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Nonlinear bending deformation of soft electrets
and prospects for engineering flexoelectricity and
transverse (d31) piezoelectricity†

Amir Hossein Rahmati,a Shengyou Yang,a Siegfried Bauerb and

Pradeep Sharma *ac

Soft materials that exhibit electromechanical coupling are an important element in the development of

soft robotics, flexible and stretchable electronics, energy harvesters, sensor and actuators. Truly soft

natural piezoelectrics essentially do not exist and typical dielectric elastomers, predicated on electro-

striction and the Maxwell stress effect, exhibit only a one-way electromechanical coupling. Extensive

research however has shown that soft electrets i.e. materials with embedded immobile charges and

dipoles, can be artificially engineered to exhibit a rather large piezoelectric-like effect. Unfortunately, this

piezoelectric effect—large as it may be—is primarily restricted to an electromechanical coupling in the

longitudinal direction or what is referred colloquially as the d33 piezoelectric coefficient. In sharp contrast,

the transverse piezoelectric property (the so-called d31 coefficient) is rather small. This distinction has

profound implications since these soft electrets exhibit negligible electromechanical coupling under

bending deformation. As a result, the typically engineered soft electrets are rendered substantively ill-

suited for energy harvesting as well as actuation/sensing of flexure motion that plays a critical role in

applications like soft robotics. In this work, we analyze nonlinear bending deformation of a soft electret

structure and examine the precise conditions that may lead to a strong emergent piezoelectric response

under bending. Furthermore, we show that non-uniformly distributed dipoles and charges in the soft

electrets lead to an apparent electromechanical response that may be ambiguously and interchangeably

interpreted as either transverse piezoelectricity or flexoelectricity. We suggest pragmatic routes to

engineer a large transverse piezoelectric (d31) and flexoelectric coefficient in soft electrets. Finally, we

show that in an appropriately designed soft electret, even a uniform external electric field can induce

curvature in the structure thus enabling its application as a bending actuator.

1 Introduction

One of the ‘‘holy grails’’ of soft multifunctional materials is to

design a material that is simultaneously capable of (i) large

deformation under the application of a moderate electric field,‡

(ii) generating appreciable electric field under the application

of moderate forces, and (iii) (specifically) exhibit the features

embodied in (i)–(ii) for bending deformation. Such soft

materials with a pronounced electromechanical coupling

enable applications that range from sensors,1 actuators,2 arti-

ficial muscles,3 self-powered biomedical devices,4 soft robotics5

to energy harvesting.6–8 The reader is referred to the following

reviews and references therein for an overview.2,5,6,9–13

The simplicity of the aforementioned requirements is some-

what deceptive. Piezoelectric materials deform when subjected

to electrical stimuli and vice versa, but the hard crystalline ones

such as lead zirconium titanate (PZT), that exhibit a strong

electromechanical coupling, are not capable of large defor-

mations. Piezoelectric polymers like polyvinylidene fluoride

(PVDF) do not exhibit strong electromechanical coupling (when

compared to the crystalline piezoelectrics) and, with an elastic

modulus in the range of 1 GPa, are not really that soft.14

Dielectric elastomers are an alternative to piezoelectrics. They

are capable of large deformation but require imposition of

rather high voltage. In a remarkable work, Keplinger et al.15

demonstrated an areal increase of nearly 1700% for an acrylic
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membrane. However, dielectric elastomers operate via the

mechanism of Maxwell stress and/or electrostriction.§ In

dielectric elastomers, due to the Maxwell stress effect or electro-

striction, an electric field exerts a force proportional to E2 where

E is the applied electric field. This force is somewhat small

unless an appropriately large voltage difference is imposed. Even

then, only soft dielectrics such as elastomers (with an elastic

modulus of 1 MPa or less) deform appreciably for practically

feasible applied electric fields. Most importantly, electrostriction

is a one-way coupling i.e. an electric field will produce deforma-

tion but a mechanical stress will not induce any electricity—

unlike in piezoelectric materials. Due the absence of this

converse effect, energy harvesting is not easily possible unless

creative design augmentations are made.¶ Additionally, the

quadratic dependence of the deformation on electric fields

implies that upon reversal of the applied voltage, the deforma-

tion will not reverse.

Another alternative are soft electrets. Therein, (typically)

polymer foams are impregnated with immobile charges and

dipoles.21–23 Both experimental and theoretical work has shown

that electrets exhibit a rather large apparent piezoelectricity.

Remarkably, an apparent (longitudinal) piezoelectric coeffi-

cient8 as high as 1200 pC/N – six times that of PZT – has been

measured in polypropylene foams.24 Charge stability is a con-

cern in electrets and their application is restricted to room

temperature where the trapped charges tend to stabilize for

sufficiently long times to enable engineering applications.

Bending deformation, in the context of piezoelectrics,

dielectric elastomers and electrets, must be specifically high-

lighted which represents a unique challenge. Conversion of a

mechanical motion into electricity (i.e. energy harvesting) is a

key application area for multifunctional soft materials and is

most facile under bending-type deformation as opposed

to simple compression or stretching. Further, a variety of

sensing and actuation contexts, including soft robotics, require

flexure motion.** Bending deformation yields lower resonance

frequencies and larger attainable strain which is especially

advantageous for small size generators with limited environ-

mental mechanical forces.30,31

The preceding paragraph underscores the importance of

bending deformation, however, the following issues are notable:

(1) Naive bending of a typical piezoelectric material will

generate negligible electricity. The reason is simple. Assuming

the neutral axis to be centered in the cross-section of the

structural element, the polarization above the neutral line due

to tension is expected to substantively cancel the polarization

below the neutral axis due to compressive strains. Accordingly,

bending piezoelectric devices are nearly always bimorphs. We

remark that the bending piezoelectric device is based on the d31
piezoelectric effect (or transverse piezoelectricity) which is

defined as the linear coupling between deformation in axial

direction and electric field in thickness direction. The working

principle of bending piezoelectric actuator is shown in Fig. 1

where two layers of piezoelectric film with oppositely poled

directions are attached to each other. An externally applied

electric field creates a positive strain in one of the films and a

negative one in the other; resulting therefore in the flexure of

the entire structure.

(2) Special arrangements are also required to ensure bending

actuation of dielectric elastomers under an electric field. The

application of an electric field on a dielectric elastomer thin film

structure will simply compress the film in its thickness direction.

As an example of an approach to induce flexure, He and coworkers32

used pre-stretched films. Of course, as already indicated earlier,

since the Maxwell stress effect/electrostriction are a one-way

electromechanical coupling, sensing and energy harvesting is

not easily possible.

Fig. 1 Bending piezoelectric actuator is based on the so-called d31

piezoelectric effect. Typically, this actuator is made of two layers of

piezoelectric materials with opposite poling directions. Generation of

displacement in opposite directions in response to applied electric field

bends the structure.

§ In this work we will not distinguish between the Maxwell stress effect and

electrostriction since they are mathematically similar and this distinction does

not impact the central message of our work. For further discussion on this topic,

see ref. 16–18.

¶ cf. ref. 19 and 20 for further details. Also, a somewhat deeper consideration will

reveal that their approach for energy harvesting from dielectric elastomers can be

considered as a special form of electrets where the charges reside on the surfaces.

8 There are several equivalent ways to parametrize the piezoelectric property viz.

as relation between the electric displacement and stress or polarization or strain;

among others. In a widely used formalism, the electric displacement vector D is

related to stress tensor s through the third order piezoelectric tensor dijk (Di B

dijksjk). Odd order tensors can only exist in non-centrosymmetric crystal struc-

tures and therefore piezoelectricity is restricted to only a limited set of materials.

Furthermore, symmetry considerations for typical piezoelectric materials allows

for only six independent components for the property tensor (out of the

maximum possible 27). The electric displacement in the poling direction of

material D3 can be correlated to three normal stresses s11, s22 and s33 using

contracted notation for piezoelectric coefficients: D3 B d31s11 + d32s22 + d33s33.

The d33 (longitudinal) piezoelectric coefficient is important when both deforma-

tion (or stress) and polarization (or electric displacement) are in the poling

direction (thickness direction in this paper) and d31 plays a pivotal role when the

stress and electric displacement are in perpendicular direction with respect to

each other.

** There are several interesting uses of bending based energy generators from

electromechanical coupling e.g. from the natural contractile and relaxation

motions of the heart, lung, and diaphragm for self-powered wearable and implan-

table biomedical devices4 or to harvest wind energy by using a piezoelectric flag.25

Examples of sensors and actuators include micromotors,26micropumps,27 robots28

and cooling fans.29
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(3) Since electrets exhibit an apparent piezoelectricity—and

a rather large one at that—they would appear to be a viable

solution. Unfortunately, this is not the case. As well-articulated

by the experimental papers,23,33 the emergent piezoelectricity of

electrets is largely restricted to the longitudinal direction i.e. a

large d33 piezoelectric coefficient but a very small value for d31
piezoelectric coefficient is reported. This shortcoming ensures

that bending/harvesting is not easily possible.††

(4) It is germane here to allude to another type of electro-

mechanical coupling mechanism that has generated much

attention in recent years—flexoelectricity. In this phenomenon,

a strain gradient generates electrical polarization.‡‡ Various

experiments have confirmed the existence of flexoelectricity in

different materials including soft polymers,35,36 hard crystalline

ceramics37,38 and biological membranes.39,40 Furthermore,

several review articles have recently summarized theoretical

and experimental activities in this topic.41–46 In addition,

several numerical studies have been preformed to analyze

flexoelectric behavior of materials. Thai et al.47 presented an

approach to construct a numerical framework which can

account for both flexoelectricity and the Maxwell stress effects

in finite deformation and also can treat material interfaces

effectively. Ghasemi et al.48 presented a topology optimization

of flexoelectric composites to enhance electromechanical per-

formance. Since bending is in fact the most suitable form of

strain gradient that can elicit a flexoelectric response, flexoe-

lectricity could be considered as a reliable mechanism for

bending based electro-mechanical devices. However, the effect

is rather weak, and very large strain gradients (or extreme

bending curvatures) are required for the flexoelectric effect to

be significant. Only at nano-scale feature size is this effect

considerable where a large strain gradient is easily achievable.

