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Emergent magnetoelectricity in soft materials,
instability, and wireless energy harvesting

Zeinab Alameh,†a Shengyou Yang,†a Qian Dengb and Pradeep Sharma *ac

Magnetoelectric materials that convert magnetic fields into electricity and vice versa are rare and usually

complex, hard crystalline alloys. Recent work has shown that soft, highly deformable magnetoelectric

materials may be created by using a strain-mediated mechanism. The electromagnetic and elastic

deformation of such materials is intricately coupled, giving rise to a rather rich instability and bifurcation

behavior that may limit or otherwise put bounds on the emergent magnetoelectric behavior. In this work,

we investigate the magneto-electro-mechanical instability of a soft dielectric film subject to mechanical

forces and external electric and magnetic fields. We explore the interplay between mechanical strain,

electric voltage and magnetic fields and their impact on the maximum voltage and the stretch the

dielectric material can reach. Specifically, we present physical insights to support the prospects to achieve

wireless energy harvesting through remotely applied magnetic fields.

1 Introduction
Soft materials that are capable of undergoing large mechanical
deformation in response to external stimuli (such as tempera-
ture, pH or electric field) have recently received extensive atten-
tion. As example, soft dielectrics respond to electric fields and
have been investigated for applications in human-like robots,1,2

stretchable electronics,3 actuators4–6 and energy harvesting.7–11

Magnetoelectric coupling refers to the ability of the materials to
electrically polarize under the application of a magnetic field,
and conversely, magnetize under the application of an electric
field. Unfortunately, there are no known natural soft magneto-
electric materials. Magnetoelectricity was discovered in a class of
hard, crystalline multiferroics.12–14 The intrinsic coupling is low
at room temperature and these materials can hardly sustain
large deformations.‡

Soft materials that are magnetoelectric are expected to
have several interesting applications such as wireless energy
transfer,17 spintronics and nonvolatile memories,18 multiple

state energy bits that can be written electrically and retrieved
magnetically, among others.14 Perhaps the most enticing one is
that of wireless energy harvesting. Magnetic fields may be
remotely imposed and therefore a suitable magnetoelectric
soft material may provide a facile route to convert magnetic
power into electric energy. Coupled with the large-deformation
capability of soft materials, these materials present a compelling
case as actuators, sensors and energy conversion devices. In
recent works, a rather simple approach to create artificial soft
magnetoelectric materials was proposed by Liu, Sharma and
co-workers19–21 that does not require the materials them-
selves to be magnetoelectric, or piezoelectric or exhibit any
exotic atomistic features that conventional hard crystalline
multiferroics do. Rather, any soft material may be made to
act like a magnetoelectric material (Fig. 1) provided certain
conditions are met.

For instance, a soft dielectric film coated with two compliant
electrodes under an applied voltage will deform because of the
electric Maxwell stress—and this deformation is proportional
to the square of the applied electric field. What will happen to
the dielectric response if an external magnetic field is applied
in addition to the applied voltage? If the dielectric material
also has a magnetic permeability larger than unity, then it will
deform further due to the magnetic Maxwell stress. The super-
imposed additional deformation will, in turn, alter the pre-
existing electric field and thus, change the polarization (see
Fig. 1). The detectable change in the electric field resulting
from the application of the magnetic field manifests itself as a
magnetoelectric effect.19,20 Since the aforementioned mecha-
nism relies mainly on electric and magnetic Maxwell stress the
resulting magnetoelectric effect is universal. Here, we note
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‡ An alternative approach to artificially design hard composite magnetoelectric
materials is by combining piezoelectric and magnetostrictive materials. Most
such resulting materials are also hard, the ensuing coupling is not strong and
suffers from challenges related to cost-effectiveness and the associated complex
fabrication processes.15,16
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three essential conditions for the effect to take place.19–21 First,
the material must be mechanically soft so that the electrical
Maxwell stress effect is significant. Second, the dielectric material
must have a magnetic permeability larger than that of vacuum.
That is, the magnetic permeability of the soft material must be
greater than one, mr4 1. The latter can be ensured by incorporating
a veryminute amount of soft magnetic particles or fluid.22 Finally, a
pre-existing electric field must be present.

A large deformation in soft matter and instabilities go
hand-in-hand. For example, soft dielectrics are vulnerable
to a wide range of electro-mechanical instabilities including
thinning and pull-in instabilities,23–25 electro-creasing to
cratering,26 electro-cavitation,27 wrinkling to name just a
few.28,29 Historically, instabilities have been considered harmful
(and they indeed can be) but more recently, especially in the
context of soft dielectrics, they have also been exploited to
enhance material behavior and design novel devices.30 While
the literature on the discussion of instability in dielectrics (and
its avoidance or enhancement) is extensive, very few works have
focussed on analogous issues in the context of soft magnetically
responsive materials.22,31–33 In this work, (i) we analyze the
magneto-electro-mechanical stability of a soft dielectric
film subjected to a combination of mechanical, electrical
and magnetic stimuli, (ii) present insights into the resulting
phenomenon of strain-mediatedmagnetoelectricity, and (iii) explore
the prospects for wireless energy harvesting due to remotely
applied magnetic fields.

The outline of this work is as follows: in Section 2, we
present the theoretical formulation, first in general terms and
then specialized for the thin-film configuration of interest

which we use to illustrate our key results. In Section 3 we
specialize our derivations to homogeneous deformation and for
an ideal dielectric elastomer. We present the central results
related to stability and the magnetoelectric effect in Section 4
and discuss wireless energy harvesting in Section 5. Finally, we
conclude our work in Section 6.

2 Formulation
In this section, we derive the governing equations needed to
investigate the magneto-electromechanical stability of soft
dielectric materials subjected to a combination of mechanical
forces and external electric and magnetic fields. We assume
the simplest possible configuration: a film of soft material
sandwiched between two electrodes (see Fig. 2). This will
facilitate exploration of the key mechanisms and insights
underpinning magnetoelectricity in soft materials while avoiding
excessive mathematical tedium. The material forming the layer
is assumed to be elastically nonlinear but electrostatically and
magnetostatically linear.

