdl −

ε0
2
eieiδkl (23)

by

ΣMW
kK = JXK,lσ

MW
kl .

Subsequently, we refer to ΣMW
kK as the Piola-Maxwell stress.

Note that the polarization PK vanishes in vacuum. Thus the two

Maxwell stresses reduce to

Σ̃MW
kK = −ε0

2
JXK,k(XL,lXM,lELEM ) + ELXL,kEK

and

σMW
kl = ekel −

ε0
2
eieiδkl

in the surrounding vacuum.

By substituting (20), (21), and (22) into (17), we have the second Euler-

Lagrange equation and the associated boundary conditions
[ ∂ψ
∂xk,K

− ( ∂ψ
∂xk,KL

),L + ΣMW
kK ],K +BeKαKk = 0 in ΩR

Σ̃MW
kK,K = 0 in V ∗

[ ∂ψ
∂xk,K

− ( ∂ψ
∂xk,KL

),L + ΣMW
kK ]NK = VkI,I + teKαKk on ∂ΩR

∂ψ
∂xk,KL

NKNL = 0 on ∂ΩR

(24)

In summary, in equilibrium, the electroelastic system should satisfy the

following governing equations
∂ψ
∂PK
− ( ∂ψ

∂ΠKL
),L −XL,kELαkK = 0 in ΩR

[ ∂ψ
∂xk,K

− ( ∂ψ
∂xk,KL

),L + ΣMW
kK ],K +BeKαKk = 0 in ΩR

Σ̃MW
kK,K = 0 in V ∗

DK,K = ρe0 in ΩR

(25)

and the boundary conditions
∂ψ

∂ΠKL
NL = 0 on ∂ΩR

[ ∂ψ
∂xk,K

− ( ∂ψ
∂xk,KL

),L + ΣMW
kK ]NK = VkI,I + teKαKk on ∂ΩR

∂ψ
∂xk,KL

NKNL = 0 on ∂ΩR

(26)
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2.5. Internal energy density

To model flexoelectricity, we consider the coupling between strain gradient

and polarization as well as the coupling between polarization gradient and

strain in the definition of the internal energy density.

The internal energy density ψ(xk,K , Gk,KL, PK ,ΠKL) must be invariant

under rigid translations and rotations. By Cauchy’s theorem, the depen-

dency of ψ on xk,K should be replaced by the dependency on CKL =

xk,Kxk,L. It is also convenient to use the following strain tensor

SKL =
1

2
(CKL − δKL)

instead of CKL. Thus ∂ψ
∂xk,K

is always written as ∂ψ
∂SKL

xk,L using the chain

rule.

We will reconsider nonlinearities in Section 7 when we address soft ma-

terials. Until Section 7, we assume small strains, keep only the leading order

terms in the internal energy density and ignore the difference between the

reference and the current configurations. In that case, the internal energy

is given by

ψ(Skl, Gk,lm, Pk,Πkl) =
1

2
aklPkPl +

1

2
bklmnΠklΠmn +

1

2
cklmnSklSmn

+
1

2
dijklmnGijkGlmn + eklmnSklΠmn

+fklmnPkGlmn + gklmPkΠlm + hklmPkSlm (27)

where the second order tensor akl is the reciprocal dielectric susceptibil-

ity, the fourth order tensor bklmn is the polarization gradient-polarization

gradient coupling tensor and cklmn is the elastic tensor, the sixth order ten-

sor dijklmn strain gradient-strain gradient coupling tensor, the fourth order

tensor eklmn corresponds to polarization gradient and strain coupling intro-

duced by Mindlin,56 whereas fklmn is the fourth order flexoelectric tensor,

hklm and gklm are the third order piezoelectric tensor and the polarization-

polarization gradient coupling tensor, respectively.

3. Piezoelectric Thin Film Super Lattices Without Using

Piezoelectric Materials

Consider a composite consisting of two or more different nonpiezoelectric di-

electric materials. Even under the application of uniform stress, differences

in material properties will result in the presence of strain gradients around

the interfaces. Those strain gradients will induce polarization due to the
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flexoelectric effect. For “properly designed”composites,18 the net average

polarization will be nonzero. Thus, the nanostructure will exhibit an overall

electromechanical coupling under uniform stress behaving like a piezoelec-

tric material. The individual constituents must be at the nanoscale since

this concept requires very large strain gradients and those are generated

easily only at the nanoscale.

Within the assumption of the linearized theory for centrosymmetric

dielectrics, the internal energy density ψ can be assumed to be quadratic

function of terms involving small strain Sij , polarization Pi, polarization

gradient Pi,j , and strain gradient ui,jk

ψ(eij , Pi, Pi,j , ui,jk) =
1

2
aklPkPl +

1

2
bijklPi,jPk,l +

1

2
cijklSijSkl,

+ dijklPi,jSkl + fijklPiuj,kl, (28)

Usually we must consider another term 1
2gijklmnui,jkul,mn in the inter-

nal energy form (28) to ensure the thermodynamic stability of the sys-

tem.18,19,27 This extra term represents purely nonlocal elastic effects and

corresponds to the so-called strain gradient elasticity theories (see also Mao

and Purohit57). However, the contribution of this term is small for the

current problem.19 There is no qualitative change to the effective piezo-

electricity with the consideration of this term and the system studied here

does not lose its stability when we exclude it.18,19

For a thin film structure the fields vary only in the thickness direction.

Let x1 be the thickness direction. After substituting (28) in the governing

equation (25)1,2,4, we obtain the following 1D governing equations for a

single layer structure:


c∂

2u
∂x2

1
+ (d− f)∂

2P
∂x2

1
= 0,

(d− f)∂
2u
∂x2

1
+ b∂

2P
∂x2

1
− aP − ∂φ

∂x1
= 0,

−ε0 ∂
2φ
∂x2

1
+ ∂P

∂x1
= 0.

(29)

Under open-circuit conditions, the electric displacement is zero

−ε0
∂φ

∂x1
+ P = 0.

We arrive at the following equations

bc− (d− f)2

c

∂2P

∂x2
1

− (a+ ε−1
0 )P = 0⇒ ∂2P

∂x2
1

− P

l2
= 0, (30)
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where

l2 =
[bc− (d− f)2]ε0

cη
and η = (1 + aε0).

Solving equation (30) for polarization, we obtain:

P = A1e
−x1/l +A2e

x1/l, (31)

The displacement field is

u = A3 +A4x1 −
d− f
c

e−x1/l(A1 +A2e
2x1/l). (32)

A1,A2,A3, and A4 are the constants of integration which may be determined

by the boundary conditions. Since the coefficients d and f appear together,

for conciseness, we write h instead of (d− f).

Fig. 5. A bilayer film composed of two different dielectric materials.

For the bilayer film shown in Fig. 5, its polarization and displacement

fields for each layer are given by{
Pi = Ai1 exp(−x1

li
) +Ai2 exp(x1

li
),

ui = Ai3 +Ai4x1 − hi

ci
exp(−x1

li
)[Ai1 +Ai2 exp( 2x1

li
)].

(33)

where i = 1, 2 correspond to “layer 1”and “layer 2”shown in Fig. 5. The 8

constants of integration are determined by the following boundary condi-

tions:

(1) Applied stress boundary conditions

(ci∂x1ui + hi∂x1Pi) = σ.

(2) Continuity of stress at the interface

JσK = (σ(1)|x1→0 − σ(2)|x1→0) = 0.

This condition is redundant, since in this case, the previous two (applied

stress) conditions trivially ensure this continuity.
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(3) Displacements at the interface are zero

ui|x1→0 = 0.

(4) Electric tensor (conjugate to the polarization gradient) Λij = ∂ψ
∂Pi,j

is

set to zero at the free boundaries

Λ
(1)
ij = (di∂x1ui + bi∂x1Pi)|x1→wi = 0.

(5) The electric tensor is specified to be continuous (but not necessarily

zero) at the interface

JΛijK|x1→0 = (Λ
(1)
ij |x1→0 − Λ

(2)
ij |x1→0) = 0.

(6) Polarization (P ) is specified to be continuous at the interface

JP K|x1→0 = (P1|x1→0 − P2|x1→0) = 0.

Unlike classical theory of piezoelectricity, an additional boundary con-

dition is required at the interface on the polarization field in order to

avoid the singularities of polarization gradient field.