However, we note that in the converse flexoelectric effect, an

electric field gradient is required to create curvature and uni-

form electric field will not bend the material.44

With the preceding paragraphs as the appropriate context,

the following questions motivate the current work:

(1) What are the theoretical underpinnings for the small

value of transverse piezoelectricity (d31 coefficient) in typical

electret foams?

(2) Based on a suitable theoretical model, what are the

physical and quantitative insights to engineer a large transverse

piezoelectric coefficient in electrets?

(3) Is it possible to create an electret structure that will

directly couple curvature to uniformly imposed electric fields

and vice versa? This is not possible in piezoelectrics and

dielectric elastomers

(4) As well-established, embedding charges and dipoles in

soft materials lead to an emergent piezoelectric response.

Directly relevant to the preceding question, can embedding

charges and dipoles lead to an emergent flexoelectricity as well?

To answer the afore-posed questions, in this paper, we

rigorously analyze the nonlinear deformation of soft electrets

under in-plane deformation. We provide insights into the

reasons underlying the marginal d31 effect in conventional soft

electrets under an in-plane stretch. Using the developed theo-

retical framework, we propose design guidelines to create a

substantial emergent d31 in electrets such that electrical energy

is harvested from flexure (Fig. 2a). Specifically we determine the

emergent piezoelectric and flexoelectric coefficients. Intrigu-

ingly, we also are able to demonstrate that with appropriate

design of charge and dipole placements in electrets, bending

can be directly induced with the application of a uniform

electric field—(Fig. 2b and c).

The paper is organized as follows. In Section 2, a general

theoretical framework for nonlinear electrostatics of deform-

able media is summarized in a form suitable for the present

work. In Section 3, we present an analysis of conventional soft

electrets under in-plane deformation to understand the experi-

ments showing a small d31 effect. Bending behavior of soft

dielectrics is presented in Section 4 and several physically

meaningful design scenarios are discussed in Section 5.

Fig. 2 (a) Electrical energy may be harvested from bending deformation of a material with suitable form of electromechanical coupling. (b) The flexure

actuator functionality of an electromechanical material which bends upon the application of an electric field—this is not easily feasible even in

piezoelectric unless design augmentations are made by using bimorphs, pre-stretch among other approaches. (c) The change in direction of

deformation due a reversal of electric field.

†† There is an interesting and singular exception to the low d31 reports for

electrets. Zhang et al.34 explored a rather special microstructure which did exhibit

a notable d31 piezoelectric coefficient however a clear quantitative explanation

was not presented. In due course, we will attempt to rationalize their results

based on our developed models.

‡‡ Flexoelectricity is characterized through the linear relation between polariza-

tion P and strain gradient rS mediated by a fourth order flexoelectric tensor f

such that Pi � fijkl
@Sjk

@Xl

� �
.
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2 General theoretical framework

There are numerous, essentially equivalent, ways that electro-

statics of deformable continua may be formulated.16,17,49–57 In

this work, we have favored the exposition by Liu58 who has also

compared the various formulations that exist in the literature.

Let OR be a continuum deformable body in the reference

configuration. This body is located in an ambient medium such

that body and ambient medium occupy domain VR. Thermo-

dynamic state of the body is described by deformation v: OR-

R
3 (which maps material points X from the reference configu-

ration to the spatial points x in the current configuration O)

and polarization P̃: OR - R
3. Deformation and polarization

outside of the body are zero. Moreover, the gradient, divergence

and curl operators in the current configuration are denoted by

‘‘grad’’, ‘‘div’’ and ‘‘curl’’, respectively. Gradient in the reference

configuration is denoted by ‘‘r’’. The deformation gradient

tensor is defined as F = rw and the Jacobian is J = det F.

Maxwell’s equations in the current configuration take the

following familiar form:

curl e = 0, divd = re, d = e0e + p in V, (1)

where e, d, p and re are the true electric field, the electric

displacement, the polarization, and the external charge density

in the current configuration, respectively. Also, e0 denotes the

electric permittivity of the ambient medium. From the first of

eqn (1), we can define a scalar electric potential x: OR - R,

such that e = �grad x. Composition map can be used to denote

e, d and p in the reference configuration

E = e3v D = d3v P = p3v. (2)

In addition we define the nominal electric displacement D̃, the

nominal electric field Ẽ and the nominal polarization P̃ as

Ẽ = FTE, D̃ = JF�1D, P̃ = JP. (3)

Maxwell’s equations in the reference configuration can then be

derived to be:

r�D̃ = ~re, D̃ = �e0 JC
�1rx + F�1P̃ in VR, (4)

where ~re = Jre3v for volume electric charge density and for surface

charge density, J should be replaced with the surface Jacobian.

The total free energy of the system is written as§§

F½v; ~P� ¼
ð

OR

c½X;F; ~P� þ
ð

V

e0

2
jej2 þ

ð

GD

xb ~D � nR �
ð

SN

~te � v;

(5)

where c: R3 � R3�3 � R3
- R is the internal energy function of

the body OR and nR is the unit normal to the boundary qVR.

Also, xb: GD- R and t̃e: qSN- R
3 are the imposed boundary

potential and traction (dead load), respectively, applied on the

surfaces GD and SN (Fig. 3). In addition, as it is shown in Fig. 3,

Dirichlet boundary condition v = vb (vb: SD - R
3) and Robin

boundary condition D̃�nR = Db (Db: GR- R) are imposed on the

surfaces SD and GR, respectively.

Based on the principle of minimum free energy, the equili-

brium state of the system is the state that minimizes the free

energy of the system subject to the constraint imposed by the

Maxwell’s equations.

min{F[v,P̃]: (v,P̃) A S and (v,P̃) satisfies (4)}, (6)

where S is the admissible set of functions over which the

minimization is performed.

S ¼ fðv; ~PÞj v 2 C2 OR;R
3

� �
;

ð

OR

j~Pj2 o þ 1g: (7)

Equilibrium equations of the system are the Euler–Lagrange

equations associated with (6) which may be derived using

standard variational calculus. Imposing boundary conditions

v = vb on SD, x = xb on GD and D̃�nR = Db on GR, following system

of governing equations and natural boundary condition should

be solved simultaneously to determine the equilibrium state of

the system:

F�Trxþ @c

@~P
¼ 0 in OR; (8a)

r�(�e0 JC
�1rx + F�1P̃) = ~re in VR, (8b)

r � eRþ eRMW
� �

¼ 0 in OR; (8c)

r � eRMW ¼ 0 in VRnOR; (8d)

eRþ eRMW
� �

� nR �~te ¼ 0 on SN; (8e)

where eR is given as

eR ¼ @c

@F
; (9)

and eRMW is the Piola–Maxwell stress

eRMW ¼ �e0

2
JjEj2F�T þ E� ~D: (10)

Fig. 3 Continuum deformable body in the reference configuration and

applied boundary conditions.

§§ We emphasize that the domain of the second integral on the right hand side of

eqn (5) is not reference configuration. We can write this term in the reference

configuration as

ð

V

e0

2
jej2 ¼

ð

VR

e0

2
rx � JC�1rx

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2019 Soft Matter, 2019, 15, 127--148 | 131

We chose the following form of the internal energy density

function:

c½X;F; ~P� ¼ W elastðFÞ þ j~Pj2
2Jðe� e0Þ

; (11)

where Welast is the strain energy function and can be chosen to

appropriately model the constitutive nature of the materials

being examined. Also, e is electric permittivity of material.

Substituting eqn (11) into equilibrium equations and writing

all of the quantities in the current configuration, we have

gradxþ p

e� e0
¼ 0 in V; (12a)

divd = re in O, (12b)

div(r + r
0MW) = 0 in O, (12c)

div rMW = 0 in V\O, (12d)

(r + r
0MW)�n � te = 0 on Sn, (12e)

where r, r0MW and r
MW are the Cauchy stress, Maxwell stress

inside the body and Maxwell stress outside the body, respec-

tively, and are given by

r ¼ 1

J

@W elast

@F
FT ; (13)

r
0MW ¼ e� d� e

2
ðe � eÞI; (14)

r
MW ¼ e� d� e0

2
ðe � eÞI: (15)

3 A model to explain low d31 effect in
conventional electrets

As already alluded to earlier, there has been compelling experi-

mental indication for large value of (apparent) longitudinal

piezoelectric coefficient d33 in electret foams.33 Theoretically

also, Deng et al.59,60 have derived how the Maxwell stress,

elastic heterogeneity and the presence of pre-existing charges

or dipoles conspire to lead to this emergent longitudinal piezo-

electric effect. We also remark that recently, Liu and Sharma61

have presented a homogenization theory for the effective

properties of electrets. In this section, we examine a para-

digmatical model of the conventionally fabricated electrets to

explain the experimentally observed low values of emergent

transverse piezoelectric coefficient d31.
33 To do so, we analyze

the in-plane stretching of the representative electret configu-

ration shown in Fig. 4. This electret consists of two different

materials on top and bottom which are referenced with sub-

scripts ‘‘t’’ and ‘‘b’’, respectively. Let X = XeX + YeY + ZeZ be

representation of points in the Lagrange coordinates while

points in Euler coordinates are denoted by x = xex + yey + zez.