2.1 Geometry and deformation

If we consider a film of soft dielectric and choose a positively-
oriented, orthonormal basis {eX, eY, eZ} with associated Cartesian
coordinates X, Y, and Z, the domain occupied by the dielectric
film (see Fig. 2), in the reference configuration, is given by

B = {X A R3: 0 r X r L1, 0 r Y r L2, 0 r Z r L3}, (1)

where Li, i = 1, 2, 3, are geometrical dimensions.
The deformation is denoted by a smooth mapping: w:

B - R3 and the deformed film dimensions become (l1, l2, l3).
In contrast to the material point X A B, the spatial point is then
represented by x = w(X), which is denoted by the Cartesian triplet
(x, y, z) in the current configuration.

We consider the following class of deformations

x = X + a(X), y = Y(1 + b(X)), z = Z(1 + c(X)), (2)

where a(X), b(X) and c(X) are functions of only the variable X.

Fig. 1 Schematic figure illustrating the mechanism that can be used to
engineer the magnetoelectric effect in soft materials. A thin film made of an
elastically soft material is coated with two compliant electrodes. When
subjected to a pre-existing electric potential, the dielectric will be deformed
and be polarized by the electric field. Now, if an external magnetic field is
switched on, the magnetic Maxwell stress will also deform the thin film if its
magnetic permeability mr 4 1. That, in turn, alters the existing polarization
and deformation. The change in the polarization in the film can be
measured as a current due to the imposed magnetic field and thus
manifests as an emergent strain-mediated magnetoelectric effect.

Fig. 2 A film of soft dielectric material subject to two pairs of in-plane
mechanical loads P2 and P3, an applied electrical voltage difference V
between the upper and bottom surfaces coated with compliant electro-
des, and an external magnetic field he in the thickness direction.
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The deformation gradient is

F ¼ @w
@X

¼

l 1 0 0

Yb0ðXÞ l 2 0

Zc0ðXÞ 0 l 3

0

BBB@

1

CCCA; (3)

where the prime denotes the derivative with respect to X and
the stretches§ are

l 1 ¼
@x

@X
¼ 1þ a0ðXÞ; (4a)

l 2 ¼
@y

@Y
¼ 1þ bðXÞ; (4b)

and

l 3 ¼
@z

@Z
¼ 1þ cðXÞ: (4c)

The (volumetric) Jacobian then becomes

J = det F = l 1l2l3, (5)

where l i is given in (4). For incompressible materials, the
Jacobian in (5) is unity

J = 1 (6)

and then the stretches have the relation

l 1 ¼
1

l 2l 3
: (7)

2.2 Maxwell’s equations and boundary conditions

2.2.1 Maxwell’s equations. In the current configuration,
the Maxwell equations are20,34

div(%e0 grad x + p) = 0, div(%grad z + m) = 0, (8)

where e0 is the vacuum permittivity, ‘‘div’’ and ‘‘grad’’ are the
divergence and gradient operators, x is the electric potential
field and z is the magnetic potential field. p andm, respectively,
denote the polarization and the magnetization.

The relations between the polarization and the magnetiza-
tion in the current and reference configurations are19,20,34

p¼ P

J
; m ¼ M

J
; (9)

where P and M, respectively, denote the polarization and the
magnetization in the reference configuration. Other definitions
of these relations between the true and the nominal polariza-
tion (or magnetization), see for example the definition by
Dorfmann and Ogden,35 can also be used if the expressions
of the corresponding Maxwell equations are properly articu-
lated. The current choice of the defined nominal magnetization
in (9) is consistent with our formulation.

2.2.2 Electric and magnetic boundary conditions. The elec-
tric boundary conditions on the upper (x = l1) and bottom (x = 0)
surfaces in the current configuration are

x|x=l1 = V, x|x=0 = 0, (10)

where x is the coordinate in the current configuration and l1 is
the thickness of the deformed film.

The far-field magnetic boundary condition is20,34

%grad z - he as |x| - N, (11)

where x is the spatial point and he = heex is the external far-field
magnetic field in the current configuration with basis {ex, ey, ez}.

From Ampère’s law for time-independent problems and in
the absence of external currents, we have the following inter-
face discontinuity/boundary condition for the magnetic field on
the upper (x = l1) and bottom (x = 0) surfaces

n & 1% grad zU = 0 on x = 0 & l1, (12)

where n is a unit normal to the surface and 1 fU = f+ % f%, is the
difference of the field quantity f evaluated at either side of the
discontinuity surface.

In addition, given the absence of ‘‘magnetic monopoles’’ at
the interfaces, we have the following interface discontinuity/
boundary condition for the magnetic flux:

n'1%m grad zU = 0 on x = 0 & l1, (13)

where m is the magnetic permeability.

2.3 Free energy of the system

The total free energy of a general conservative magneto-electro-
mechanical system in a three-dimensional space can be
expressed as34

F[w,P,M] = U[w,P,M] + Eelect[w,P] + Emag[w,M] + Pmech[w].
(14)

Here, U is the internal energy

U ¼
ð

B
Wðw;P;MÞ; (15)

where B is the domain of the system in the reference configu-
ration and W(w,P,M) is the internal energy function. The
smooth function w: B - B* that is assigned to each material
point X A B a spatial point x A B*.

In addition, Eelect in (14) is the electric energy

Eelect ¼ e0
2

ð

B(
jgradxj2 þ

ð

@Bd
(
xð%e0 grad xþpÞ 'n; (16)

where B* is the domain of the deformed body and qBd* is the
electric boundary in the current configuration, and n is the unit
normal to the surface qBd*.E

mag in (14) is the magnetic energy¶

Emag ¼ m0
2

ð

R3
jgradzj2 ¼ m0

2

ð

R3
jgradzself j2 % m0

ð

B(
he 'm; (17)

where m0 is the magnetic permeability of free space, he is the
far-field applied magnetic field and m is the magnetization
in the current configuration. zself is the so-called magnetic
self-field which is defined for convenience by decomposing

§ The stretches here are not the principal stretches of the deformation.
¶ The detailed derivation of the form of the magnetic energy and the expression
of (17) can be found in eqn (5.1)–(5.5) of the work by Liu.34
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the total magnetic field h as: h = he + hself and hself = %grad zself

and h = %grad z. Finally, Pmech in (14) is defined by

Pmech ¼ %
ð

@Bt

t ' w (18)

that is the potential energy related to the dead load t applied on
the traction boundary qBt.