Finally, the following results are obtained:

P1 =
A1 +B1

C1
,

P2 =
A2 +B2

C2
, (34)

where

A1 = σε0cosh(
x1 − w1

l1
)[−1 + cosh(

w2

l2
)]c1h2l1η1,

B1 = σε0c2h1{[cosh(
x1

l1
)− cosh(

x1 − w1

l1
)]cosh(

w2

l2
)l1η1 +

sinh(
x1

l1
)sinh(

w2

l2
)l2η2},

C1 = c1c2l1η1[cosh(
w2

l2
)sinh(

w1

l1
)l1η1 + cosh(

w1

l1
)sinh(

w2

l2
)l2η2],

A2 = σε0cosh(
x1 + w2

l2
)[−1 + cosh(

w1

l1
)]c2h1l2η2,

B2 = σε0c1h2{[cosh(
x1

l2
)− cosh(

x1 + w2

l2
)]cosh(

w1

l1
)l2η2 −

sinh(
x1

l2
)sinh(

w1

l1
)l1η1},

C2 = c1c2l2η2[cosh(
w2

l2
)sinh(

w1

l1
)l1η1 + cosh(

w1

l1
)sinh(

w2

l2
)l2η2].
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Fig. 6. Polarization distribution in each layer of a MgO-BaTiO3 finite bilayer. To-

tal average polarization in the bilayer is 23% of piezoelectric BaTiO3. Reprinted with
permission from AIP Publishing LLC.18 Copyright 2010.

Numerical results for BaTiO3-MgO bilayer are shown in Fig. 6. The cal-

culated polarization is divided by the applied stress σ and then normalized

by the piezoelectricity p33 of BaTiO3 which is equal to 7.8×10−11C/N . For

these results, we assume both layers, layer-2(MgO) and Layer-1(BaTiO3)

to be 10nm thick subject to a unit applied stress.

The material constants used in the above calculation are listed in the

following table:

Table 1. Material properties for BaTiO3 and

MgO.

BaTiO3 MgO

a11(Nm2/C2) 2.824 × 107 1.298 × 1010

b11(Nm4/C2) 6.77 × 10−6 5.67 × 10−8

c11(N/m2) 1.62 × 1011 3.00 × 1011

h11(Nm/C) −1.55 × 105 1.29 × 102

l(Å) 1.30 1.00
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To find the effective piezoelectricity of this bilayer structure, we first

calculate its average polarization P̄ as follows:

P̄ =
1

w1 + w2
(

∫ w1

0

P1dx1 +

∫ 0

−w2

P2dx1) =
ĀB̄

C̄
, (35)

where

Ā = 4σsinh(
w1

2l1
)sinh(

w2

2l2
)ε0(η1 − η2),

B̄ = cosh(
w1

2l1
)sinh(

w2

2l2
)c1h2l1η1 + cosh(

w2

2l2
)sinh(

w1

2l1
)c2h1l2η2,

C̄ = c1c2(w1 + w2)η1η2[cosh(
w2

l2
)sinh(

w1

l1
)l1η1 + cosh(

w1

l1
)sinh(

w2

l2
)l2η2].

Then the effective piezoelectricity deff is defined as P̄ /σ. We note that

deff directly depends on the difference between the dielectric constants of

the constituent materials. Larger dielectric contrast between the two layers

will lead to a larger apparent piezoelectric coefficient. As shown in Fig. 6,

the effective piezoelectricity for the present MgO-BaTiO3 bilayer structure

is 23% of that of BaTiO3

4. Compression of a Truncated Cone, Effective Piezoelectric

Response and Determination of Material Properties

The solution for the compression response of a truncated cone is an impor-

tant case-study. Cross1 profitably used this notion to show that such a geo-

metrically graded structure behaves like an apparent piezoelectric material

since even a uniform stress (e.g. compression) will result in an inhomoge-

neous strain and hence, due to flexoelectricity, produce a non-zero average

polarization. Conversely, the solution to this problem also allows a facile

way to experimentally estimate the flexoelectric properties of a material.

We remark here that the the expression used by Cross and co-workers (al-

though physically intuitive) is but a crude approximation which can lead

to rather large errors—recent computational work by Abdollahi et. al.58

attests to this. An exact solution to this problem is not possible and in this

section we provide a perturbative calculation (which is an improvement)

over what has been used in the past.1

As shown in Fig. 7, when the force F is applied to the top surface of

the truncated cone, due to flexoelectricity, a current will flow through the

circuit. Obviously, this is a 3D problem since the cross section changes

with the coordinate x1. However, the problem can be easily converted to

a 1D problem if we assume that (1) after deformation, the displacement
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u and polarization P are both in x1 direction and (2) u and P only vary

with the coordinate x1. These two assumptions lead to the following con-

sequences: (1) S11 = du/dx1 is the only nonzero strain, (2) u,11 = d2u/dx2
1

is the only nonzero strain gradient, (3) P,1 = dP/dx1 is the only nonzero

polarization gradient. In the current example, to emphasize flexoelectricity,

the contribution of polarization gradient to the internal energy is ignored.

We note that omitting the polarization gradient term does not alter the

governing equations (although the boundary conditions do change). In this

case, the high order electric boundary conditions are replaced by the high

order stress boundary conditions. We also assume that the deformation is

small so that there is no difference between the current and the reference

configurations—this is a reasonable assumption for hard crystalline materi-

als . The volume integration over the truncated cone,
∫

Ω
dv, can be written

into an 1D integration from 0 to L,
∫ L

0
A(x)dx, with A(x) being the area

of the cross section at x1 = x.

Fig. 7. A truncated cone under compression.

Based on the setup described above, the variations (14) and (15) become

d

dδ
U [χ,Pδ]|δ=0 =

∫ L

0

A(x)ψPP1dx

and

d

dδ
εelect[χ,Pδ]|δ=0 =

∫ L

0

A(x)(
dφ

dx
)P1dx.
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Similarly, the variations (19) can be written into the following one di-

mensional form

d

dδ
U [χδ,P]|δ=0 =

∫ L

0

{− d

dx
[A(x)

∂ψ

∂S11
] +

d2

dx2
[A(x)

∂ψ

∂u,11
]}u1dx

+[A(x)
∂ψ

∂u,11
]x=0&L + {A(x)

∂ψ

∂S11
− d

dx
[A(x)

∂ψ

∂u,11
− F ]}x=L.

Because of the small deformation assumption, the variation (21) becomes

zero so that the Maxwell stress vanishes. Then we have the Euler-Lagrange

equations for this truncated cone{
d
dx [A(x) ∂ψ

∂S11
− d

dx (A(x) ∂ψ
∂u,11

)] = 0
∂ψ
∂P + dφ

dx = 0
(36)

and the associated boundary conditions
∂ψ
∂u,11

= 0 at x = 0 and x = L

A(x) ∂ψ
∂S11

− d
dx [A(x) ∂ψ

∂u,11
] = F at x = L

u = 0 at x = 0.

(37)

Here we use a reduced version of the internal energy density

ψ =
1

2
aP 2 +

1

2
c(
du

dx
)2 +

1

2
g(
d2u

dx2
)2 + fP

d2u

dx2
(38)

where the polarization gradient term is dropped. It is found that the gov-

erning equation remains unaltered without the consideration of this term

due to the fact that18

dP

dx

du

dx
=

d

dx
(P
du

dx
)− P d

2u

dx2

and d
dx (P du

dx ) can be converted to a boundary term by divergence theorem.

Substituting (38) into the governing equations (36) and the associated

boundary conditions (37), we obtain

−gA(x)d
3u
dx3 − g dA(x)

dx
d2u
dx2 + cA(x)dudx − fA(x)dPdx − f

dA(x)
dx P = F on (0, h),

aP + f d
2u
dx2 + dφ

dx = 0 on (0, h),
d
dx [A(x)(− 1

ε0

dφ
dx + P )] = 0 on (0, h),

∂ψ
∂u,11

= g d
2u
dx2 + fP at x = 0&h,

u(0) = 0,

φ(0)− φ(h) = 0.

(39)
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where A(x) = π
4 (d2− d2−d1h x)2 denotes the cross section area at x. Note that

if the half cone angle θ is very small, a(x) can be approximately expressed

as

A(x) = πθ2x2 + d̄θx+ a2 (40)

where d̄ = −πd2 and a2 = π
4 d

2
2.