The domains of these two materials are:

ORb
= {(X, Y, Z) A R

3: �H r X r aH, |Y| r L, |Z| r W},

(16a)

ORb
= {(X, Y, Z) A R

3: aH o X r H, |Y| r L, |Z| r W},

(16b)

where |a| o 1 is a constant that parametrizes the interface

between the two materials.

A layer of external charges with surface charge density q is

inserted at the interface X = aH. As shown in Fig. 4, the two-

material film is stretched in the Y direction.¶¶ Assuming plane-

strain deformation, the deformation in Z direction vanishes. In

what follows, we will refer to X and Y directions, respectively, as

the thickness and in-plane directions. In the present case, the

deformation in both these directions is uniform and the

deformation gradient for both layers is given by:

F = l1ex# eX + l2ey# eY + ez# eZ, (17)

where l1 and l2 are, respectively, the stretches in the thickness

and in-plane direction. The incompressibility constraint

( J = l1l2 = 1) implies that l2 ¼
1

l1
. For the ease of notation, in

what follows, we drop the subscript 1 and write l1 = l here and

henceforth. In order to explore the implication of incompres-

sibility constraint, we add one more term to the total free

energy of the system given in eqn (5):

ð

OR

�LaðJ � 1Þ; (18)

where La is a Lagrange multiplier. Also, OR may be replaced

with ORt
or ORb

to derive the equilibrium equations for each of

the layers. Due to this modification of free energy, eqn (9) and

(13) are updated as

eR ¼ @c

@F
�LaJF

�T ; (19)

Fig. 4 Dielectric made of two different layers with embedded external

charges under in-plane tension and short circuit boundary condition.

¶¶ We remark that in the presently defined coordinate system, the longitudinal

piezoelectric coefficient will be defined by examining the electric response in the

X-direction in response to mechanical loading in the X-direction—as discussed in

the theoretical models of Deng et al.59,60
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r ¼ 1

J

@W elast

@F
FT �LaI: (20)

To model the mechanical behavior of the materials, we

choose the incompressible neo-Hookean constitutive law and

accordingly, the internal energy Welast may be expressed as:

W elast ¼ m

2
ðtrðFTFÞ � 3Þ; (21)

where m is the shear modulus. We remark that the choice of this

particular hyperelastic constitutive model is not central to the

main conclusions of this paper.

Two mechanically compliant electrodes are attached to the

top and bottom surfaces of the electret structure and a short

circuit electrical boundary condition is imposed (Fig. 4) to

facilitate the definition of an apparent piezoelectric coefficient

in response to mechanical stimulus. The objective is to deter-

mine the induced electric displacement as a result of the applied

mechanical deformation or stress. The geometry of the structure

and deformation assumptions ensures that the considered

problem is essentially one-dimensional in nature with the

electric field that varies only in the thickness direction. From

eqn (12a) and (1) we have

p ¼ ðe� e0Þe; d ¼ ee; e ¼ �dx

dx
ex: (22)

Substituting eqn (22) and (21) into (8) and using eqn (11),

equilibrium equations for each layer become:

d

dX
mi l� 1

l3

� �
�La

l
þ ei

2l3
dx

dX

� �2
" #

¼ 0; (23a)

d

dY
�Lal�

ei

2l

dx

dX

� �� 	2
¼ 0; (23b)

and the boundary conditions are given as

mi l� 1

l3

� �
�La

l
þ ei

2l3
dx

dX

� �2
" #






X¼giH

X¼aH

¼ 0; (24a)

�Lal�
ei

2l

dx

dX

� �2

�~t ei

" #






Y¼L

Y¼�L

¼ 0; (24b)

for i = b and t. gb =�1 and gt = 1. t̃
e
i = t̃

e
ieY is the imposed traction

(dead load) applied to each layer on the surfaces |Y| = L.

As evident from the Maxwell’s equations, the electric field is

homogeneous within each layer. Therefore, eliminating La

from system of eqn (23), using boundary conditions (24), the

equilibrium equation for each layer reduces to:

mi l
4 � 1

� �
þ ei

dx

dX

� �2

þl~t ei ¼ 0 for i ¼ b; t: (25)

Given the short circuit boundary condition, the electric

potential on the top and bottom surfaces remains zero and

the electric potential at the interface is considered to be equal

to an unknown value V, where V will be determined using the

interface condition. Using these values for electric potential at

boundaries and solving the Maxwell equation (12b) for each

layer, electric potential difference is derived as

dx

dx
¼

�V

ht
for the layer at the top;

V

hb
for the layer at the bottom;

8
>>><
>>>:

(26)

where ht = l(1 � a)H and hb = l(1 + a)H are the deformed

thicknesses of top and bottom layers, respectively. Considering

the fact that surface charge density q in the reference configu-

ration will change to lq in the current configuration, the

interface condition is used to determine V:

et
V

ht
þ eb

V

hb
¼ lq: (27)

Using eqn (27) and substituting eqn (26) into (25), the traction

in each layer required to maintain this deformation can be

determined. We note that the electric displacement in each

layer is also homogeneous and, dt and Dt are identified such

that for the layer at the top we have d = dtex and D̃ = DteX.

Substituting eqn (26) into eqn (22) we obtain:

dt ¼
etlqhb

ethb þ ebht
: (28)

Dt is derived substituting eqn (28) into eqn (3):

Dt ¼
q

1þ ebð1� aÞ
etð1þ aÞ

: (29)

In order to measure the d31 piezoelectric coefficient of an

actual piezoelectric material, an in-plane stretch similar to what

is shown in Fig. 4 is applied. The piezoelectric coefficient can

then be determined by measuring the change in the electric

displacement in the thickness direction, DX, in response to the

applied in-plane normal tractions where the following consti-

tutive relation for piezoelectricity is used88

d
app
31 ¼ d Df

t �Di
t

� �

dl

d SYY þ SZZh i
dl

� ��1

; (31)

where Df
t = Dt is the electric displacement after deformation and

determined in eqn (29) and Di
t = Dt|t̃e=0 is the electric displace-

ment in the absence of an externally applied loading. In what

follows, for any parameter f, we define h f i ¼ 1

2H

ÐH
�H

f ðXÞdX.

88 We remark that this constitutive relation is based on linearized theories of

piezoelectricity which do not consider the incompressibility constraint. To connect

our work as closely as possible to constitutive equations what experimentalists are

likely to use, we employ (30) in this work.62,63

Di = eijEj + dijkSjk, (30)

where Di, eij, Ej, dijk and Sjk are, respectively, components of the electric displace-

ment, dielectric tensor, electric field, piezoelectric tensor and stress tensor. Using

contracted notation and considering material symmetry d31 = d32, eqn (30) reduces

to DX = d31(SYY + SZZ) in absence of external electric field and in presence of normal

in-plane stresses. We can therefore determine the piezoelectric coefficient by

measuring the change in the electric displacement in response to the applied

loading. Analogously, in the case of the electret structure under consideration, we

use the same notion to define an apparent piezoelectric coefficient.
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As evident from eqn (29), in our considered electret structure

(which is representative of conventionally fabricated electrets),

Df
t � Di

t is zero. Therefore, the emergent dapp31 piezoelectric

coefficient is also zero. This is to be contrasted with the

derivation for the large dapp33 coefficient obtained for soft

electrets.59 Physically, when a mechanical load in thickness

direction is applied to the electret structure being considered,

deformation distributes non-uniformly. This non-uniformity of

deformation results in an appreciable value for the dapp33 piezo-

electric coefficient. The material inhomogeneity is central to

enable non-uniform deformation and the consequent non-zero

dapp33 coefficient. This fact it is reflected in the expression*** 59,60

for dapp33 :

d
app
33 ¼ � 2qHtHbeteb

3 etHb þ ebHtð Þ2
1

mt
� 1

mb

� �
: (32)

In short, as long as deformation is non-uniformly distributed

inside the material (mt a mb) a non-zero dapp33 is predicted.

However under in-plane stretch, the deformation is almost

uniform everywhere in the electret.

The simple derivation in this section explains the root cause

for low dapp31 coefficient and highlights that, to obtain a non-zero

transverse piezoelectric response, a non-homogeneous defor-

mation in the thickness direction must be engineered. This

observation and our model also suggests the reason for a non-

trivial d31 effect for electret polymer films observed by Zhang

et al.34 They showed that electrets made of fluoroethylene

propylene films with charged parallel-tunnel voids can have a

very large d31. Based on our developed model, we speculate that

the reason for this large piezoelectric coefficient is the specific

design that they used which permits large deformation in the

voids while polymer sections remain almost undeformed. For

more clarification, consider Fig. 5a which shows a polymer

foam with two parallel-tunnel voids in its undeformed configu-

ration. Under an in-plane loading, the film undergoes a defor-

mation similar to what is shown in Fig. 5b. The shape of voids

alter significantly, but there is almost no deformation in the

polymer sections and deformation in distributed non-uniformly

between air voids and polymer sections leading therefore to a

large bending piezoelectric effect.