In this work, we will consider the case of a dielectric
elastomer subject to two in-plane biaxial forces P2 and P3, an
applied voltage (10) and an external far-field magnetic field (11)
in the thickness direction (see Fig. 2). Considering the assump-
tion of the deformation (see eqn (2)–(7)) and the 1-dimensional
nature of the problem, the total free energy of the system shown
in Fig. 2, in contrast to the general form (14) in the three-
dimensional space, is given by19,20

F

L1L2L3
¼ 1

L1

ðL1

0
Wðl 2; l 3;P;MÞdX þ 1

L1

ðl1

0

e0
2
l 2l 3ðx;xÞ2dx

þ 1

L1
xl 2l 3ð%e0x;x þpÞ
" #$$

x¼l1

þ 1

L1

ðl1

0

m0
2
l 2l 3ðzself;x Þ2dx

% 1

L1

ðl1

0
l 2l 3m0h

e 'mdx% P2l 2
L1L3

% P3l 3
L1L2

;

(19)

where the subscript ‘,x’ denotes the derivative with respect to x
in the current configuration.

The free energy expression (19) contains a mixture of both
material and spatial representations. In the following subsec-
tion, we will reformulate the free energy expression entirely in
the reference configuration.

2.3.1 Material representation of the free energy. Recalling
the expression for the stretch l1 in (4), the relationship between
the differentials in the current and reference configurations
can be written as

x;x ¼ x;X
@X

@x
¼

x;X
l 1

; zself;x ¼
zself;X

l 1
; dx ¼ l 1dX : (20)

In contrast to the spatial forms (8), the 1D Maxwell equa-
tions in the reference configuration are

(%e0l2l3x,X + P),X = 0, (%l2l3z,X + M),X = 0. (21)

Thus the free energy (19) can be written in the reference
configuration as

by using eqn (20), (7), and the 1D Maxwell eqn (21) as well as
integration by parts.

2.3.2 A vector form of the free energy. There are four
generalized coordinates (independent variables) including l2, l3,
P and M in the expression of the free energy (22). Other variables
like the electric potential x, the magnetic potential z and the
self-magnetic potential zself are related to the four generalized
coordinates through relation (20) and Maxwell eqn (21).

By introducing a vector

v = (l2, l3, P, M)T, (23)

A more compact form of the free energy (22) can be written as:

FðvÞ
L1L2L3

¼ 1

L1

ðL1

0
WtðvÞdX % s2l 2 % s3l 3; (24)

where the total energy density Wt(v) is

WtðvÞ ¼ WðvÞ % e0
2
ðl 2l 3Þ2ðx;XÞ2 þ l 2l 3x;XP

þ m0
2
ðl 2l 3Þ2ðzself;X Þ2 % m0h

eM;

(25)

and the nominal stresses are

s2 ¼
P2

L1L3
; s3 ¼

P3

L1L2
: (26)

It should be noted that x,X and zself,X in the energy function
(25) are implicitly related to the vector v in (23).

2.4 Principle of minimum free energy

The equilibrium state v in (24) is dictated by the principle of
minimum free energy. The free energy should be minimized
among all the neighboring states v + dv, |dv| { 1:

F(v) r F(v + dv). (27)

The inequality (27) gives the following conditions for the first
and second variations:

dF(v) = 0 (28)

and

d2F(v) Z 0. (29)

Using (28) and (29), the first variation condition can be
written as:

dF
L1L2L3

¼ 1

L1

ðL1

0
dWtðvÞdX % s2dl 2 % s3dl 3 ¼ 0 (30)

while the second variation condition is an integral inequality,
such that

d2F
L1L2L3

¼ 1

L1

ðL1

0
d2WtðvÞdX ) 0: (31)

We remark that the first and second variations are integral
quantities since we have allowed for inhomogeneous states.
For homogeneous deformation and perturbation, the Hessian
matrix approach is often directly used to study stability.11,25

F

L1L2L3
¼ 1

L1

ðL1

0
WdX þ 1

L1

ðL1

0

e0
2
ðl 2l 3Þ2ðx;XÞ2dX

þ 1

L1

ðL1

0
%e0ðl 2l 3Þ2ðx;X Þ2 þ l 2l 3x;XP
" #

dX

þ 1

L1

ðL1

0

m0
2
ðl 2l 3Þ2ðzself;X Þ2dX

% 1

L1

ðL1

0
m0h

eMdX % P2l 2
L1L3

% P3l 3
L1L2

(22)
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Detailed derivations of the first and second variations can be
found in Appendix A.

3 Homogeneous deformation of ideal
dielectric elastomers
3.1 Homogeneous deformation

In order to make the calculation simpler and obtain clear
insights into our stated objective, we now limit our attention
to the homogeneous deformation. That is, the deformation
gradient is constant everywhere in the deformed body. This
assumption has been used quite frequently to study electro-
mechanical instability.7,11,25

For homogeneous deformation of incompressible materials,
the deformation gradient (3) reduces to

F ¼

1=l 2l 3 0 0

0 l 2 0

0 0 l 3

0

BBB@

1

CCCA; (32)

where l1, l2, and l3 are undetermined constants that are
independent of the coordinates.

In addition, the free energy (24) reduces to

F

L1L2L3
¼ WtðvÞ % s2l 2 % s3l 3; (33)

the first variation condition (30) becomes

dF
L1L2L3

¼ @Wt

@v
' dv% s2dl 2 % s3dl 3 ¼ 0 (34)

and the second variation condition (31) reads

d2F
L1L2L3

¼ d2WtðvÞ ¼ dv ' @
2Wt

@v2
dv ¼ dv 'Hdv ) 0: (35)

This stability condition d2F Z 0 only requires a positive-

definite (Hessian) matrix H ¼ @2Wt

@v2
at equilibrium.