In the extreme case, when θ is zero, the truncated cone becomes a finite

circular cylinder. Obviously, in that case, neglecting any edge effects, the

flexoelectric response vanishes. Let u0(x) and P0(x) denote the solution for

the cylinder problem. Then the solution for a truncated cone problem can

be written as 
u(x) = u0(x) + θu1(x) + θ2u2(x) + ...

P (x) = P0(x) + θP1(x) + θ2P2(x) + ...

φ(x) = φ0(x) + θφ1(x) + θ2φ2(x) + ...

(41)

Substitutng (40) and (41) into the governing equations and considering

only zeroth order tens, we have the following equations for u0(x) and P0(x)

−g d
3u0

dx3 + cdu0

dx − f
dP0

dx = F/a2 on (0, h),

aP0 + f d
2u0

dx2 + dφ0

dx = 0 on (0, h),

−ε0 d
2φ0

dx2 + dP0

dx = 0 on (0, h),

g d
2u0

dx2 + fP0 = 0 at x = 0&h,

u0(0) = 0,

φ0(0)− φ0(h) = 0.

(42)

Unsurprisingly the solution for the zeroth order equations (the case corre-

sponding to the cylinder) is

u0(x) =
F

ca2
x, and P0(x) = φ0(x) = 0.

The first order equations are:

g d
3u1

dx3 − cdu1

dx + f dP1

dx = d̄F/a2
2x on (0, h),

aP1 + f d
2u1

dx2 + dφ1

dx = 0 on (0, h),

−ε0 d
2φ1

dx2 + dP1

dx = 0 on (0, h),

g d
2u1

dx2 + fP1 = 0 at x = 0&h,

u1(0) = 0,

φ1(0)− φ1(h) = 0.

(43)
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From (43)3, we have

dφ

dx
=

1

ε0
P1 −

C1

ε0
(44)

where C1 is the constant of integration. Substituting the relationship (44)

into (43)2, we can express the polarization P1 in terms of the displacement

u1 as

P1 = − fε0
aε0 + 1

d2u1

dx2
+

C1

aε0 + 1
.

A nonhomogeneous ODE for u1(x) is obtained from (43)1

(g − f2ε0
aε0 + 1

)
d3u1

dx3
− cdu1

dx
= d̄F/a2

2x.

The solution for this ODE is given by

u1 = A1e
−x/l +A2e

x/l − d̄F

2ca2
2

x2 + C2 (45)

where l2 = (g − f2ε0
aε0+1 )/c depends on the material properties, A1, A2, C1,

and C2 are constants to be determined by the following four boundary

conditions 
(A1 +A2) = − fC1

c(aε0+1) = m,

(A1e
−h/l +A2e

h/l) = − fC1

c(aε0+1) = m,

A1 +A2 + C2 = 0,

2(A1 −A2) + alh
f C1 = d̄F lh

ca22

where the last equation originates from the short circuit condition φ1(0) =

φ1(h). The solution for these four equations is given by
A1 = m e2h/l−eh/l

e2h/l−1
,

A2 = m eh/l−1
e2h/l−1

,

C1 = d̄F lh
ca22

/[alhf −
2f

c(aε0+1) tanh h
2l ],

C2 = −m.

(46)

Finally, using the relationship between P1 and u1, the expression for P1 can

be obtained as

P1 = − fε0
aε0 + 1

[
1

l2
(A1e

−x/l +A2)− d̄F

ca2
2

] +
C1

aε0 + 1
. (47)

As a simplification, if we set A1 = A2 = 0, then we have C2 = 0 and

C1 = d̄Ff
aca22

by (46). It is also found from equation (45) that u1 becomes a
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quadratic function of x. This implies that the strain gradient d2u1/dx
2 is

a constant. Thus the solution for P1 reduces to

P1 =
fε0

aε0 + 1

d̄F

ca2
2

+
C1

aε0 + 1
=
d̄Ff

aca2
2

and the overall polarization P takes the following form

P = P0 + θP1 = −2(
d2 − d1

d2

d2
1

d2
2

)
f

ach

F

a1

where a1 = π
4 d

2
1 is the cross-sectional area of the top surface where the

external force F is applied. Since the flexoelectric coefficient µ = − fa and

the applied surface traction te = F
a1

, the polarization can be also written

as

P = 2(
d2 − d1

d2

d2
1

d2
2

)
µ

ch
te.

Then the effective piezoelectric coefficient is given by

deff =
∂P

∂te
= 2(

d2 − d1

d2

d2
1

d2
2

)
µ

ch
. (48)

This result is similar to that obtained in Cross’s work1 where an effective

piezoelectric coefficient

deff = µ

d22−d
2
1

d21

ch

is obtained for the truncated pyramid. Both cases show that deff is propor-

tional to the flexoelectric coefficient µ and the reciprocals of elastic modulus

c and the dimension h. A more sophisticated perturbation approach may

be necessary to obtain an analytical result that matches the computational

corrections shown by Abdollahi et. al.58

5. Flexoelectric Beam Bending, Vibration and Energy Har-

vesting

Bending a beam is perhaps the easiest way to induce strain gradients and

invoke a flexoelectric response. This is also a the model problem when

considering energy harvesting from mechanical vibrations. As shown in Fig.

8, in this section we consider a cantilever beam subjected to a distributed

load. B, h and L correspond to the width, hight and length of the beam,

respectively. q(x1) is the distributed loading applied to the beam.



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 26

26 Q. Deng, L. Liu and P. Sharma

Fig. 8. A cantilever beam subjected to a distributed load.

To illustrate the central ideas of the flexoelectricity in this beam, we

use the Euler-Bernoulli model. The key conclusions that we are interested

in emphasizing in this work are unlikely to be affected by this assumption.

The displacement field in the Euler-Bernoulli model is:

u = {−x3
∂w(x1)

∂x1
, 0, w(x1)}T , (49)

where w(x1) is the transverse displacement of the neutral surface at point

x1. From this displacement field, the normal strain in x1 direction is the

only non-zero strain component which is given by

S11 = −x3
∂2w

∂x2
1

. (50)

The non-zero strain gradient components are

S11,1 = −x3
∂3w(x1)

∂x3
1

, S11,3 = −∂
2w(x1)

∂x2
1

. (51)

Since the thickness h of the beam is much smaller than its length L, it is

found that S11,1 is much smaller than S11,3 for this Euler-Bernoulli beam

problem. Therefore the component S11,1 is ignored in the present work.

Generally, the strain gradient S11,3 will induce the separation of positive

and negative charge centers. A schematic representation for the polariza-

tion induced by strain gradient is given in Fig. 9. The blue and red particles

represent the negative and positive charged material particles in a unit cell.

As can be seen from Fig. 9, after deformation, the induced polarization is

generated along the x3 direction. The polarization density field within the

cantilever beam has the following form:

P(x1, x3) = {0, 0, P (x1, x3)}T . (52)

For this problem, the stored energy density ψ is given by

ψ =
1

2
cS2

11 +
1

2
gS2

11,3 +
1

2
aP 2 + fS11,3P

=
1

2
cx2

3w
2
,11 +

1

2
gw2

,11 +
1

2
aP 2 − fw,11P (53)
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Fig. 9. Polarization due to bending of a centrosymmetric beam. Reprinted with per-

mission from ELSEVIER.59 Copyright 2014.

where w,1 and w,11 denote the 1st and 2nd order derivatives of w with

respect to x1, respectively; c, g, a, and f are material properties mentioned

in section 2.

The so-called dynamic flexoelectric effect may strongly affect the elec-

tromechanical behavior of the sample at extremely high frequency vibra-

tions.24,46,47 However, in our current example, we have ignored this effect

since the considered sample size is on the scale of microns and its natural

frequency is still very low compare to that of the lattice vibration at which

the dynamic flexoelectric effect is expected to play a role.

Once again, we stay within the linearized regime and ignore the distinc-

tion between current and reference configurations and the effect of Maxwell

stress. Both these effects are important for soft materials but not for hard

ones. Given these assumptions, the governing equations (25)1,4 become

{
aP − fw,11 + φ,3 = 0

−ε0φ,33 + P,3 = 0
(54)

where φ,3 = −E is the derivative of potential φ with respect to x3. From
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(54), we further have {
P = f

aw,11 − 1
aφ,3,

−(ε0 + 1
a )φ,33 = 0.