4 Flexure behavior of soft electrets

A non-trivial d31 piezoelectric coefficient is essential for a strong

electromechanical response under flexure. To enable the

design of electrets, and armed with insights from the preceding

section, we perform a nonlinear analysis of the bending defor-

mation of an electret structure. To our knowledge, there is no

such analysis in the literature. Specifically we will consider both

soft electret structure made of a single homogeneous material

as well as composite electrets with two different materials.

Specifically, we will, to a large extent possible, carry out a fully

three-dimensional analysis as opposed to using the kinematics

of a beam theory. Retaining the complexity of treating a three-

dimensional object will allow us to show that the change in

thickness (which is not captured in conventional beam the-

ories) plays a crucial role in the nonlinear bending deformation

of soft electrets. To distinguish between our analysis and a

beam-type consideration, we will often refer our considered

structure as a ‘‘block’’ rather than a ‘‘beam’’. We remark here

that in the purely mechanical context, flexure of a three-

dimensional block was first analyzed by Rivlin.64 Our work is

its generalization to the electromechanical case.

4.1 Bending of a homogeneous dielectric block under an

external electric field

In order to elucidate the shortcomings of conventional soft

dielectrics as a bending sensor and actuator, we first analyze

the nonlinear flexure problem of a homogeneous dielectric

block that is not an electret i.e. without embedded charges or

dipoles. The reference and current configurations are shown in

Fig. 6 where the three-dimensional representation of the block

is due to the fact that we don’t treat our structure as a ‘‘beam’’.

The block in the reference configuration is denoted by

OR = {(X,Y,Z) A R
3: |X| r H, |Y| r L, |Z| r W}, (33)

where H, L and W are the block’s geometrical dimensions. As

shown in Fig. 7, the Cartesian coordinate bases {eX, eY, eZ} are

Fig. 5 Cross-section of a specific electret polymer film fabricated by

Zhang et al.34 (a) Undeformed configuration (b) deformed configuration.

Fig. 6 Soft dielectric block under bending deformation and external

electric field: (a) reference configuration (b) current configuration.

*** We remark in passing that Deng et al.59,60 defined the apparent piezoelectric

coefficient in a slightly different manner but to within a trivial scaling factor, the

physics is identical.
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used to denote material points X. The cylindrical polar coordi-

nates {er, ey, ez} are employed to identify points in the current

configuration. To describe bending of the block, we follow the

approach presented by Rivlin64 who addressed the corres-

ponding (purely) mechanical problem. The complete nonlinear

boundary value problem (even in the purely mechanical case) is

quite difficult. To simplify matter, we make the following

kinematic assumption that the set of all material points initi-

ally located at any plane normal to eX are deformed to a set of

points located in a curved cylindrical surface with constant

radius and, similarly, the set of all material points initially

located at any plane normal to eY are deformed to a set of points

located in a plane with constant y and there is no deformation

in the Z-direction (see Fig. 7).

A general deformation in the cylindrical coordinates can be

expressed as

x = r(X)er + z(Z)ez, (34)

where er = er(y) and y = y(Y). From eqn (34), the deformation

gradient is

F ¼ drðXÞ
dX

er � eX þ rðXÞdyðYÞ
dY

ey � eY þ dzðZÞ
dZ

ez � eZ: (35)

Imposing incompressibility constraint††† J = 1 to the afore-

mentioned class of deformation requires r, y and z to obey the

following relations

rðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AX þ B

p
; yðYÞ ¼ Y

A
; zðZÞ ¼ Z; (36)

where A and B are unknown constants. We identify r1 = r(�H)

and r2 = r(H). Associated with these deformations, we can write

the deformation gradient as

F ¼ A

r
er � eX þ r

A
ey � eY þ ez � eZ: (37)

Similar to the stretch problem in Section 2, we employ the

incompressible neo-Hookean constitutive law given in eqn (21)

and therefore the Cauchy stress r in the dielectric is given as

r = mFFT � LaI. (38)

Ignoring non-radial components of electric field for simplicity

and using eqn (1) and (12a), electric displacement and polar-

ization can be written in terms of the electric potential as

follows:

p ¼ e� e0ð Þe; d ¼ ee; e ¼ �dx

dr
er: (39)

Consequently, Maxwell’s equations and the boundary condi-

tions in the absence of external charges but with the block

subjected to a potential difference are

�1

r

d

dr
er
dx

dr

� �
¼ 0;

x r1ð Þ ¼ 0 and x r2ð Þ ¼ V:

8
><
>:

(40)

Electric field in the current configuration is determined by

solving (40):

e ¼ �V

r

1

log
r2

r1

er: (41)

Having electric field, we can calculate Maxwell stress from (14).

Then total stress is obtained as

r + r
0MW = srr*er# er + syy*ey# ey + szz*ez# ez � LaI,

(42)

where

srr
� ¼ m

A2

r2
þ e

2

dx

dr

� �2

;

syy
� ¼ m

r2

A2
� e

2

dx

dr

� �2

;

szz
� ¼ � e

2

dx

dr

� �2

:

(43)

Equilibrium eqn (12c) in the radial direction can be written as:

dsrr
�

dr
� dLa

dr
þ 1

r
srr

� � syy
�ð Þ ¼ 0: (44)

To simplify the solution, we express A and B in terms of r1 and

r2. Using equations r1 = r(�H), r2 = r(H) and eqn (36) we have

A ¼ r2
2 � r1

2

4H
; B ¼ r2

2 þ r1
2

2
: (45)

To solve the equilibrium equation, we impose the following

boundary conditions:

tr = (r* � LaI)er = 0 at r = r1 and r = r2, (46a)

M ¼
ðr2

r1

r syy
� �Lað Þdr; (46b)

where M is the bending moment over unit width of the block

and tr is the surface traction for the surface with unit normal er.

Fig. 7 Schematic of the coordinate systems used in the reference and

current configurations. (a) Cartesian coordinates are used in the unde-

formed block. (b) A cylindrical coordinate system is employed for the

deformed block.

††† Most polymers and soft materials are nearly incompressible. However, foams

are not. In the context of nonlinear elasticity and compressible materials, closed-

form solutions are not possible for many of the boundary value problems

considered in this work. To obtain analytical results, which provide transparent

insights, we have made the assumption of incompressibility. In the ESI,† we have

presented all-numerical calculations for the compressible case to verify that the

approximate analytical results for incompressible materials are reasonable both

qualitatively and quantitatively.
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Integrating eqn (44) and using first equation of (46a), the

Lagrange multiplier La can be determined to be

La ¼ srr
� þ

ðr

r1

1

r̂
srr

�ðr̂Þ � syy
�ðr̂Þð Þdr̂: (47)

For future expedience, we also introduce the radial stretch l

and radius ratio L:

l ¼ r2 � r1j j
2H

; L ¼ r2

r1
: (48)

With the relation for the Lagrange multiplier at hand, using

relations (45) and (48), we can solve the second boundary

condition in (46a) for l. With the substitution of the stretch

in eqn (46b), all quantities can be expressed in closed-form in

terms of L. The stretch and bending moment can then be

derived to be:

l4 ¼ 16L2

ðLþ 1Þ4 �
ðL� 1Þ2

ðLþ 1Þ2 log 2ðLÞ
eV2

mH2
; (49)

M ¼ 2H2m L4 � 4L2 logðLÞ � 1
� �

L2 � 1ð Þ2
: (50)

We introduce �k ¼ r2 � r1

r1
as a representation for the curvature.

Curvature �k will be positive if r2 4 r1 and vice versa. The ratio L

in (48) can be easily related to curvature through relation:

L = 1 + �k. (51)

From the nonlinear relation (49), we observe that the stretch

depends on both the curvature and the applied electric field.

However, the bending moment is independent of the applied

potential difference and the effect of electric field on curvature

emerges only through a change of thickness. If the thickness

in the deformed configuration remains unchanged from the

reference configuration, then the electric field will not have any

impact on curvature since curvature bendingmoment relation (50)

is independent of the electric field.

In many practical applications, thickness of the film is much

smaller than the radius of curvature even when the film under-

goes large deformation. In such a case, |�k| { 1. This condition

is also valid for thick blocks under small deformations. It is

therefore instructive to linearize (50) and (49) for the cases

with |�k| { 1. Ignoring higher order terms, stretch and bending

moment can then be expressed as

m l4 � 1
� �

¼ �e
V

2H

� �2

þoð�kÞ; (52)

M ¼ 4

3
H2m�kþ oð�kÞ: (53)

We remark that in the flexure problem discussed in this section

as well as the stretch problem discussed in Section 3, in

absence of mechanical loading, deformation is only caused

by the applied electrical field. Since there is no kinematic

constraint against the change of thickness in the models used

for both the bending and stretch problems, the derived change

of thickness in response to the applied electrical field should be

the same for both models. Indeed, eqn (52) is exactly the same

as (25) when the applied traction is zero. Also, several other

interesting conclusions may be drawn by a careful considera-

tion of eqn (52) and (53):

(1) Eqn (52) is independent of curvature �k and the external

electric field is the only reason for the change of thickness.

(2) Eqn (53) is independent of V. Although the value of �k

depends on the thickness of the block in the deformed configu-

ration, and alteration in the external electric field will change

the thickness and consequently curvature but ignoring the

effect of external electric field on the thickness of the block

will lead to the complete de-correlation of the curvature of the

film and the external electric field.