3.2 Ideal dielectric elastomer

The formulation in the preceding sub-sections is applicable for
any soft dielectric material with the internal energy W(v). To
produce specific results, we will make a choice of constitutive
law and consider an ideal dielectric material19,20,34

W ¼ c

2
ðl 22 þ l 32 þ l 2%2l 3%2 % 3Þ þ P2

2e0 ð̂er % 1Þ

þ m0M2

2ðm̂r % 1Þ
; (36)

where c is the small-strain shear modulus, and êr and m̂r are the
relative electric permittivity and magnetic permeability of the
film, respectively.

The first term in (36) denotes the mechanical part, while the
second and third terms are the electric and magnetic parts
of the internal energy, respectively. In the absence of electric
and magnetic fields, the internal energy simply represents an
incompressible neo-Hookean elastic material.

3.3 Equilibrium solutions

With (A.69) and (34), the Euler–Lagrange equations are

@Wt

@l 2
% s2 ¼ 0;

@Wt

@l 3
% s3 ¼ 0;

@Wt

@P
¼ 0;

@Wt

@M
¼ 0: (37)

Together with the energy function (36), we have

c(l2 % l2%3l3%2) % e0l2l32(x,X)2 + l3x,XP + m0l2l32(zself,X )2 % s2 = 0,
(38a)

c(l3 % l2%2l3%3) % e0l22l3(x,X)2 + l2x,XP + m0l22l3(zself,X )2 % s3 = 0,
(38b)

P

e0ðêr % 1Þ
þ l 2l 3x;X ¼ 0; (38c)

m0M
ðm̂r % 1Þ

þ m0ðl 2l 3Þ2zself;X ½zself;X +;M % m0h
e ¼ 0: (38d)

In this set of four algebraic equations, we have four
unknown independent variables, l2, l3, P and M. The remain-
ing two variables x,X and zself,X are related to these four indepen-
dent variables through relation (20) and Maxwell eqn (21).
Together with the electric and magnetic boundary conditions,
we can solve this set of algebraic equations. In the following, we
give the details of the solution.

3.3.1 Solution of the polarization and the electric field.
From (38c), we can easily obtain the polarization P in the
reference configuration as

P = %e0(êr % 1)l2l3x,X. (39)

With (7), (9) and (20), the polarization can be written in the
current configuration as

p = %e0(êr % 1)x,x, (40)

which is consistent with the constitutive relation stated earlier
in this work.

Substituting (40) into the Maxwell eqn (8), we can obtain a
Laplace equation of the electric potential x. Together with the
electric boundary condition (10), the solution of the potential in
the current configuration is given by

x ¼ V

l1
x; 0 , x , l1: (41)

Then the electric fields in the current and reference
configurations are

%x;x ¼ %V

l1
(42)

and

%x;X ¼ %l 1x;x ¼ %V

L1
: (43)

For further discussion, we define the magnitude of the nominal
electric field as:

~E ¼ V

L1
: (44)
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3.3.2 Solution of the magnetization and the magnetic field.
Similar to the polarization, from (38d), we can get the magne-
tization M in the reference configuration as

M = (m̂r % 1)(%l2l 3zself,X + he). (45)

With (7), (9) and (20), the magnetization in the current
configuration is

m = (m̂r % 1)(%zself,x + he) = %(m̂r % 1)z,x, (46)

which, as expected, agrees with our constitutive relation.
Substituting (46) into the Maxwell eqn (8), we have a Laplace

equation of the potential z. Together with the magnetic bound-
ary conditions (11)–(13), the solution of the magnetic field in
the current configuration is given by

%z;x ¼
1

m̂r
he; 0oxo l1;

he; otherwise:

8
><

>:
(47)

Then the magnetization and the self-magnetic field in the
current configuration are given by

m ¼
~h; 0oxo l1;

m̂r ~h; otherwise;

8
<

: (48)

and

%zself;x ¼
%~h; 0oxo l1;

0; otherwise;

8
<

: (49)

where

~h ¼ ðm̂r % 1Þ
m̂r

he: (50)

Using relation (20), the magnetic field, the magnetization
and the self-magnetic field in the reference configuration are

%z;X ¼
%z;x
l 2l 3

; M ¼ m and % zself;X ¼
%zself;x

l 2l 3
: (51)

3.3.3 Solution for the stretches. By substituting (39), (43)
and (51) into (38a) and (38b), we have

c(l 2 % l 2%3l3%2) % e0êrl2l 32Ẽ2 + m0l2%1h̃2 % s2 = 0,
(52)

c(l 3 % l 2%2l3%3) % e0êrl22l3Ẽ2 + m0l3%1h̃2 % s3 = 0.
(53)

For the sake of convenience, we introduce the following
dimensionless variables by appropriate normalization

!s2 ¼
s2
c
; !s3 ¼

s3
c
; E ¼ ~E

ffiffiffiffiffiffiffiffi
e0êr
c

r
; H ¼ ~h

ffiffiffiffiffi
m0
c

r
: (54)

Then (52) and (53) can be recast as

(l2 % l2%3l3%2) % l2l32E2 + l2%1H2 % %s2 = 0, (55)

(l3 % l2%2l3%3) % l22l3E2 + l3%1H2 % %s3 = 0. (56)

For given values of control parameters (the dead loads %s2, %s3,
the electric field E and the magnetic field H) defined in (54), the
two equilibrium eqn (55) and (56) determine the values of the
two stretches l2 and l3.