(55)

With the applied boundary conditions for electric potential φ: φ(x1, h/2) =

V and φ(x1,−h/2) = 0, the leading order solutions of (55) are

φ =
V

h
x3 +

V

2
, (56)

and

P =
f

a
w,11 −

V

h
. (57)

Substituting (56) and (57) into (53) and integrating over the beam cross

section, the following 1D energy density ψb is obtained

ψb =

∫
A

ψda =
1

2
GEw

2
,11 +

AV 2

2ah2
(58)

where GE = cI + gA− f2A
a and A denotes the cross-sectional area and I is

the moment of inertia.

Free-energy minimization leads to the following equation:∫ L

0

δψbdx1 =

∫ L

0

GEw,11δw,11dx1 =

∫ L

0

q(x)δwdx1

Using the divergence theorem, we obtain the following governing equation

and boundary conditions:
GE

∂4w(x1)
∂x4

1
= q(x1),

w(0) = ∂w(0)
∂x1

= 0,
∂2w(L)
∂x2

1
= ∂3w(L)

∂x3
1

= 0.

(59)

If the distributed load is a constant q0, then the displacement w and polar-

ization P are given by

w(x1) =
q0

24GE
x4

1 −
q0L

6GE
x3

1 −
q0

2GE
(
L2

2
− L)x2

1, (60)

P (x1) =
f

a
[
q0

2GE
x2

1 −
q0L

GE
x1 −

q0

GE
(
L2

2
− L)]− V

ah
. (61)

As shown in (61), because of flexoelectricity, both V and q0 contribute to

the polarization P . The former is due to the electric field while the latter

is the result of flexoelectricity.
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The example problem discussed in the preceding paragraphs shows that

the bending of a dielectric beam will induce the net polarization because

of flexoelectricity. One of the applications of this phenomena is energy

harvesting. A proposed flexoelectric energy harvester is shown in Fig. 10.

The cantilever beam is mounted to a base moving in x3 direction. The

transverse base displacement is denoted by wb(t). Due to the movement

of the base, the cantilever beam undergoes bending vibrations. Dynamic

strain gradient associated with vibration results in an alternating potential

difference across the electrodes. The electrodes are connected to a resistive

load (R) to quantify the electrical power output. Although the internal

resistance of the dielectric beam is not taken into account, it can easily be

considered as a resistor connected in parallel to the load resistance.

Fig. 10. A centrosymmetric flexoelectric energy harvester under base excitation.
Reprinted with permission from ELSEVIER.59 Copyright 2014.

For this vibration problem, the kinetic energy, which results in the in-

ertial term in the governing equation, should be considered. In our recent

paper,59 from the following variational principle

δ

∫ t2

t1

dt

∫
V

[
1

2
ρu̇ku̇k − (ψ − 1

2
ε0φ,kφ,k + Pk)]dV +∫ t2

t1

dt

∫
V

(qkδuk + E0
kPk)dV +

∫ t2

t1

dt

∫
∂V

D̃δφdA = 0, (62)

along with the Euler-Bernoulli beam assumption (49), we obtained the

following equation∫ t2

t1

dt

∫ L

0

ρA(ẅ + ẅb)δwdx1 +

∫ t2

t1

dt

∫ L

0

(GE
∂2w

∂x2
1

−fA
ah

V (t))δ(
∂2w

∂x2
1

)dx1 = 0. (63)
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The current i(t) flows through the resistor R must be equal to the time rate

of change of the average electric displacement D̃3 = 1
h

∫
V
D3dV , resulting

the electric circuit equation with flexoelectric coupling

i(t) =
V (t)

R
=

1

h

d

dt

∫
V

(−ε0
V (t)

h
+ P )dV. (64)

The governing equation (63) and (64) for variables w(x) and V (t) are nu-

merically solved using the assumed-mode method.60,61 The following finite

series is used to represent the mechanical response of the beam:

w(x1, t) =

N∑
k=1

ak(t)ξk(x1)

where N is the number of modes used in the series discretization, ξk(x1)

are the kinematically admissible trial functions which satisfy the essential

boundary conditions, while ak(t) are unknown generalized coordinates.

Since the focus in energy harvesting is placed on the resonance behavior

(i.e. damping controlled region), it is necessary to account for structural

dissipation in the system. In this work, we resort to Rayleigh damping

which is proportional to the mass and the stiffness matrices. We introduce

the damping matrix D with

D = µM + γK

where µ and γ are constants of proportionality which can be calculated

using two modal damping ratios, ζ1 and ζ2 through the following equation:62

[
γ

µ

]
=

2ω1ω2

ω2
1 − ω2

2

[ 1
ω2
− 1
ω1

−ω2 ω1

] [
ζ1
ζ2

]

where ω1 and ω2 are the first two nature frequencies of the beam. In the

absence of other damping mechanisms, the damping ratio is related to the

material quality factor (Q = 1/2ζ).

Then the discrete Euler-Lagrange equations, duly considering Rayleigh

damping, are given by

Mä(t) + Dȧ + Ka−ΘV (t) = f̄ , Cf V̇ (t) +
V (t)

R
+ ΘT ȧ(t) = 0 (65)
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where

Mkl = ρA

∫ L

0

ξk(x1)ξl(x1)dx1,

Kkl = GE

∫ L

0

ξ′′k (x1)ξ′′l (x1)dx1,

Dkl = µMkl + γKkl,

Θl =
fA

ah

∫ L

0

ξ′′l dx1,

f̄l = −ẅb(t)
∫ L

0

ρAξl(x1)dx1,

Cf =
BL

h
(ε0 +

1

a
).

We choose polyvinylidene difluoride (PVDF) as the model material sys-

tem which has the following properties: a = 1
ε−ε0 = 1.38 × 1010Nm2/C2,

f = −aµ′12 = −179Nm/C (µ′12 = 1.3 × 10−10C/m is the flexoelectric co-

efficient), c = 3.7GPa, g = 5 × 10−7N , and ρ = 1.78 × 103kg/m3. To

demonstrate the effect of scaling, here we explore the energy conversion

efficiency of this flexoelectric energy harvester. The conversion efficiency

is simply the ratio of the electrical power output to the mechanical power

input, i.e. the power due to the shear force exerted on the beam by the

base. The peak electrical power output is |V (t)|2/R. The shear force ex-

erted on the beam by the base is the shear force at x1 = 0, which can be

easily expressed by cI d
3w(0)
dx3

1
. Therefore the power due to the shear force

is the product of the shear force and the base velocity deb(t)
dt . Then the

mechanical-to-electric energy conversion efficiency is

η =
|V (t)|2/R

|cI d
3w(0)
dx3

1
| · |deb(t)

dt |
.

We maintain the shape of the sample (in terms of the aspect ratio,

100:10:1) and vary the thickness of the beam from 3µm through 0.3µm. As

shown in Fig. 11, for the 10 different sizes considered in this thickness range,

the energy conversion efficiency monotonously increase as the decrease of

the sample size. Specifically, the magnitude of the highest curve is about

two orders higher than that of the lowest one. Further enhancement in the

conversion efficiency can be expected as the beam thickness is reduced to

nanometer scale.
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Fig. 11. Resonant energy conversion efficiency for different beam thickness levels (aspect

ratio is the same: 100:10:1). Reprinted with permission from ELSEVIER.59 Copyright

2014.

6. Flexoelectric Membranes

It is anticipated that the coupling between elasticity and electricity in bio-

logical membranes is important for many biological functions such as: ion

transport,63 mechanotransduction in outer hair cells,64–66 tether forma-

tion.67 It is also found that all the above mentioned biological phenomena

are closely related to the flexoelectricity of the biomembranes. From a

mechanistic viewpoint, we can rule out the piezoelectric effect in (most) bi-

ological membranes through symmetry arguments. Therefore, the leading

order coupling between strain and polarization has to be ‘flexoelectricity.

The flexoelectric theory of thin membranes has been developed in Mo-

hammadi et. al.,68 Qian et. al43 and several other formal considerations

are presented in Liu’s paper.54 In this formulation, we consider a thin

membrane occupying U × (−h/2, h/2) ⊂ R3, with U ⊂ R2 being an open

bounded domain in the xy-plane and h being the thickness of the mem-

brane. Since the thickness h � 1, the thin membrane may be idealized

as a two-dimensional body; the thermodynamic state is then described by

the out-of-plane displacement w : U → R and the out-of-plane polariza-

tion P : U → R. For thin membrane, we also anticipate that bending is

the predominant mode of deformation, and hence use the linearized curva-
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ture tensor (or strain gradient) of the membrane κij = −w,ij (for this two

dimensional problem i, j = 1, 2) to describe the deformed state of the mem-

brane. The polarization P is assumed to point along the normal direction

throughout the deformation.