(3) Even if we account for the change of the thickness due to

external field and its effect on the curvature, their relation is

quadratic (see eqn (52)). This observation implies that a change

in the direction of the electric field will not change the direc-

tion of deformation thus limiting the application of ordinary

soft dielectrics as bending actuators.

(4) Eqn (53) shows that in the absence of bending moment

(M = 0) curvature �k is zero. This, in turn, signifies that no matter

how large the applied electric field, flexure will not ensue in

absence of an applied mechanical bending moment.

These aforementioned points emphasize that ordinary soft

dielectrics are unsuitable, at least if used naively, as bending

sensors and actuators. We will show in the next section that

electrets offer a rather rich set of avenues to tweak flexure

response of soft dielectrics.

4.2 Bending deformation of a homogeneous block with

embedded charges—an electret

We now turn our attention to the problem that is at the heart of

the central goal of the manuscript. We reconsider the nonlinear

flexure problem of a soft dielectric block but now containing a

distributed (and embedded) immobile layer of charge.‡‡‡ We

consider such a layer of charge with surface density q to be

located at the plane X = Xch in the reference configuration

(Fig. 8) where Xch = aH and a is an indicator of the position of

the charge layer. This parameter can take values between �1

and 1. The plane containing electric charges will deform to a

curved surface with the radius r = rch. The total charge inside

the dielectric is conserved and with that, the charge density in

the current (deformed) configuration may be expressed as

re ¼ q
A

rch
d r� rchð Þ; (54)

where d(�) is the one-dimensional Dirac delta function and

A was defined earlier in eqn (36).

Invoking the premise that the electric field only exists in the

radial direction, using (12a) and (12b), and employing the short

‡‡‡ As typically understood in electrets, the charges and dipoles are immobile in

the sense that they do not flow in the time scale (and temperature regime) of

interest but do convect with deformation. Depending on the material properties,

electret configuration and ambient temperature, discharge can occur on a time

scale varying from days to decades.23,65
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circuit boundary condition, the electric field in the current

configuration is obtained as

e ¼ qA

er
H r� rchð Þ �

log
r2

rch

� �

log
r2

r1

� �

0
BB@

1
CCAer; (55)

whereH(�) is the Heaviside step function. We defer for now the

discussion on the influence of external voltage and the actuator

mode application of this structure. As done in prior sections,

the stretch can be evaluated analytically in terms of the radius

ratio L and other properties of the dielectric block:

l4 ¼ 16L2

ð1þ LÞ4 1þ �q0
2C11ð Þ; (56)

where �q0 ¼
q
ffiffiffiffiffi
em

p . The coefficients Cij depend on L and a and

their complete expressions are recorded in Appendix A. The

bending moment necessary to maintain the desired deforma-

tion in terms of radius ratio using (46b) is

M ¼ 2H2m L4 � 4L2 logðLÞ � 1þ �q0
2C12

� �

L2 � 1ð Þ2þ�q0
2C13

: (57)

Eqn (57) should be contrasted with eqn (50). In the case of an

electret, the electric field created by the embedded charges

influences the bending deformation of the block not only

through the change of the thickness but also through a direct

effect on the bending moment-curvature relation. In order to

further clarify the effect of embedded charges on the bending

deformation of thin films, we express the stretch and bending

moment in terms of only the leading order terms of �k:

l4 = l0
4 + D11�k + o(�k), (58)

M

4mH2
¼ M0 þD12�kþ oð�kÞ; (59)

where

l0
4 ¼ 4

1� a2ð Þ�q02 þ 4
; (60)

M0 ¼ �
�q0

2a 1� a2
� �

2�q0
2 1� a2ð Þ þ 8

: (61)

Coefficients Dij are recorded in the Appendix A. Both

eqn (59) and (58) depend on �k and %q0. The simple implication

of this observation is that the coupling between the mechanical

and electrical state of the dielectric block is significantly more

intricate and stronger in electret structures as compared to

ordinary dielectrics. Notably, any change in the amount of

charge or the position of charge layer will change the bending

moment required to cause a specific value of curvature even if

we were to ignore changes in the thickness. This is in contrast

to what we observed in eqn (53) for the small-deformation case

of a thin homogeneous film under an external applied electric

where the effect of the external voltage only emerges from a

change in the thickness.

Eqn (59) can be solved for �k to derive an approximate

linear relation for the curvature in terms of the bending

moment

�k 	 M

4mH2D12

� M0

D12

: (62)

A rather interesting property of the electret may be realized

from (62); unless the charge layer is exactly located in the

middle of the block (a = 0), a nonzero curvature will develop

even in the absence of external mechanical loading. In other

words, existence of Maxwell stress in non-symmetric block

(block in which charge layer in not located in the mid-plane)

leads to bending of the block. Setting M = 0, eqn (62) may be

used to ascertain that a nonzero curvature exists in the struc-

ture even in the absence of any mechanical loading.

In addition to embedded charges, we can also consider

the effect of an external voltage to investigate actuator applica-

tion of the electret structure. For this purpose, the Maxwell’s

equations are solved using the embedded charge given in (54)

and boundary condition used in (40) to derive the electric

field:

e ¼ 1

er
AqH r� rchð Þ �

Aq log
r2

rch

� �
þ Ve

log
r2

r1

� �

0
BB@

1
CCAer: (63)

Following a similar process as before, the mechanical boundary

conditions are imposed to determine the stretch in terms of

radius ratio and then all quantities are expressed in terms of

the radius ratio. Since the process is straightforward but the

resulting equations are rather long, we avoid listing them here

and the details may be found in Appendix B. After deriving the

nonlinear bending moment radius ratio relation, we linearize

this relation for |�k|{ 1 and derive an expression similar to (59)

with modified values for D12 and M0. Relation for D12 is given

in eqn (A.9). In order to provide insights into the bending

behavior of electret under external voltage (in absence of any

mechanical loading) we simply update the expression of M0

Fig. 8 A layer of charges is embedded in a soft dielectric.
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presented in eqn (61). The modified M0 may be derived to have

the following form:

M0 ¼ 1� a2
� �

�q0

�
~E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~E0

2 � 1
� �

a2 � 1ð Þ�q02 � 4ð Þ
q

þ a ~E0
2 � 1

� �
�q0

2 1� a2ð Þ�q02 þ 8
;

(64)

where ~E0 ¼
V

2H

ffiffiffi
e

m

r
. An intriguing implication from (64) is that

in the presence of external electric field and absence of mecha-

nical loading, a non-zero value for curvature is obtained—even

for symmetric electrets (a = 0). Moreover, this curvature depends

on the value of external electric field and any change of the

external field will also alter the curvature. As will be discussed in

the next section, this behavior may be interpreted as converse

bending piezoelectric behavior.

4.3 Identification of the apparent flexoelectric and d31
piezoelectric coefficients in electrets

As shown in the prior section, if a fixed bending moment is

maintained, an electric field can change the curvature of the

electret structure and conversely, a change in curvature can

lead to a change in the electric field. This can be made more

explicit by examining the electric displacement. For a short

circuited electret structure, D̃ may be determined by using

eqn (55), (39) and (3):

~D ¼ q H X � Xchð Þ � log C22ð Þ
logðLÞ

� �
eX : (65)

Electric displacement in eqn (65) depends on L, signifying that

electric displacement changes with the change of curvature. Using

Taylor series for small values of �k we can elucidate a linear relation

between the change of electric displacement and curvature:

~D ¼ DfeX ¼ Di þ 1

4
q 1� a2
� �

�kþ oð�kÞ
� �

eX : (66)

In the present context, we may identify the initial state as the zero

curvature (flat) state and the curved state as the final deformed

state of the bending. Denoting Df and Di, respectively, to represent

the electric displacement in the final and initial states, we can write

Di as

Di ¼

1

2
qð1þ aÞ for X4Xch;

�1

2
qð1� aÞ for XoXch:

8
>><
>>:

The linear relation between curvature and electric displace-

ment, or polarization, is a tell-tale signature of flexoelectricity.

In an experimental setting, flexoelectric coefficient of a material

can be determined by measuring the electric current generated

during bending deformation. We use such a gedanken on these

lines to define an apparent (and emergent) flexoelectric coeffi-

cient for the electret structure.66

Interchangeably, and somewhat ambiguously, the same basic

logic may also be interpreted as an emergent d31 piezoelectric

coefficient. However, this requires some further nuanced discus-

sion. As already discussed briefly in the introductory section,

because the average strain is zero in bending, a (net) electric

polarization is not generated from the bending deformation of a

single layer piezoelectric film unless a bimorph configuration is

used. Bending of a piezoelectric bimorph with opposite poling

directions (shown in Fig. 9) leads to the development of a non-zero

(net) electric polarization inside the material. In addition, a uni-

form external electric field can cause bending in the bimorph with

opposite poling directions. We remark that an electret with

embedded charges is similar to a bimorph with opposite poling

directions. So, in order to interpret the flexure of electrets in terms

of emergent piezoelectric or interchangeably, flexoelectric response,

we must compare it with either a piezoelectric bimorph or a

homogeneous material with flexoelectric effect. Since it is not

possible to analytically solve a non-linear three-dimensional bend-

ing problem of a flexoelectric or piezoelectric block, we use a simple

linear piezoelectric or flexoelectric Euler-beam theory to find the

correlation betweenmechanical loading and induced charge. Then,

this correlation is compared with the results of our nonlinear

model for electrets to suggest expressions for the apparent flexo-

electric and piezoelectric coefficients.