3.4 Stability analysis

According to the principle of minimum energy (27), a homo-
geneously deformed dielectric will be stable under small per-
turbations in control parameters when the Hessian matrix H in
(A.74) is positive-definite. By substituting the energy function
(36) into the Hessian matrix (A.74), we obtain:

H ¼

H11 H12 H13 H14

H22 H23 H24

H33 H34

Sym H44

0

BBBBBB@

1

CCCCCCA
; (57)

where the entries, at the equilibrium solutions (39), (43), (45),
and (49)–(56), are

H11 = c(1 + 3l2%4l3%2) % e0l32Ẽ2 + m0l2%2h̃2, (58a)

H12 = 2cl2%3l3%3 % e0(êr + 1)l 2l 3Ẽ2 + 2m0l2%1l3%1h̃2, (58b)

H13 = l3Ẽ, (58c)

H14 = 2m0l2%1h̃, (58d)

H22 = c(1 + 3l2%2l3%4) % e0l22Ẽ2 + m0l3%2h̃2, (58e)

H23 = l2Ẽ, (58f)

H24 = 2m0l3%1h̃, (58g)

H33 ¼
1

e0 ð̂er % 1Þ; (58h)

H34 = 0, (58i)

H44 ¼
m0m̂r
m̂r % 1

: (58j)

In what follows we will limit our discussion to the determi-
nant of the Hessian matrix rather than all its principal minors.
For prescribed dead loads P2 and P3 and external magnetic field
he, for example, changing the voltage V takes the system from a
state of stable equilibrium to a critical state specified by the
condition:

det(H) = 0. (59)

Beyond that, the determinant of the Hessian matrix becomes
negative and the equilibrium states are no longer stable.
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4 Stability and emergent
magnetoelectricity
4.1 In the absence of external magnetic field

To connect with past work on dielectric elastomers, we first
consider the scenario when magnetic fields are absent. For
H = 0, the equilibrium eqn (55) and (56) reduce to

(l 2 % l2%3l3%2) % l2l32E2 % %s2 = 0, (60)

(l 3 % l2%2l3%3) % l22l3E2 % %s3 = 0. (61)

These two equations are equivalent to eqn (6a) and (6b) in
the work of Zhao and Suo25 with an appropriate change in
notation. We remark that the state variables used in the work25

are the stretch and the nominal electric displacement D̃ while
in this paper we have chosen to use the stretch and the nominal
polarization P. The connection between various flavors of
electromagnetic theories of deformable media has been dis-
cussed at length by Liu.34

4.2 Effect of the magnetic field on the equilibrium

In this section, we investigate the effect of an external magnetic
field. For simplicity of presentation, we consider the special
case of equal biaxial stresses, such that %s2 = %s3 = S in the
equilibrium eqn (55) and (56). As a result, l2 = l3 = l and the
two equilibrium equations become:

(l % l%5) % l3E2 + l%1H2 % S = 0, (62)

where the dimensionless electric and magnetic fields E and H
are defined by (54). The dimensionless magnetic field H is
related to the magnetic parameter h̃ in (50). It is important to
note that the magnetic permeability should be mr = m̂rm0 4 m0
for the emergent magnetoelectric effect to manifest. Therefore,
h̃ = (m̂r % 1)he/m̂r 4 0 and H 4 0 are chosen in our numerical
plots of the equilibrium (62) and the stability (57). Note that S, E
and H are control parameters that result in the stretch l . In the
absence of the magnetic field, H = 0, (62) will yield eqn (8)2 in
the work of Zhao and Suo.25

For the material properties suggested in ref. 25 the shear
modulus of soft dielectric is c = 106 N m%2, the material
permittivity is e0êr = 4 & 10%11 F m%1, and the nominal electric
field is of the order Ẽ = 108 V m%1. Then the dimensionless
electric E in (54) is E = 0.63. For a dimensionless magnetic field
H = 0.5 in (54), we need to input an external magnetic field
h̃ = 0.55 T (tesla), where h̃ E he for a large relative magnetic
permeability. This external magnetic field can decrease the true
electric field from 1.25 & 108 V m%1 (E = 0.63 and H = 0) to
1.07 & 108 V m%1 (E = 0.63 and H = 0.5), which can avoid the
electric breakdown of soft dielectrics in some circumstances.

In Fig. 3, we show the stretch l and the actuation stretch
l /lPS of the dielectric film subject to an applied voltage and
various dead loads in the absence of a magnetic field. For
simplicity, only the case of non-negative E in (62) is plotted.
Fig. 3(a) shows that the nominal electric field E increases
nonmonotonically with the increase of the in-plane stretch l
under an equal-biaxial load S. Alternatively, the electric field

and the dead load can increase the in-plane stretch, that is, they
can expand the dielectric film. At a zero electric field E = 0, the
higher the dead load S, the larger the stretch l .

For every value of the dead load S, there exists a peak that
corresponds to the maximum of the nominal electric field in
equilibrium. The maximum E in each curve decreases with the
increase of the dead load S and the peak moves from a low
stretch (the left) to a high stretch (the right). A point in each
curve corresponds to an equilibrium state whose stability can
be verified by the positive-definiteness of the Hessian matrix
(57). The peak of each curve corresponds to det(H) = 0, each
point on the left-hand side corresponds to a positive-definite
Hessian (stable), each point on the right-hand side corresponds
to a non-positive-definite Hessian (unstable).

Fig. 3(b) shows how the nominal electric field E affects the
actuation stretch. The actuation stretch here is defined as the
ratio of the stretch l to the prestretch lPS that is only induced by
the dead load. Each curve in Fig. 3(b) starts at the unit actuation
stretch and a zero electric field, and then the trend and the
stability of each curve are similar to those in Fig. 3(a). These
results are to be expected and simply presented as benchmark.

Fig. 3 Behavior of a neo-Hookean dielectric film subjected to a zero
magnetic field H = 0 under various equal-biaxial loads from S = 0 to S = 4
in equilibrium: (a) in-plane stretch l vs. nominal electric field E, (b) in-plane
actuation stretch l /lPS vs. nominal electric field E.
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For detailed discussion of these non-magnetic behaviors, the
reader can refer to the work.7,11,25

In Fig. 4, we present the stretch l and the actuation stretch
l /lPH of the dielectric film subject to an applied voltage and
various magnetic fields. For simplicity, all these curves are
plotted at a zero dead load S = 0. In Fig. 4(a), with the increase
of the magnetic field from H = 0 to 1, the peak in each curve
increases significantly and moves slightly from a high stretch
(the right) to a low stretch (the left). These changes indicate that
the magnetic field increases the critical electrical field (the
electric field at the peak of each curve). However, the shift of
the peak (from right to left) due to the increase of H in Fig. 4(a) is
opposite to that observed in Fig. 3(a) (from left to right) resulting
from the increase in S. This indicates that the magnetic field
squeezes the dielectric film and then decreases the in-plane
stretch. Indeed, the magnetic field H has an opposite effect on
the in-plane stretch l compared to the electric field E and the
dead load S. The magnetic field compresses the film in-plane
while the electric field and the dead load expand it. At a zero
electric field E = 0, for example, increasing the magnetic field H
changes the stretch l from 1 (at H = 0) to 0.87 (at H = 1).