To model the flexoelectric effect, we postulate that the total inter-

nal/stored energy of an isotropic membrane is given by

U [w,P ] =

∫
U

W (w,ij , P ), (66)

where W : R2×2
sym ×R→ R is the total internal energy density function and

given by a quadratic function

W (w,ij , P ) =
κb
2

(w,ii)
2 + κgdet(w,ij) + fPw,ii +

1

2
a3P

2 (67)

here we notice that the elastic part, κb

2 (w,ii)
2+κgdet(w,ij), of the membrane

energy coincides with the linearized Helfrich-Canham model69 of biologi-

cal membranes that are widely used by bio-physicists (which is in turn

identical to the Kirchhoff-Love plate theory), the term fPw,ii gives rise to

the coupling between polarization and curvature (flexoelectric effects), and

the last term 1
2a3P

2 arises from the dielectric property of the membrane.

The constants κb, κg, f , and a3 are material properties of the flexoelectric

membrane and may in general depend on in-plane positions. Moreover, the

stability of the membrane requires that:68

κb > 0, −2κb < κg < 0, a > 0, and κb +
κg
2
>
f2

a
(68)

The boundary of the flexoelectric membrane is clamped: w,w,i|∂U = 0.

Then under the application of an external electric field E3 : U → R and a

mechanical body force b3 : U → R, the total free energy of the membrane

is given by

F [w,P ] =

∫
U

W (w,ij , P )−
∫
U

(PE3 + wb3), (69)

where the first integral is the internal energy of the flexoelectric membrane,

and the second one is the potential energy arising from the interaction be-

tween the membrane and the external electric field and mechanical loading

device.

In the equilibrium state, by the principle of minimum free energy the

pair of (w,P ) shall minimize the total free energy (69):

min
(w,P )∈S

F [w,P ] (70)
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where the admissible space for (w,P ) is given by

S := {(w,P ) :

∫
U

|w,ij |2 < +∞,
∫
U

|P |2 < +∞, w, w,i|∂U = 0} (71)

By standard variational calculations, it can be shown that a minimizer

(w,P ) of the minimization problem (70) necessarily satisfies the following

Euler-Lagrange equations and boundary conditions:
(Lijklw,kl),ij + (fP ),ii − b3 = 0 on U,

fw,ii + aP − E3 = 0 on U,

w = 0, w,i = 0 on ∂U

(72)

where Lijkl (i, j, k, l = 1, 2) represent the bending stiffness tensor which

links the bending moment and the curvature of a membrane.

Using (72)2 we eliminate P in (72)1 and obtain{
[(Lijkl − f2

a δijδkl) + f
aE3δij ],ij − b3 = 0 on U,

w = 0, w,i = 0 on ∂U.
(73)

Consider a flexoelectric membrane. In the absence of applied body force

b3 = 0, the membrane can nevertheless be bent by an external electric field

since the term f
aE3δij in (73)1 serves as a “source” term for the bound-

ary value problem (73) of w. It is of interest to investigate the effects of

the external field on w. For simplicity, assume that the membrane is ho-

mogeneous and isotropic, and hence the boundary value problem can be

rewritten as

[κbwkk + γE3],ii = 0 on U, (74)

where κb = 2µb+λb− (f2/a) and γ = f/a. For appropriate boundary con-

ditions as specified in (73)3, it is standard to solve (74) for w. As examples,

below we present a few explicit solutions, assuming infinite membrane on

R2 and natural boundary conditions at the infinity:

|w,ij(xk)| → 0 as xk → +∞ (75)

We remark that w is only determined within an arbitrary linear function of

(x1, x2) by the above conditions (75). Also, appropriate decay conditions

on the source term E3 are required for (75). These simple solutions may be

used for measuring the material properties in (67) and as the benchmarks

of numerical schemes.
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6.1. E3 = E3(x1)

Since E3 is independent of x2, by symmetry we seek a solution of form

w = w(x1) to (74), ie.,

d2

dx2
1

[κb
d2

dx2
1

w(x1) + γE3(x1)] = 0 ∀ x1 ∈ R. (76)

The general solution to equation (76) is given by

w(x1) = −
∫ ∫

γ

κb
Ez(x1) + C0 + C1x1, (77)

where C0 and C1 are the integration constants and shall be determined

by boundary conditions. In particular, if the external field is generated by

an infinite line charge of line density q along i2 direction and above the

membrane with distance z0, then

E3(x1) = − qz0

2πε0
(z2

0 + x2
1)−1 (78)

Substitute (78) into (77), then we have

w(x1) =
qγ

2πε0κb
[xarctan(

x1

z0
)− z0

2
log(x2

1 + z2
0)] (79)

Fig. 12 shows that the line charge q can cause the deformation of a flex-

oelectric membrane. In the figure, x is normalized by the distance be-

tween the charge and the membrane z0, w(x1) is normalized by the term

w0 = qγ/ε0κbz0. We expect this result to have important implications for

the study of lipid bilayers by ions in the surranding electrolytes.

6.2. E3 = E3(r)

Since E3 is only a function of r = (x2
1 + x2

2)1/2, by symmetry we seek a

solution w = w(r) to (74)

d

rdr
r
d

dr
[κb

d

rdr
r
d

dr
w(r) + γE3(r)] = 0 ∀ r > 0.

Neglecting immaterial integration constants, by (75) we have

d

rdr
r
d

dr
w(r) = − γ

κb
E3(r) (80)

Upon specifying the functional form E3(r), we can integrate the RHS of

(80) explicitly for w(r). In particular, if the external field is generated by

a point charge Q above the membrane at x3 = z0, then

E3(r) = − qz0

4πε0
(z2

0 + r2)−3/2 (81)

Substitute (81) into (80), then we have

w(r) = − qγ

4πε0κb
[log(r)− log(z2

0 + z0

√
r2 + z2

0)] (82)
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Fig. 12. Deflection of a flexoelectric membrane near a line charge. Reprinted with
permission from ELSEVIER.43 Copyright 2014.

7. Flexoelectricity in Soft Materials

7.1. 1D formulation for soft materials

In this section, our recent effort to investigate the effect of nonlinearity

on flexoelectricity in soft materials43 is presented. We now consider a

one-dimensional system (a thin film) which is composed of soft materi-

als. For this case, the strain of the system is expected to be finite and

it is necessary to differentiate between the current and reference configu-

rations. Let (X,Y, Z) be the Lagrangian coordinates of material points,

(ρe0(X), P e0 (X)) be the external polarization (along X-direction, per unit

volume) and charge density (in the reference configuration), and be0(X), te0
be the body force, surface traction (equal and opposite at top and bottom

faces) in X-direction, respectively. The electrodes on the top and bottom

faces are assumed to be mechanically trivial. Nevertheless, the electrodes

are expected to maintain a constant electrostatic potential on both the top

and bottom faces.

The electro-elastic state of the film is described by deformation and

polarization—these are the independent variables in our formulation. In the

presence of external charges, dipoles, applied voltage, and mechanical loads

the film is deformed; the deformation is denoted by (x, y, z) = χ(X,Y, Z)

with (x, y, z) being the Eulerian coordinates in the current configuration.

Let P be the intrinsic polarization in X-direction per unit volume (in the

reference configuration). Since the film is thin (the thickness H is much
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smaller than the width L in the other two directions) and transversely

isotropic, for simplicity we restrict ourselves to the following class of defor-

mation and polarization:

x = X + u(X), y = Y α(X), z = Zβ(X), P = P (X), (83)

where the scalar functions u, α, β, P : (0, H) → R are determined by the

equilibrium conditions. We remark that this kinematic assumption (83)

about the possible form of deformation is the equivalent to that in the clas-

sic theory of extension. Following the standard framework of nonlinear con-

tinuum mechanics, we introduce the stretches in X (resp. Y, Z)-direction:

λ1 = 1 + ∂u
∂X (resp. λ2 = ∂y

∂Y = α, λ3 = ∂z
∂Z = β). Thus, the Jacobian

becomes J = λ1λ2λ3 = det F. For brevity, we denote by

λ = (λ1, λ2, λ3) and Λ = (Λ1,Λ2,Λ3) = (
dλ1

dX
,
dλ2

dX
,
dλ2

dX
).