Apparent piezoelectric coefficient. The definition of the

apparent piezoelectric coefficient requires the solution to the

bending problem of a bimorph. The derivation is recorded in

Appendix C and specifically the central result used in this

section appears in (C.17). In contrast to the piezoelectric beam

model, our model for the flexure of an electret is nonlinear and

three-dimensional. To relate them and derive apparent piezo-

electricity as would be measured in experiments, we introduce

the notion of average curvature hki as

hki ¼ 1

2H

ðr2

r1

1

r
dr ¼ �k

2H
þ oð�kÞ: (67)

Fig. 9 Piezoelectric bimorph made of two layers of piezoelectric materials

with different poling directions. (a) Undeformed configuration (b) deformed

configuration.
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Apparent bending stiffness kappb and apparent piezoelectric

coefficient dapp31 of the electret structure can therefore be

defined as

k
app
b ¼ @hki

@M

� ��1

; (68)

d
app
31 ¼ �2k

app
b

3mH

@Df

@M
: (69)

Eqn (67) can be used to replace �k with hki in eqn (62) and

extract the average curvature of the block and the electric

displacement (66) in terms of bending moment. Then, sub-

stituting eqn (59) into eqn (69) we have:

d
app
31 ¼ � q

3m
1� a2
� �

: (70)

It is clear that the best position for the charge layer, which

maximizes the emergent and apparent piezoelectric coefficient,

is exactly in the middle of the block. Furthermore, there is an

inverse relation between material stiffness and the apparent

dapp31 piezoelectric coefficient of the electret block.

Apparent flexoelectric coefficient. To alternatively interpret

the electret structure in terms of flexoelectricity, we must first

define an apparent flexoelectric coefficient. This requires the

solution for the bending problem of a homogeneous flexo-

electric beam and the relevant derivation is recorded in Appen-

dix D. The key result we use in this section is eqn (D.10) and

based on this, we may define the apparent flexoelectric coeffi-

cient f app of the electret structure as

f app ¼ 1

e� e0ð Þ
@Df

@M
k
app
b : (71)

Substituting eqn (66) into (71), the apparent flexoelectric coeffi-

cient is derived as

f app ¼ Hq

2 e� e0ð Þ 1� a2
� �

: (72)

The apparent emergent flexoelectric coefficient in (72) is

directly proportional to the thickness of the block and therefore

an increase of the thickness would appear to be a way to

increase the flexoelectric coefficient. This notion is somewhat

deceptive however. We must recognize that increasing the

thickness will also require substantially larger mechanical

energy to bend the structure (which scales with H3). In addition,

it should be mentioned that the reason for negligible flexo-

electric effect in conventional materials at large scales is that in

this effect, polarization is proportional to strain gradient and

there is an inverse relation between magnitude of strain

gradient and characteristic size-scale of the problem. However,

for the electret structure under consideration, the apparent

flexoelectric coefficient is not a structure-independent constant

as in the case of a non-electret material. The apparent flexo-

electric coefficient of the electret structure increases with

increasing size scale which compensates for the decrease of

strain gradient with increasing size scale and in this sense it

leads to a size-independent effect. Finally, we remark that,

in the present setting of a simple homogeneous electret struc-

ture, the maximum apparent flexoelectric coefficient corre-

sponds to the electret in which the charge layer is located

exactly in the middle of the block (a = 0).

Energy conversion ratio. In addition to flexoelectric and

piezoelectric coefficients, a physically meaningful measure to

study is the effectiveness of the electret material to convert

applied mechanical energy into electric energy as compared

with conventional piezoelectric materials. For this purpose, we

compare the amount of energy required to induce an identical

amount of electric charge at the electrodes. Electric charge

induced at electrodes for the electret structure is Df � Di and

can be computed from eqn (66). For the appropriate interpreta-

tion, this value may be equated to the induced charge on the

electrode surface of the comparison piezoelectric material—

which is equal to d given in eqn (C.16). For this comparison, the

bending momentMpiezo which should be applied to piezoelectric

material in order to induce d = Df � Di can be determined

from (66) and (C.16):

Mpiezo ¼ q 1� a2
� �

kb

2Hb31 e33 � e0ð Þ �kþ oð�kÞ; (73)

where b31 is the piezoelectric coefficient introduced in (C.1) and

e33 is the dielectric coefficient in the poling direction of material.

The mechanical energy required to induce this amount of charge

is obtained through the work done on the system by means of

the applied bending moment. The work done by the applied

bending moment on piezoelectric material with unit volume is

equal toWpiezo ¼ Mpiezo
2

2Hkb
where kb is given in (C.14). Substituting

the value of the bending moment from (73), Wpiezo can be

determined as

Wpiezo ¼ 12q2 1� a2
� �2

kb

b312 e33 � e0ð Þ2I
�k2 þ oð�k2Þ: (74)

Also, using eqn (59), the work done by the applied mechanical

loading to deform a unit-volume electret from an initially flat

configuration to deformed configuration is given as

Welectret ¼
1

2L� 2H
M � 4mH2M0

� �
y






Y¼L

Y¼�L

: (75)

Substituting eqn (57) and (36) into eqn (75), and using eqn (56),

(45) and (48), Welectret can be written as

Welectret ¼
m 1þ �q0

2D14

� �

3 1þ �q0
2

4
1� a2ð Þ

� �3
2

�k2 þ o �k2
� �

: (76)

With these required energetic quantities at hand for both the

piezoelectric and electret materials, we define energy conver-

sion ratio (ECR) as

ECR ¼ Wpiezo

Welectret

: (77)

If we consider a single crystal barium titanate piezoelectric film

with e33 = 109e0, d31 = �34.5 pC N�1 and c11 E 124 GPa67 and a
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symmetric polypropylene (PP) electret with q = 10�3 C m�2, m =

0.95 MPa and e = 2.35e0,
68 we will have ECR = 0.23. This implies

that in barium titanate, the mechanical energy required to

produce a given amount of electrical energy is almost four

times less than that of PP electret. However, although in this

example, the ECR value for electret is smaller than 1 and

energetically it is more favorable to use barium titanate film,

soft electrets can tolerate much larger deformation. Further-

more, it is evident that ECR / q2 1� a2
� �

m
and that increasing

the amount of embedded charges or using softer materials can

be used to increase ECR.

4.4 The effect of embedded dipoles on the apparent

flexoelectric and d31 piezoelectric behavior

In addition to embedded charges, embedded dipoles are also

used in electrets. The widely used soft cellular polymer foams

may be considered to consist of embedded dipoles in voids of a

soft matrix. As shown in Fig. 10, these polymer foams are soft

porous materials with huge number of entrapped air voids such

that volume fraction of voids are often more than 50 percent.

Trapped charges on the surfaces of voids create large dipoles

inside the foam (Fig. 10a). In some sense, this is analogous to

large dipoles created by the charge layer in the composite of the

preceding section and the top and bottom electrodes. In this

section, we use a layered structure to model voided film where

there is a layer of air between two layers of polymer (Fig. 10b).

Embedded charges with surface charge densities q and �q exist

at the interface of the air layer and polymer layer to mimic

dipoles. Two parameters a1 and a2 have been introduced to

identify position of charge layers. The solution to the bending

problem of an electret made of two layers of different materials

is given in Appendix E. This can be extended for a soft dielectric

block made of three different layers. We avoid giving details of

the derivation for this case since the process is identical to what

was presented before. Ignoring higher order terms and follow-

ing the same notation introduced in eqn (66), electric displace-

ment for this structure is given as:

Df ¼ Di þ
qer a2

2 � a1
2

� �

2þHa

H
er � 1ð Þ

� �2
�kþ oð�kÞ; (78)

where er = e/e0 and Ha is the thickness of air layer. Note that

Df � Di for all three layers is the same. In charged polymers,

dipoles are almost uniformly distributed inside the material. It

is clear that for a symmetric distribution of embedded dipoles

(a2 = �a1), change in the electric displacement will be zero and

bending will not induce any change in the charges induced at

the electrodes. This explains the reason for the observation

of small d31 in charged polymer foams. However, there is a

simple way to obtain desirable values for a1 and a2 and a non-

symmetric distribution of dipoles. The basic ideas are illus-

trated in Fig. 11a. Essentially, electret structures can be combined

with non-electret material (i.e. ordinary dielectric) to facilely

create the asymmetry needed to obtain a non-trivial d31. Although

we do not present further details, a slight modification to the

current models (developed so far) may be easily used to find the

apparent properties of a film composed asymmetric electret

structures shown in Fig. 11b.

Upon substituting eqn (78) into eqn (71) and (69) the

apparent flexoelectric coefficient and apparent piezoelectric

coefficient can be derived:

f app ¼ 2Hqer

e0 � e0ð Þ
a2

2 � a1
2

2þHa

H
er � 1ð Þ

� �2
; (79)

d
app
31 ¼ � 4qer a2

2 � a1
2

� �

3m 2þHa

H
er � 1ð Þ

� �2
; (80)

where m in (80) is an effective shear modulus which accounts

for both polymer section and air voids. Qualitatively, the

results do not differ in any significant manner from the previous

section.

5 Results and discussion

The nonlinear models presented in the preceding sections can

be used to obtain several interesting insights into the design of

flexoelectricity and d31 piezoelectricity in soft electrets. How-

ever, first, in order to highlight the similarities and differences

between conventional dielectrics and electret materials, we

present the bending deformation behavior of an ordinary soft

dielectric in Fig. 12. Relations (49) and (50) have been used to

draw this figure. In Fig. 12a we illustrate the change in thick-

ness of a soft dielectric block under the action of a combined

bending moment and electric field. As expected, Fig. 12a shows

that applying a constant external electric field leads to the

thinning of the block. As it was discussed earlier in preceding

sections, this change of thickness leads to emergence of a

Fig. 10 (a) Existence of external dipoles in polymer foams. (b) A layered

structure is used to model charged porous polymer. Constants a1 and a2

show the positions of charge layers.