The prestretch lPH, in contrast to lPS in Fig. 3(b), is defined
as the stretch induced solely by the magnetic field. Then the
actuation stretch by the electric field here is defined as the ratio
l /lPH. Unlike the maximum electric field, the actuation stretch
of the peak on each curve is insensitive to the increase of the
magnetic field.

From the previous discussion of Fig. 3, we know that the
magnetic field squeezes the dielectric film in-plane. Since the
film is incompressible, the thickness of the dielectric film
will increase.

Fig. 5 shows the stretch l1 = 1/l2 and the actuation stretch

l 1=l
PH
1 in the thickness direction of the film. To make a direct

comparison between the electric and magnetic fields, we
choose a zero dead load here. In Fig. 5(a), at a zero electric
field E = 0, the magnetic field H can increase the thickness from
an initial stretch of 1 (at H = 0) to a stretch of 1.32 (at H = 1).
With the increase of the electric field, there exists an apparent
competition between the electric and magnetic fields. At a low
electric field but a relatively high magnetic field, the stretch is

Fig. 4 Behavior of a neo-Hookean dielectric film at a zero dead load S = 0
under various magnetic fields from H = 0 to H = 1 in equilibrium:
(a) in-plane stretch l vs. nominal electric field E, (b) in-plane actuation
stretch l /lPS vs. nominal electric field E.

Fig. 5 Behavior of a neo-Hookean dielectric film at a zero dead load
S = 0 under various magnetic fields from H = 0 to H = 1 in equilibrium:
(a) in-thickness stretch l 1 = 1/l2 vs. nominal electric field E, (b) in-thickness
actuation stretch l 1=l

PH
1 vs. nominal electric field E.
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greater than one (increasing thickness); at a high electric field
but a relatively low magnetic field, the stretch is less than one
(decreasing thickness). It is worth mentioning that each point
in Fig. 5 on the left-hand side of the peak corresponds to a non-
positive-definite Hessian (unstable) while each point on the
right-hand side corresponds to a positive-definite Hessian
(stable), unlike Fig. 3 and 4.

In Fig. 5(b), the actuation stretch in the thickness direction
is plotted. Note that the actuation stretch induced by the
electric field compresses the film in the thickness direction.
Thus the actuation stretch is always less than 1 in Fig. 5(b) but
greater than 1 in Fig. 4(b).

In Fig. 3–5, we examine the effect of a varying nominal electric
field (the vertical axis) while fixing the external magnetic field
and the dead load on the in-plane and in-thickness stretches (the
horizontal axis). The electric and magnetic fields have opposite
effects on the in-plane and in-thickness stretches. To further
investigate the role of magnetic field, we plot the variation of
the in-plane stretch as a result of a varying magnetic field (the
vertical axis) at constant nominal electric field and dead load.
The results are shown in Fig. 6 for a zero dead load for
simplicity. We first note that the plot is symmetric about the
horizontal axis. This is expected mathematically because the
magnetic field appears as a squared term in the equilibrium
eqn (62) which makes it independent of the sign. From a
physical point of view, the Maxwell stress is a quadratic form
of the magnetic field, and thus the equilibrium state is the
same regardless of the magnetic field direction. In addition, for
a prescribed nominal electric field E, the equilibrium eqn (62)
yields two curves. For an E less than the critical value, between
0.6 and 0.7, the two equilibrium curves are separated on the left
and on the right. On the other hand, for an E greater than the
critical E, the two equilibrium curves are separated on the top
and bottom. In each curve, there exists a turning point. For the
up (down) curves, the turning point denotes a minimum
(maximum) of the magnetic field; for the left (right) curves, it

denotes the maximum (minimum) of the in-plane stretch. Note
that a point in each curve corresponds to an equilibrium state
and the stability can be verified by the positive definite of the
Hessian matrix.

In what follows, we will show that if a point on each curve is
on the left-hand side of the turning point, the Hessian is
positive-definite and the point stands for a stable equilibrium
state. In contrast, if the point is on the right-hand side of
the turning point, it denotes an unstable equilibrium state.
Therefore, the curve on the left-hand is always stable while the
curve on the right-hand side is unstable. For up and down
curves, the parts on the left-hand of the turning points are
stable, and the right part is unstable.

4.3 Effects of the magnetic field on stability

Each curve in Fig. 3–5 reveals a maximum which corresponds to
det(H) = 0. To further illustrate the magneto-electro-mechanical
stability, we consider the sign of the determinant det(H) of an
uniaxial stretched thin film subject to electric and magnetic
fields in equilibrium.

Fig. 7 shows the regions of stability and instability for a film
of soft materials subject to a uniaxial tension s1 and a constant
electric field under various external magnetic fields. We plot
three curves and each of them corresponds to the zero deter-
minant det(H) = 0 at a given value of the magnetic field, H = 0,
0.3, 0.5. For a given H, the curve in Fig. 7 represents the
variation of the critical electric field Ẽc at which det(H) = 0
with respect to the applied dead load. The determinant is
positive (stable) below the curve while it is negative (unstable)
above the curve.

It is clear from Fig. 7 that the external magnetic field
enhances the magneto-electro-mechanical stability. The curve
with a higher magnetic field H is always above the curve with a

Fig. 6 Behavior of a neo-Hookean dielectric film at a zero dead load S = 0
under various nominal electric fields from E = 0 to E = 1 in equilibrium:
in-plane stretch l vs. magnetic field H.

Fig. 7 Stability and instability regions in the dead load (s1)—electric field
plane of a neo-Hookean dielectric film under various magnetic fields
H = 0, 0.3, 0.5. The stability region is enclosed by the curve of zero
determinant and the axes. A higher magnetic field corresponds to a larger
stability region.
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lower H. Without considering the magnetic field H = 0, the
curve would be the lowest. A higher curve means a larger
stability region that is enclosed by the curve of zero determi-
nant and the axes. This clearly shows that the magnetic field
allows the film to sustain a higher electric field. We remark that
the electric breakdown is not taken into account here.