Then the governing equations (25) reduce to the following 1D version:
∂ψ
∂P −

d
dX ( ∂ψ∂Π ) + 1

λ1

dφ
dX = 0 on (0, H),

d
dX [T̃i + Σ̃i] + Jbei = 0 on (0, H),
d
dX [ε0

1
λ1
φ,X +

P (X)+P e
0 (X)

J ] = λ1

J ρ
e
0(X) on (0, H),

(84)

where

T̃i =
∂ψ

∂λi
− d

dX
(
∂ψ

∂Λi
) (i = 1, 2, 3), (85)

and

Σ̃1 = − 1

λ2
1

φ,X(P + P e0 ) +
ε0J

2λ3
1

φ,X ,

Σ̃2 = − ε0J

2λ2
1λ2

(φ,X)2, Σ̃3 = − ε0J

2λ2
1λ2

(3φ,X)2. (86)

As a special case, we assume that there are no external body force and the

surface traction te0 applied in the X direction. Then boundary conditions

are given by

T̃1 + Σ̃1 − te0 = 0 at X = 0 &X = H,

T̃2 + Σ̃2 = 0 at X = 0 &X = H,

T̃3 + Σ̃3 = 0 at X = 0 &X = H,
∂ψ
∂Λ1

= ∂ψ
∂Λ2

= ∂ψ
∂Λ3

= 0 at X = 0 &X = H,

φ(0) = 0, φ(H) = V,

(87)

where te0 is the X− component of te0.
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To demonstrate the flexoelectric effects in soft materials, we consider

isotropic flexoelectric materials with the internal energy density given by

ψ(λ,Λ, P ) = Welast(λ) +
g

2
Λ2

1 + fΛ1P +
1

2(ε− ε0)J
P 2, (88)

where Welast(λ) is the strain energy density function dictating the mechani-

cal properties of materials, the last term implies that the dielectric constant

(i.e., permittivity) ε of the material is independent of deformation in the

absence of flexoelectric effects, i.e., the third term fΛ1P , the second term
g
2 Λ2

1 guarantees that the natural state (λ,Λ, P ) = (0, 0, 0) is the stable

equilibrium state of the film in the absence of all external electrical and

mechanical loads. Here, constants f, g > 0, ε > ε0 are material properties

which can be determined by benchmark experiments.

Inserting (88) into (84), (85),and (87), then we obtain the following

governing equations

P
(ε−ε0)J + fΛ1 + 1

λ1

dφ
dX = 0 on (0, H),

[∂Welast

∂λ1
+ Σ̃′1 − (gu,XX + fP ),X ],X + be0 = 0 on (0, H),

∂Welast

∂λ2
+ Σ̃′2 = 0 on (0, H),

∂Welast

∂λ3
+ Σ̃′3 = 0 on (0, H),

d
dX [ε0

1
λ1
φ,X +

P (X)+P e
0 (X)

J ] = λ1

J ρ
e
0(X) on (0, H),

(89)

and the boundary conditions
∂Welast

∂λ1
+ Σ̃′1 − (gu,XX + fP ),X ]− te0 = 0 at X = 0 &X = H,

gu,XX + fP = 0 at X = 0 &X = H,

φ(0) = 0, φ(H) = V,

(90)

where

Σ̃′i = Σ̃i −
P 2

2(ε− ε0)Jλi

We remark that if the elastic properties of the soft materials are specified,

e.g. the Neo-Hookean hyperelastic model with (µ, shear modulus; κ, bulk

modulus)

Welast(λ) =
µ

2
[J−2/3(λ− 12 + λ2

2 + λ2
3)− 3] +

κ

2
(J − 1)2, (91)

then (89) and (90) form a closed boundary value problem which can be

solved to determine the state variables (χ, P ) (i.e., u, α, β, P , and φ).
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Moreover, if the material is incompressible with J = λ1λ2λ3 = 1, the

state variables as given by (83) shall satisfy

J = (1 + u,X)αβ = 1.

To incorporate this incompressibility constraint, we use the Lagrange mul-

tiplier approach and add to the total free energy:∫ H

0

q[(1 + u,X)αβ − 1]dX,

where q : (0, H)→ R can be interpreted as the hydrostatic pressure as in the

classic context. Taking into account the hydrostatic term and repeating the

similar variational calculations as stated previously, we find the associated

Euler-Lagrange equations
∂W
∂P + 1

λ1
φ,X = 0 on (0, H),

d
dX [T̃1 + Σ̃1 + q

λ1
] + Jbe1 = 0 on (0, H),

T̃2 + Σ̃2 + q
λ2

= 0 on (0, H),

T̃3 + Σ̃3 + q
λ3

= 0 on (0, H),

(92)

For an incompressible flexoelectric Neo-Hookean material described by

(88) and (91), based on symmetry, we note that a solution for the boundary

value problem should satisfy

λ2 = α = λ3 = β = λ
−1/2
1 on (0, H). (93)

Further, we can rewrite the strain energy density as

Welast(λ1) =
µ

2
(λ2

1 +
2

λ1
− 3), (94)

which, by(85), (92)3,4, and (93), implies

T̃2 = T̃3 = 0, Σ̃2 = Σ̃3 = −qλ1/2
1 on (0, H). (95)

Eliminating q in (92)1,2 by equatinos (95), we obtain the following explicit

boundary value problem for u, φ, and P :

P
ε−ε0 + fλ1,X + λ−1

1 φ,X = 0 on (0, H),

[µ(λ1 − λ−2
1 ) + Σ̃eq − (gu,XX + fP ),X ],X + Jbe1 = 0 on (0, H),

[−ε0λ−1
1 φ,X + P + P e0 ],X = λ1ρ

e
0 on (0, H),

µ(λ1 − λ−2
1 ) + Σ̃eq − (gu,XX + fP ),X − te0 = 0 at X = 0&H,

gu,XX + fP = 0 at X = 0&H,

φ(0) = 0, φ(H) = V,

(96)

where λ1 = 1+u,X , and Σ̃eq = Σ̃1−λ−3/2
1 Σ̃2 = − 1

λ2
1
φ,X(P+P e0 )+ ε0

λ3
1
(φ,X)2.
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7.2. Flexoelectric effects in a soft bilayer structure

Now we consider the flexoelectric effect in the context of the simple bilayer

structure shown in Fig. 13. For this structure, the layer A and B are

made of different soft materials. For this problem, the voltage difference

between the two surfaces is maintained to be zero throughout the calcula-

tion however a uniform loading te0 is applied. Under this loading, an electric

displacement will ensue in the body. The effective piezoelectricity is then

calculated by deff = dD̃/dte0, where D̃ is the average electric displacement

of the bilayer structure.

Fig. 13. A bilayer flexoelectric structure under uniform mechanical loading. Reprinted

with permission from.43 Copyright 2014 by ELSEVIER.

In the absence of external polarization, charges and body force, i.e.,

P e0 = be0 = ρe0 = 0, by (96) we obtain the following explicit boundary value

problem for u, φ, and P :



P
ε−ε0 + fλ1,X + λ−1

1 φ,X = 0 on (−Hb, Ha),

[µ(λ1 − λ−2
1 ) + Σ̃eq − (gu,XX + fP ),X ],X + Jbe1 = 0 on (−Hb, Ha),

[−ε0λ−1
1 φ,X + P + P e0 ],X = 0 on (−Hb, 0) ∪ (0, Ha),

µ(λ1 − λ−2
1 ) + Σ̃eq − (gu,XX + fP ),X − te0 = 0 at X = −Hb&Ha,

gu,XX + fP = 0, φ = 0 at X = −Hb&Ha

(97)
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with the following interfacial conditions
J[µ(λ1 − λ−2

1 ) + Σ̃eq − (gu,XX + fP ),X ],X + Jbe1K = 0

J[−ε0λ−1
1 φ,X + P + P e0 ],XK = 0

Jgu,XX + fP K = 0, JφK = 0

JuK = 0, Ju,XK = 0

(98)

where J K = ()|X=0+ − ()|X=0− .

For this problem, we set the displacement on the interface u(0) to be zero

to eliminate rigid body motion. Polypropylene cellular film and polyvinyli-

dene fluoride (PVDF) are used for the layer A and B, respectively. The

material properties of the two layers are given by

• Layer A: µa = 0.95MPa, εa = 2.35ε0, fa = 46.79Nm/C, ga = 1.28 ×
10−8N ;

• Layer B: µb = 2.0GPa, εb = 9.5ε0, fb = 179Nm/C, gb = 5.42×10−10N .