Fig. 11 Methods to break symmetry in distribution of dipoles. (a) Attach-

ment of a non-electret material to an electret material. (b) Attachment of

two asymmetric electrets.
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coupling between electric field and curvature of the block. Change

of curvature in response to applied electric field is shown in

Fig. 12b to investigate possibility of using ordinary dielectrics as

bending actuator. We introduce the following dimensionless

measure of the curvature �k0 ¼
�k

l
and use this quantity throughout

the section. Fig. 12b shows that for fixed non-zero values of

bending moment, increasing external field results in the increase

of the curvature observed in the block. However it is evident, from

this figure, that if the applied bending moment is zero, electric

field alone will not induce a change in curvature. In the other

words, some pre-existing curvature should be present to observe a

coupling between the curvature and electric field for ordinary

dielectrics. This is one of limitations of dielectric actuators.

Another one is that the electromechanical coupling in the non-

electret soft dielectric block is generated from Maxwell stress

effect which, by nature, is quadratic with respect to electric field.

Accordingly, a change in the direction of the applied electric field

will not alter the direction of the induced curvature.

Flexure behavior of electret with a single layer of embedded

charge

The formulation presented in Section 4.2 is used to analyze the

flexure behavior of the electrets with embedded charges. Eqn (56)

and (57) are used to plot the variation of the dimensionless bending

moment with dimensionless curvature in Fig. 13 for a short circuited

electret with asymmetric distribution of charges (a = 0.5). As evident,

the presence of the charge has a profound effect on the bending

moment–curvature relation. In particular, the curvature does not

vanish even when the applied bending moment is zero. This is due

to the asymmetric distribution of charges and consequently a non-

uniform state of Maxwell stress inside the material.

As discussed earlier, when two layers of piezoelectric materials

with opposite poling directions are exposed to an external electric

filed in the thickness direction; the d31 converse piezoelectric effect

leads to bending. The same behavior is seen in electrets. Using

(B.12), Fig. 14 shows that an electret made of a dielectric with a

layer of charge with %q0 = 0.225 bends in response to external electric

field and in absence of any external mechanical load. This value of

electric charge will be attainable upon insertion of a layer of electric

charge with q = 10�3 Cm�2 into a PP film with m = 0.95MPa and e =

2.35e0.
68 Furthermore, Fig. 14 shows that the direction of curvature

depends on the direction of applied field. This linear relation is in

contrast with the quadratic behavior of an ordinary dielectric under

external voltage in the absence of external charges and proves

the capability of soft electrets to be used as a bending actuator.

The emergent d31 effect is stronger when the charge layer is

in the middle of the block (a = 0).

Energy harvesting application and emergent properties of

electrets

The possibility of using electrets as sensors and their apparent

and emergent piezoelectric/flexoelectric coefficients are studied

Fig. 12 Behavior of soft dielectric block under the action of a combined

bending moment and electric field. (a) Change of thickness in response to

applied electric field and bending moment. (b) Coupling between electric

field and curvature.

Fig. 13 Effects of external charges on the curvature of the block for a = 0.5.

Fig. 14 Converse piezoelectric behavior of electret with %q0 = 0.225.
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in Fig. 15–18. Bending of a short circuited electret changes the

electric field and electric polarization inside the material. In

order to show this electro-mechanical coupling, we use eqn (65)

to plot the change of electric displacement versus the dimen-

sionless curvature in Fig. 15 for a homogeneous dielectric with

an embedded layer of electric charge. The change of the electric

displacement, and hence the capability to generate current, in

response to changes in curvature illustrates the potential

application of the electret structure as an energy harvester

and sensor. Also, for small curvatures a linear change is

observed in the electric displacement. Since the flexoelectric

behavior is the linear development of polarization in response

to imposed curvature in vicinity of zero curvature (small

deformation), this change of the electric displacement and

consequently electric polarization seen in electret can be inter-

preted as an emergent flexoelectric-like behavior and this effect

is stronger when charge layer is closer to the middle surface of

the block. Plotting the apparent flexoelectric coefficient in Fig. 15b

using the definition in eqn (72), we see that a flexoelectric

coefficient of the order of f app(e � e0) E 10�8 C m�1 is possible

for an electret with micro scale thickness and with a realistic

surface charge density q = 10�3 C m�2.

Fig. 16 shows the apparent d31 piezoelectric coefficient for a

PP film with m = 0.95 MPa with one layer of external charges

using eqn (70). The apparent piezoelectric coefficient is found

Fig. 15 Flexoelectric behavior of the electret. (a) Charge harvested in the

bending deformation of a short circuited electret. (b) Apparent flexo-

electric coefficient of a homogeneous film with %q0 = 0.225.

Fig. 16 Apparent piezoelectric coefficient for a PP film with a layer of

external charge inserted versus position of charge layer.

Fig. 17 Apparent piezoelectric coefficient of a polymer film with

embedded dipoles attached to another material free of dipoles with

thickness H0.

Fig. 18 ECR coefficient to compare energy efficiency of electret with a

barium titanate piezoelectric material. (a) ECR versus a for an electret with

m = 1 MPa and e = 2.35e0. (b) ECR versus shear modulus of electret for an

electret q = 10�3 C m�2.
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to be roughly ten times more than the corresponding value

of barium titanate where d
BaTiO3

31 ¼ �34:5 pC N�1 67 and q =

1 mC m�2. While a high longitudinal piezoelectric coefficient

for electrets has been already reported, this is the first predic-

tion for such a large d31 value.

In order to present the piezoelectric coefficient for a polymer

with embedded dipoles, we consider a polymer foam with H =

30 mm and assume an air volume fraction of 50% or Ha = H (see

Fig. 10). Initially dipoles have a symmetric distribution and the

apparent piezoelectric coefficient is zero. Another piece of the

identical polymer film of thickness H0, free of dipoles, is

attached to the electret material (Fig. 11a). A shear modulus

of m = 1 MPa is assumed. The apparent piezoelectric coefficient

for this structure versus thickness of the attached film is

shown in Fig. 17 using eqn (80). The apparent piezoelectric

coefficient increases with H0 until it obtains an optimum. The

thickness which maximizes the apparent piezoelectric coeffi-

cient of the structure depends on the electric permittivity

of the material and can be determined mathematically from:

H0 = 2H + Ha(er � 1).

In what follows, we use eqn (74), (76) and (77) to plot the ECR

coefficient to compare energy conversion efficiency of an electret

with a single layer of embedded charge to a homogeneous barium

titanate piezoelectric. Barium titanate properties are considered

as e33 = 109e0, d31 = �34.5 pC N�1 and c11 E 124 GPa.67 As

expected from prior results, Fig. 18a shows that ECR is maxi-

mized when the charge layer is located in the middle of the

block. Furthermore, increasing the amount of surface charge

density to 2 mC m�2 in an electret with a shear modulus

0.95 MPa will perform almost as well as barium titanate. Given

that the electret is capable of orders of magnitude larger deforma-

tion, this comparison is quite astounding. Another avenue to

obtain an higher ECR is suggested in Fig. 18b. The figure shows

that softer electrets have higher ECR and an order of magni-

tude reduction in the shear modulus can dramatically increase

the ECR.

6 Concluding remarks

Soft electret materials have been proposed as candidates for

applications that require a strong electro-mechanical coupling

as well as a capability for large deformation. Although a large

apparent d33 piezoelectric coefficient has been reported for

some soft polymer foam electrets, their d31 piezoelectric

coefficient is rather small and the electro-mechanical coupling

in flexure motion is quite weak. In this work we provide a

physical rationale for observed low value of d31 in typical

electrets. We analyze the behavior of electrets under bending

deformation and pathways to obtain substantive d31 piezo-

electricity or alternatively a flexoelectric like behavior, are

suggested. Our central formulation is quite general and may

be used, beyond the simple examples studied in the present

work, for future numerical design and optimization of flexo-

electric and bending piezoelectric electrets. We obtain the

following insights:

(1) The microstructure of electrets must lead to non-trivial

inhomogeneous deformation for the emergence of d31 piezo-

electric effect.

(2) Ordinary dielectrics may not fit applications that require

a linear electro-mechanical coupling in bending deformation.

The reason is that some pre-existing curvature is required to

observe coupling between externally applied electric field

and curvature in dielectrics. Also, even when pre-existing

curvature is present, this coupling only depends on the magni-

tude of electric field and it is independent of the direction of

the field.

(3) A converse d31 piezoelectric behavior is obtained for an

electret with one layer of embedded charges, implying that an

externally applied electric field can bend this electret and a

change in the direction of electric field will also alter the

direction of the deformation. In addition, bending of such

an electret will also alter the electric field and polarization

inside the material and this change of polarization can be

interpreted as either a d31 piezoelectric effect or alternatively,

flexoelectricity.