5 Wireless actuation and energy
harvesting
A key insight evident from the discussion in the preceding
paragraphs is that the presence of external magnetic field
increases the critical nominal electric field and reduces the critical
actuation stretch, thus suppressing pull-in instability. The critical
value of the nominal electric field corresponds to the intersection
point of the three stresses acting on the dielectric material: the
mechanical stress, the electric Maxwell stress and the magnetic
Maxwell stress. At a constant external magnetic field, the latter
attempts to ‘‘squeeze’’ the material, thus reducing its actuation
stretch and increasing its thickness. Changing the external voltage
while maintaining constant external magnetic field and mechan-
ical stress will affect the nominal electric field, thus changing the
electric Maxwell stress. Since magnetic stress acts against the
electric and the mechanical stresses, the material is able to
withstand a larger critical electric field, but the critical actuation
stretch will be smaller and depends on the magnitude of the
magnetic field. Beyond that critical point, any small perturbation
will move the film to an unstable state where it fails without
reaching an equilibrium. The same effect can be seen in the case
of a uniaxial stress (see Fig. 7); the presence of the magnetic field
also reduces the actuation stretch and increases the critical
electric field as can be seen in Fig. 4 and 5.

We have shown that the applied electric voltage and the
external magnetic field have opposite effects on the deforma-
tion of a soft dielectric, that is, the voltage makes the film
thinner while the magnetic field makes the film thicker. Based
on these results, along with the concept of a simple electric
capacitor where capacitance decreases as thickness increases,
we propose a simple design to increase the voltage between
isolated charged films by applying an external magnetic field.
A higher voltage can be exploited to do useful work—shown
schematically in the form of powering a light-bulb (see Fig. 8).
To make a rough estimate of how much energy can be
harnessed in this case, we consider the simple model of a
dielectric thin film with dimensions L1 = 10 mm, L2 = 10 mm
and L3 = 1 mm. The shear modulus of the soft material can be
assumed to be of the order of c = 106 N m%2, the electric
permittivity e0êr = 4 & 10%11 F m%1 and magnetic permittivity
m̂r = 5. We assume a surface charge of density q0 = 1 &
10%3 C m%2 at the upper surface and %q0 at the lower surface
of the thin film. Before applying the magnetic field, the

capacitance of this dielectric capacitor is C ¼ Q

V0
¼ e0êrL1L2

L3
.

Note that the total charge on each surface, Q = q0L1L2, is also
conserved. Thus, the electric potential energy stored in the film

is U0 ¼
1

2

Q2

C
¼ 1

2

Q2

e0êr
L3

L1L2
- 1:25& 10%3 J. Normally, a magnetic

field of 0.5 T (equivalent to 0.5 & 104 Oe) can deform the thin
film and increase its thickness by about 10%. Substituting this
10% change in the thickness L3, we can easily see that the
electric potential energy stored in the capacitor can be
increased by more than 20%. This amount of potential energy
(B0.2U0 = 250 mJ) is due to the magnetic field. If the frequency
of the magnetic field is 20 Hz, then the output power due to
the magnetic field is B250 mJ & 20 s%1 = 5 mW. This power is
enough to power a single mini-LED. Of course, we have chosen
a rather small piece of thin film as an example. In a realistic
application, the output power can be further enhanced by
increasing the size of the thin film, changing the magnetic
permeability of the material and of course stacking multiple
films together. In summary, the external magnetic field
increases the voltage on the film and can be used for wireless
energy harvesting.

6 Concluding remarks
In this paper, we have explored the magneto-electro-
mechanical behavior and instability of soft materials under

Fig. 8 Fixed total charges on the top and bottom layers of a dielectric
film: (a) no magnetic field. The film thins down and expands its area which
results in a large capacitance C. Since C B Q/V and the charge Q is fixed,
large C corresponds to low voltage V. (b) With external magnetic field. The
thickness of the film increases whereas the area decreases. This results in a
lower capacitance C. Lower C corresponds to large voltage V. (c) A higher
voltage can power a connected device.
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the combined action of mechanical, electrical and magnetic
loads. As long as the magnetic permeability of the soft matter is
larger than that of vacuum, an emergent magnetoelectric effect
appears due to the interaction of deformation and a pre-
existing electric field. While this insight has been appreciated
before,19 our key emphasis in this paper is to explore the
instability behavior of such a system. Our formulation is
relatively general although, for illustrative results, we primarily
focus on thin films and homogeneous deformation of an ideal
neo-Hookean elastomer. Even for this simple case, the insights
are rich. The presence of an external magnetic field gives us an
important control variable to impact the equilibrium behavior
of the dielectric thin film. In particular, pull-in instability can
be significantly suppressed by applying an external magnetic
field. As a result, the stability of the dielectric film is enhanced
which allows it to sustain larger electric fields and mechanical
loads. In contrast to the conventional interplay between
mechanical and electrical fields, the interaction of three fields
provides interesting opportunities to harness large deformation
and instabilities of soft dielectrics and presents tantalizing
prospects for wireless energy harvesting. Our work provides a
simple basis to further explore magnetoelectric wireless energy
harvesting devices. Further research on magneto-electro-
mechanical instabilities could be elaborated to investigate the
post-bifurcation analysis and the effects of the magnetic field
on wrinkling, creasing, and cratering as well as other types of
instabilities.
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Appendix A
We list the detailed derivations of the first variation (30) and
the second variation (31) in the following.