The shear modulus and flexoelectricity coefficient of PVDF are reported

in Chu and Salem’s work.42 The shear modulus of polypropylene cellular

is from (Qu and Yu,2011).70 Since there is no report on the flexoelectricity

coefficient of polypropylene cellular film, in this work, we have assumed a

reasonable value which is within the range of known values for common

polymer materials. Also, the value of g has to be estimated. The reader is

referred to two works33,71 that use atomistic and microscopic considerations

to determine this parameter that sets the nonlocal elastic length scale.

We use a simple route to predict an approximate value for the polymer

studied by us. As motivated by Maraganti and Sharma,33 the characteristic

nonlocal elastic length scale can be approximated by the radius of gyration.

Accordingly, we set
√
g/3µ ∼ Rg, where Rg is the radius of gyration of the

polymer studied.

It is not trivial to analytically solve the boundary value problem de-

scribed by (97) and (98). In this section, a general purpose finite-element

based partial differential equations solver (COMSOL) was used for this pur-

pose. Because of the highly nonlinear natural of the problem, the quartic

(4th-order) 1D finite element is used for all the calculations in this section.

Another reason for using the higher order element here is that the high

order continuity need to be satisfied throughout the specimen.

Fig.14 shows the size effect on the effective piezoelectricity for different

stress levels. In this figure, deff is normalized by dBaTiO3 . Several ob-

servations may be made:(i) the effective piezoelectric coefficient shows size
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Fig. 14. Flexoelectric effect in a soft bilayer structure. Reprinted with permission from

ELSEVIER.43 Copyright 2014.

effect which can be profitably used to engineer a high electromechanical

coupling by exploiting the flexoelectric effect, (ii) the resulting electrome-

chanical coupling in soft material is quite high—reaching to 20 times that

of Barium Titanate, and finally, (iii) unlike hard ceramics, the pronounced

size-effect is evident even at the micron scale (as opposed to nanoscale).

The latter has important ramifications in terms of experimental verifica-

tion and exploitation for practical applications.

8. Concluding Remarks

In this chapter, we have attempted to provide a comprehensive account of

a continuum field theory for flexoelectricity. In particular, we have em-

phasized a careful development of the nonlinear theory of flexoelectricity

which is critical when considering soft materials. We have presented several

pedagogical examples that illustrate the important applications of flexoelec-

tricity in the fields of energy harvesting, sensing and actuation, soft active

materials, and biological membranes. In particular, we strongly believe

that some of the most exciting applications of flexoelectricity will emerge

in the area of soft materials.

References

1. L. E. Cross, Flexoelectric effects: Charge separation in insulating solids sub-
jected to elastic strain gradients., J. Mater. Sci. 41, 53–63 (2006).



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 43

Continuum Theory of Flexoelectricity 43

2. W. Ma and L. E. Cross, Large flexoelectric polarization in ceramic lead mag-
nesium niobate., Applied Physics Letters. 79(19), 4420–4422 (2001).

3. W. Ma and L. E. Cross, Flexoelectric polarization in barium strontium ti-
tanate in the paraelectric state., Applied Physics Letters. 81(19), 3440–3442
(2002).

4. W. Ma and L. E. Cross, Strain-gradient induced electric polarization in
lead zirconate titanate ceramics., Applied Physics Letters. 82(19), 3923–3925
(2003).

5. W. Ma and L. E. Cross, Flexoelectricity of barium titanate., Applied Physics
Letters. 88, 232902 (2006).

6. G. Catalan, L. J. Sinnamon, and J. M. Gregg, The effect of flexoelectricity on
the dielectric properties of inhomogeneously strained ferroelectric thin films.,
Journal of Physics: Condensed Matter. 16(13), 2253–2264 (2004).

7. G. P. Zubko, A. R. Catalan, P. Buckley, L. Welche, and J. F. Scott, Strain-
gradient induced polarization in srtio3 single crystals., Physical Review Let-
ters. 99, 167601 (2007).

8. J. Y. Fu, W. Zhu, N. Li, and L. E. Cross, Experimental studies of the con-
verse flexoelectric effect induced by inhomogeneous electric field in a barium
strontium titanate composition., Journal of Applied Physics. 100, 024112
(2006).

9. J. Y. Fu, W. Zhu, N. Li, and L. E. Cross, Gradient scaling phenomenon in
microsize flexoelectric piezoelectric composites., Applied Physics Letters. 91,
182910 (2007).

10. E. A. Eliseev, A. N. Morozovska, M. D. Glinchuk, and R. Blinc, Spontaneous
flexoelectric/flexomagnetic effect in nanoferroics., Physical Review B. 79,
165433 (2009).

11. E. A. Eliseev, M. D. Glinchuk, V. Khist, V. V. Skorokhod, R. Blinc, and A. N.
Morozovska, Linear magnetoelectric coupling and ferroelectricity induced by
the flexomagnetic effect in ferroics., Physical Review B. 84, 174112 (2011).

12. R. Maranganti and P. Sharma, Atomistic determination of flexoelectric prop-
erties of crystalline dielectrics., Physical Review B. 80, 054109 (2009).

13. M. S. Majdoub, P. Sharma, and T. Cagin, Enhanced size-dependent piezo-
electricity and elasticity in nanostructures due to the flexoelectric effect.,
Physical Review B. 77, 125424 (2008).

14. M. S. Majdoub, P. Sharma, and T. Cagin, Dramatic enhancement in energy
harvesting for a narrow range of dimensions in piezoelectric nanostructures.,
Physical Review B. 78, 121407(R) (2008).

15. M. S. Majdoub, P. Sharma, and T. Cagin, Erratum: Enhanced size-
dependent piezoelectricity and elasticity in nanostructures due to the flexo-
electric effect., Physical Review B. 79, 119904(E) (2009).

16. M. S. Majdoub, P. Sharma, and T. Cagin, Erratum: Dramatic enhance-
ment in energy harvesting for a narrow range of dimensions in piezoelectric
nanostructures., Physical Review B. 79, 159901(E) (2009).

17. N. D. Sharma, R. Maranganti, and P. Sharma, On the possibility of piezo-
electric nanocomposites without using piezoelectric materials., Journal of the
Mechanics and Physics of Solids. 55, 2328–2350 (2007).



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 44

44 Q. Deng, L. Liu and P. Sharma

18. N. D. Sharma, C. M. Landis, and P. Sharma, Piezoelectric thin-film superlat-
tices without using piezoelectric materials., Journal of Applied Physics. 108,
024304 (2010).

19. N. D. Sharma, C. M. Landis, and P. Sharma, Erratum: Piezoelectric thin-
film superlattices without using piezoelectric materials., Journal of Applied
Physics. 111, 059901 (2012).

20. M. Gharbi, Z. H. Sun, P. Sharma, K. White, and S. El-Borgi, Flexoelectric
properties of ferroelectrics and the nanoindentation size-effect., International
Journal of Solids and Structures. 48, 249–256 (2011).

21. S. V. Kalinin and V. Meunier, Electronic flexoelectricity in low-dimensional
systems., Physical Review B. 77(3), 033403 (2008).

22. T. Dumitrica, C. M. Landis, and B. I. Yakobson, Curvature induced polar-
ization in carbon nanoshells., Chemical Physics Letters. 360(1–2), 182–188
(2002).

23. A. K. Tagantsev, Theory of flexoelectric effect in crystals., Sov. Phys. JETP.
61(6), 1246–1254 (1985).

24. A. K. Tagantsev, Piezoelectricity and flexoelectricity in crystalline di-
electrics., Physical Review B. 34, 5883–5889 (1986).

25. A. K. Tagantsev, Electric polarization in crystals and its response to thermal
and elastic perturbations., Phase Transit. 35(3-4), 119–203 (1986).

26. A. K. Tagantsev, V. Meunier, and P. Sharma, Novel electromechanical phe-
nomena at the nanoscale: phenomenological theory and atomistic modeling.,
MRS Bulletin. 34(9), 643–647 (2009).

27. R. Maranganti, N. D. Sharma, and P. Sharma, Electromechanical coupling
in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s
function solutions and embedded inclusions., Physical Review B. 74, 014110
(2006).