A.1 Details of the first variation

Consider a smooth variation:

dv = (dl2, dl 3, dP, dM)T (A.63)

of the four generalized coordinates v in (23). Then the variation
dWt(v) in (30) reads

dWt(v) = dW(v) % e0(l2l3x,X)d(l2l3x,X) + d(l 2l3x,XP)

+ m0(l2l3zself,X )d(l2l3zself,X ) % m0hedM, (A.64)

where

dWðvÞ ¼ @W

@l 2
dl 2 þ

@W

@l 3
dl 3 þ

@W

@P
dPþ @W

@M
dM; (A.65a)

d(l2l3x,X) = (l 3x,X)dl2 + (l2x,X)dl3 + (l2l3)dx,X, (A.65b)

d(l 2l 3x,XP) = (l3x,XP)dl2 + (l2x,XP)dl3 + (l2l3P)dx,X + (l2l3x,X)dP,
(A.65c)

d(l2l3zself,X ) = (l3zself,X )dl2 + (l2zself,X )dl3 + (l2l 3)dzself,X . (A.65d)

The terms related to the variation dx,X in (A.65b) and (A.65c)
can be finally omitted by considering the Maxwell eqn (21) and
the variation of the electric boundary conditions as well as
integration by parts.

Similarly, the term related to the variation zself,X in (A.65d) can
also be recast, that is,
ðL1

0
m0ðl 2l 3zself;X Þðl 2l 3Þdzself;X dX¼

ðL1

0
m0ðl 2l 3zself;X Þ½ðl 2l 3Þdzself;X %dM+

n

þm0ðl 2l 3zself;X ÞdM
o
dX¼

ðL1

0
m0ðl 2l 3zself;X ÞdMdX:

(A.66)

The first term on the second line disappears due to the zero
variation of the Maxwell eqn (21) and the magnetic boundary
condition with respect to the magnetization M.

Thus the first variation (30) can be written as

dF
L1L2L3

¼ 1

L1

ðL1

0

@Wt

@v
' dv

& '
dX % s2dl 2 % s3dl 3 ¼ 0: (A.67)

Here the vector derivative has the component form

@Wt

@v
¼ @Wt

@l 2
;
@Wt

@l 3
;
@Wt

@P
;
@Wt

@M

& 'T

; (A.68)

where the components are

@Wt

@l 2
¼ @W

@l 2
% e0l 2l 32 x;X

( )2 þ l 3x;XPþ m0l 2l 3
2 zself;X

* +2
;

(A.69a)

@Wt

@l 3
¼ @W

@l 3
% e0l 22l 3 x;X

( )2 þ l 2x;XPþ m0l 2
2l 3 zself;X

* +2
;

(A.69b)

@Wt

@P
¼ @W

@P
þ l 2l 3x;X ; (A.69c)

@Wt

@M
¼ @W

@M
þ m0 l 2l 3ð Þ2zself;X zself;X

h i

;M
%m0h

e; (A.69d)

[zself,X ],M in (A.69d) is a coefficient related to the variations of the
magnetization M and the self-magnetic field zself,X in (A.66).

A.2 Detailed second variation

Consider the integrand d2Wt(v) in (31).

d2WtðvÞ ¼ d2WðvÞ % e0
2
d2 l 2l 3x;X

( )2h i

þ d2 l 2l 3x;XP
" #

þ m0
2
d2 l 2l 3zself;X

* +2
, -

;

(A.70)

where

d2W(v) = dv'H1dv, (A.71a)

d2[(l2l3x,X)2] = 2(l3x,X)2dl22 + 2(l2x,X)2dl32 + 2(l2l3)2dx,X2

+ 8l2l3(x,X)2dl2dl3 + 8l2l32x,Xdl2dx,X + 8l22l3x,Xdl3dx,X,
(A.71b)
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d2[l2l3x,XP] = 2{x,XPdl2dl3 + l3Pdl2dx,X + l3x,Xdl2dP

+ l2Pdl3dx,X + l2x,Xdl3dP + l2l3dx,XdP}, (A.71c)

d2[(l2l3zself,X )2] = 2(l3zself,X )2dl22 + 2(l2zself,X )2dl32 + 2(l2l3)2d(zself,X )2

+ 8l2l3(zself,X )2dl2dl3 + 8l2l32zself,X dl2dzself,X + 8l22l3zself,X dl3dzself,X .
(A.71d)

Here H1 in (A.71a) is a fourth-order symmetric tensor

ðH1Þij ¼
@2W

@v2

& '

ij

¼ @2W

@vi@vj
; (A.72)

where i, j = 1, 2, 3, 4, and v = (l2, l3, P, M)T.
Combining (A.70)–(A.72), we can recast the second variation

in a more compact form

d2Wt(v) = dv'Hdv, (A.73)

where H is a fourth-order symmetric tensor

H ¼ @2Wt

@v2
¼

@2Wt

@l 22
@2Wt

@l 2@l 3
@2Wt

@l 2@P
@2Wt

@l 2@M

@2Wt

@l 32
@2Wt

@l 3@P
@2Wt

@l 3@M

@2Wt

@P2

@2Wt

@P@M

Sym
@2Wt

@M2

0

BBBBBBBBBBBBBB@

1

CCCCCCCCCCCCCCA

(A.74)

with the entries

@2Wt

@l 22
¼ @2W

@l 22
% e0 l 3x;X2

( )
þ m0 l 3zself;X

* +2
; (A.75a)

@2Wt

@l 2@l 3
¼ @2W

@l 2@l 3
% 2e0l 2l 3ðx;XÞ2 þ Px;X þ 2m0l 2l 3 zself;X

* +2
;

(A.75b)

@2Wt

@l 2@P
¼ @2W

@l 2@P
þ l 3x;X ; (A.75c)

@2Wt

@l 2@M
¼ @2W

@l 2@M
þ 2m0l 2l 3

2zself;X zself;X

h i

;M
; (A.75d)

@2Wt

@l 32
¼ @2W

@l 32
% e0 l 2x;X

( )2þm0 l 2zself;X

* +2
; (A.75e)

@2Wt

@l 3@P
¼ @2W

@l 3@P
þ l 2x;X ; (A.75f)

@2Wt

@l 3@M
¼ @2W

@l 3@M
þ 2m0l 2

2l 3zself;X zself;X

h i

;M
; (A.75g)

@2Wt

@P2
¼ @2W

@P2
; (A.75h)

@2Wt

@P@M
¼ @2W

@P@M
; (A.75i)

@2Wt

@M2
¼ @2W

@M2
þ m0ðl 2l 3Þ2 zself;X

h i2
;M
: (A.75j)
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