28. T. D. Nguyen, S. Mao, Y. W. Yeh, P. K. Purohit, and M. C. McAlpine,
Nanoscale flexoelectricity., Adv Mater. 25(7), 946–974 (2013).

29. S. Chandratre and P. Sharma, Coaxing graphene to be piezolectric., Applied
Physics Letters. 100, 023114 (2012).

30. A. G. Petrov, Flexoelectric model for active transport. In: Physical and chem-
ical bases of biological information transfer. Plenum Press, New York (1975).

31. A. G. Petrov, Flexoelectricity of model and living membranes., Biochim.
Biophys. Acta. 1561, 1–25 (2002).

32. A. G. Petrov, Flexoelectricity and mechanotransduction., Current Topics in
Membranes: Mechanosensitive Ion Channels, Part A. 58, 121–150 (2007).

33. R. Maranganti and P. Sharma, A novel atomistic approach to determine
strain-gradient elasticity constants: Tabulation and comparison for various
metals, semiconductors, silica, polymers and the (ir) relevance for nanotech-
nologies., Journal of the Mechanics and Physics of Solids. 55(9), 1823–1852
(2007).

34. T. Xu, J. Wang, T. Shimada, and T. Kitamura, Direct approach for flexoelec-
tricity from first-principles calculations: cases for srtio3 and batio3., Journal
of Physics: Condensed Matter. 25(41), 415901 (2007).

35. J. Hong, G. Catalan, J. F. Scott, and E. Artacho, The flexoelectricity of bar-



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 45

Continuum Theory of Flexoelectricity 45

ium and strontium titanatesfrom first principles., Journal of Physics: Con-
densed Matter. 22(11), 112201 (2010).

36. J. Hong and D. Vanderbilt, First-principles theory of frozen-ion flexoelectric-
ity., Physical Review B. 84, 180101 (2011).

37. J. Hong and D. Vanderbilt, First-principles theory and calculation of flexo-
electricity., Physical Review B. 88, 174107 (2013).

38. M. Stengel, Flexoelectricity from density-functional perturbation theory.,
Physical Review B. 88, 174106 (2013).

39. M. Stengel, Microscopic response to inhomogeneous deformations in curvi-
linear coordinates., Nature Communications. 4, 2693 (2013).

40. S. Baskaran, X. He, Q. Chen, and J. Y. Fu, Experimental studies on the
direct flexoelectric effect in α-phase polyvinylidene fluoride films., Applied
Physics Letters. 98, 242901 (2011).

41. S. Baskaran, X. He, Y. Wang, and J. J. Y. Fu, Strain gradient induced
electric polarization in α-phase polyvinylidene fluoride films under bending
conditions., Journal of Applied Physics. 111, 014109 (2012).

42. B. Chu and D. R.Salem, Flexoelectricity in several thermoplastic and ther-
mosetting polymers., Applied Physics Letters. 101, 103905 (2012).

43. Q. Deng, L. Liu, and P. Sharma, Flexoelectricity and electrets in soft ma-
terials and biological membranes., Journal of the Mechanics and Physics of
Solids. 62, 209–227 (2014).

44. G. Catalan, A. Lubk, A. Vlooswijk, E. Snoeck, C. Magen, A. Janssens,
G. Rispens, G. Rijnders, D. Blank, and B. Noheda, Flexoelectric rotation
of polarization in ferroelectric thin films, Nature Materials. 10(12), 963–967
(2011).

45. M. S. Majdoub, R. Maranganti, and P. Sharma, Understanding the origins
of the intrinsic dead layer effect in nanocapacitors., Physical Review B. 79,
115412 (2009).

46. P. Zubko, G. Catalan, and A. K. Tagantsev, Flexoelectric effect in solids.,
Annu. Rev. Mater. Res. 43, 387–421 (2013).

47. P. V. Yudin and A. K. Tagantsev, Fundamentals of flexoelectricity in solids.,
Nanotechlology. 24, 432001 (2013).

48. S. Shen and S. Hu, A theory of flexoelectricity with surface effect for elastic
dielectrics., Journal of the Mechanics and Physics of Solids. 58, 665–677
(2010).

49. S. Dai, M. Gharbi, P. Sharma, and H. Park, Surface piezoelectricity: size
effects in nanostructures and the emergence of piezoelectricity in non-
piezoelectric materials., Journal of Applied Physics. 110, 104305 (2011).

50. R. Resta and D. Vanderbilt, Theory of polarization:a modern approach,
Physics of Ferroelectrics: Topics and Applied Physics. 105, 31–68 (2007).

51. J. Marshall and K. Dayal, Atomistic-to-continuum multiscale modeling with
long-range electrostatic interactions in ionic solids, Journal of the Mechanics
and Physics of Solids. 62, 137–162 (2014).

52. R. A. Toupin, The elastic dielectric., J. Rational Mech. Anal. 5(6), 849–915
(1956).

53. R. Bustamante, A. Dorfmann, and R. W. Ogden, Nonlinear electroelasto-



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 46

46 Q. Deng, L. Liu and P. Sharma

statics: a variational framework., Z. angew. Math. Phys. 60, 154–177 (2009).
54. L. Liu, An energy formulation of continuum magneto-electro-elasticity with

applications., Journal of the Mechanics and Physics of Solids. 63, 451–480
(2014).

55. A. S. Yurkov, Elastic boundary conditions in the presence of the flexoelectric
effect., JETP Letters. 94(6), 455–458 (2011).

56. R. D. Mindlin, Polarization gradient in elastic dielectrics., International Jour-
nal of Solids and Structures. 4, 637–642 (1968).

57. S. Mao and P. Purohit, Insights into flexoelectric solids from strain-gradient
elasticity, Journal of Applied Mechanics. 81(8), 081004 (2014).

58. A. Abdollahi, D. Millan, C. Peco, M. Arroyo, and I. Arias, Revisiting pyra-
mid compression to quantify flexoelectricity: A three-dimensional simulation
study, Physical Review B. 91, 104103 (2015).

59. Q. Deng, M. Kammoun, A. Erturk, and P. Sharma, Nanoscale flexoelectric
energy harvesting., International Journal of Solids and Structures. 51(18),
3218–3225 (2014).

60. A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting. Wiley, New
Delhi (2011).

61. A. Erturk, Assumed-modes modeling of piezoelectric energy harvesters:
Euler-bernoulli, rayleigh, and timoshenko models with axial deformations.,
Comput. Struct. 106–107, 3218–3225 (2012).

62. R. M. Clough and J. Penzien, Dynamics of structures. 2nd ed. McGraw Hill,
New York (1993).

63. A. G. Petrov, B. A. Miller, K. Hristova, and P. N. R. Usherwood, Flex-
oelectric effects in model and native membranes containing ion channels.,
European Biophysics Journal. 22, 289–300 (1993).

64. W. E. Brownell, A. A. Spector, R. M. Rapheal, and A. S. Popel, Micro- and
nanomechanics of the cochlear outer hair cell., Annu. Rev. Biomed. Eng. 3,
169–194 (2001).

65. W. E. Brownell, B. Farrell, and R. M. Rapheal, Membrane electromechanics
at hair-cell synapses., Biophysics of the Cochlea: From Molecules to Models.
pp. 169–176 (2003).

66. R. M. Rapheal, A. S. Popel, and W. E. Brownell, A membrane bending
model of outer hair cell electromotility., Biophysics Journal. 78(6), 2844–
2862 (2000).

67. K. D. Breneman and R. D. Rabbitt, Piezo- and flexoelectric membrane under-
lie fast biological motors in the ear., Materials Research Society Symposium
Proceedings. p. 1186E (2009).

68. P. Mohammadi, L. Liu, and P. Sharma, A theory of flexoelectric membranes
and effective properties of heterogeneous membranes., Journal of Applied
Mechanics. 81(1), 011007 (2014).

69. W. Helfrich, Elastic properties of lipid bilayers: theory and possible experi-
ments., Z. Naturforsch C. 28(11), 693–703 (1973).

70. S. Qu and Y. Yu, Electromechanical coupling properties and stability analysis
of ferroelectrets., J. Appl. Phys. 110, 043525 (2011).

71. S. Nikolov, C. S. Han, and D. Raabe, On the origin of size effects in small-



January 26, 2017 14:32 ws-rv9x6 Book Title flexoelectricity page 47

Continuum Theory of Flexoelectricity 47

strain elasticity of solid polymers., International Journal of Solids and Struc-
tures. 44(5), 1582–1592 (2007).