(4) We estimate the apparent flexoelectric and d31 piezo-

electric coefficient for electrets and suggest approaches to

improve the overall energy conversion ability of the material.
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Appendices
A. Coefficients Cij, Dij and Eij introduced in Section 4

The coefficients Cij are defined as:

C11 ¼
log C22ð Þ
logðLÞ

� �2

�ð1� aÞ log C22
2

� �

C21 logðLÞ
; (A.1)

C12 ¼
L4 � 1
� �

log 2 C22ð Þ
log 2ðLÞ

þ
log C22

2
� �

C21L
2 log

2

C21

� �
þ C23

� �

C21 logðLÞ
� C23

C21

;

(A.2)

C13 ¼
L2 � 1
� �2 ða� 1Þ logðLÞ log C22

2

L

� �
þ C21 log

2 C22ð Þ
� �

C21 log 2ðLÞ ;

(A.3)

C21 = 1 + L2 + a(L2 � 1), (A.4)

C22 ¼
ffiffiffi
2

p
Lffiffiffiffiffiffiffiffi

C21

p ; (A.5)

C23 = (1 � a)(1 � L4), (A.6)

C24 ¼
Lb � 1ð Þ
Lb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2Lb

2 � 1

aþ 1

s

: (A.7)
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Coefficients Dij are given as

D11 ¼
8�q0

2a 1� a2
� �

4þ �q0
2 1� a2ð Þð Þ2

; (A.8)

D12 ¼ D13 þ
a 1� a2
� �

~E0�q0 1� a2
� �

�q0
2 � 8

� �

3 1� a2ð Þ�q02 þ 4ð Þ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~E0

2
� �

1� a2ð Þ�q02 þ 4ð Þ
q

þ a ~E0�q0

� �
;

(A.9)

D13 ¼
�q0

4 1� a2
� �3þ�q0

2 �44a4 þ 24a2 þ 20
� �

þ 64

12 �q0
2 1� a2ð Þ þ 4ð Þ2

; (A.10)

D14 ¼
1

16
�11a4 þ 6a2 þ 5þ �q0

2 1� a2
� �3

4

 !
(A.11)

In eqn (A.9) for coefficient D12, the contributions of both

electric field and electric charges have been considered. So,

the electric field Ẽ0 should be set to zero in the relation (A.9) to

obtain coefficient D12 used in eqn (59).

Coefficients Eij are given as

E11 ¼
ðaþ 1Þ Lb þ 1ð Þ4

4 et log Lbð Þ þ eb log C24ð Þð Þ2

� ða� 1Þet log 2 Lbð Þ � eb log
2 C24ð Þ aþ 2Lb

2 � 1
� �� �

;

(A.12)

E12 = (L2 � 1)2, (A.13)

E13 = (C21 � 2)(3C21 + 2), (A.14)

E14 = (1 � a)(L2 � 1)(3 + 5L2 + 3a(L2 � 1)), (A.15)

E15 ¼
2�

ffiffiffiffiffiffiffiffiffiffi
2C21

p� �

4
� 2þ

ffiffiffiffiffiffiffiffiffiffi
2C21

p� �5
; (A.16)

E16 ¼ �2E21ð1� aÞ L2 � 1
� �

L2
; (A.17)

E17 ¼ � 2þ
ffiffiffiffiffiffiffiffiffiffi
2C21

p� �4
; (A.18)

E18 ¼
E22 1þ

ffiffiffiffiffiffiffiffi
C21

2

r !4

8L2 L2 � 1ð Þ2 eb log C22ð Þ þ et log

ffiffiffiffiffiffiffiffi
C21

2

r ! !2
; (A.19)

where

E21 ¼ a2 þ ðaþ 1Þ2L4 � 2ða� 7Þðaþ 1ÞL2 � 14a

þ 4
ffiffiffi
2

p ffiffiffiffiffiffiffiffi
C21

p
a L2 � 1
� �

þ L2 þ 3
� �

þ 17;

(A.20)

E22 ¼ ða� 1Þ L2 � 1
� �

ea log
2

ffiffiffiffiffiffiffiffi
C21

p
ffiffiffi
2

p
� �

� 4L2ea log C22ð Þ log 2

ffiffiffiffiffiffiffiffi
C21

p
ffiffiffi
2

p
� �

þ L2eb log
2 C22ð Þ

� �aL2 þ a� 2 log C21ð Þ � L2 þ 1þ logð4Þ
� �

:

(A.21)

B. Derivation of relation between bendingmoment and curvature

for electret under external voltage introduced in Section 4.2

In order to determine the relations for stretch and bending

moment in terms of curvature for the electret shown in

Fig. 8 which is also under an external electric voltage, eqn (63)

is substituted into eqn (43) to determine the stresses. The

boundary condition given in second equation of (46a) can be

written as:

F11 + F12l
2 + F13l

4 = 0, (B.1)

where

F11 ¼ 4ðL� 1Þ
~E0

2ð1� LÞ2ð1þ LÞ
L2ðlogLÞ2 � 4

1þ L

� �
; (B.2)

F12 ¼
4 ~E0�q0 �1þ L2

� �2

C21L2ðlogLÞ2 � C21 log C22ð Þ þ ð�1þ aÞ logðLÞð Þ;

(B.3)

F13 ¼
ð�1þ LÞð1þ LÞ3
C21L2ðlogðLÞÞ2 � F21; (B.4)

F21 ¼ C21�q0
2 log C22ð Þð Þ2þ2�q0ð�1þ aÞ log C22ð Þ logðLÞ

þ ðlogðLÞÞ2 1þ �q0
2ð1� aÞ þ L2 � a 1� L2

� �� �
:

(B.5)

Also, eqn (63) is used to write the boundary condition (46b) as

8M

H2m
¼ F14 þ F15l

2 þ F16l
4; (B.6)

where

F14 ¼ �4 ~E0
2 L2 � 1
� �

log 2ðLÞ � 8 ~E0
2

logðLÞ þ
8 3L2 þ 1
� �

L2 � 1
; (B.7)

F15 ¼�4 ~E0ðLþ1Þ�q0 C21 L2�1
� �

log C22ð Þþ C21�2L2
� �

logðLÞ
� �

C21ðL�1Þ log2ðLÞ ;

(B.8)

F16 ¼
l4ðLþ 1Þ2

C21ðL� 1Þ2 log 2ðLÞ � F22; (B.9)

F22 ¼ 2�q0
2 log C22ð Þ logðLÞ ða� 1Þ L2 � 1

� �
þ C21 logðLÞ

� �

þ C21�q0
2 log 2 C22ð Þ L2 � 2 logðLÞ � 1

� �

þ log 2ðLÞ 2C21 logðLÞ þ C21 L2 � �q0
2 � 1

� �
þ 2L2�q0

2
� �

:

(B.10)

We now simply solve eqn (B.1) for stretch l and substitute the

solution into (B.6). This will yield the relation between bending

moment and curvature. Since the algebra is simple and the
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non-linear bending moment curvature relation is extremely

tedious, we only present its Taylor series expansion for small �k:

M

4mH2
¼ M0 þD12�kþ oð�kÞ; (B.11)

where M0 and D12 are given by (64) and (A.9), respectively. As a

result, curvature induced in the block because of electrical

loading and in absence of bending moment is determined as

�k0 ¼
�k

l
¼ � M0

D12l
: (B.12)

C. Solution for bending problem of piezoelectric bimorph

beam introduced in Section 4.3

In this section, we present the solution to the bending problem of a

piezoelectric bimorph. The final result is necessary to define the

apparent piezoelectric coefficient for the electret problem consid-

ered in Section 4.3. Using Euler beam kinematics, we find a relation

for piezoelectric coefficient in terms of applied bending moment.

Consider Fig. 9 which shows a material composed of two layers of

the same piezoelectric material with opposite poling directions. Let

x and z be, respectively, axial and thickness directions of the beam.

Axial elastic modulus of the material is denoted by c11 and both

layers have the same thickness H. We assume a unit width for the

beam and the length of the beam is 2L. This beam is deformed in

response to bending moment M applied at the two ends. Short

circuit boundary condition is imposed using two mechanically

compliant electrodes which are attached to the surfaces z = 
H.

The energy density function can be expressed as58

c½x; u; p� ¼ 1

2
S � cSþ 1

2
p �D�1pþ p � BS; (C.1)

where u and c, S are displacement, fourth order elasticity tensor

and linear strain tensor, respectively. Also, D ¼ e�e0I where e is

the dielectric tensor and B is third order piezoelectric tensor. In a

one-dimensional setting, e and B can be replaced by e33 and B31,

respectively. Since the beam is composed of two layers of the same

piezoelectric materials with opposite poling directions, we intro-

duce piezoelectric coefficient b31 such that for B31 = b31 for z 4 0

and B31 = �b31 for z r 0. Also, we can relate B31 piezoelectric

coefficient to commonly used d31 coefficient as§§§

Based on Euler beam kinematics, the deformation u for the

beam is given as

u ¼ �z
@uzðxÞ
@x

ex þ uzðxÞez: (C.3)

Consequently, linear strain tensor is simply derived as

S ¼ �z
@2uzðxÞ
@x2

ex � ex. Due to the piezoelectric effect and in

response to deformation, polarization is developed inside the

bimorph. We assume that the polarization and electric field are

only developed in the thickness direction (p = pez and

e ¼ �dx

dz
ez). Accordingly the Maxwell equation (4) reduces to:

�e0
d2x

dz2
þ dp

dz
¼ 0: (C.4)

Also, free energy of the system can be written as

F½uz; p� ¼
ð

O

1

2
c11z

2 @2uzðxÞ
@x2

� �2

þ jpj2
2 e33 � e0ð Þ � pB31z

@2uzðxÞ
@x2

"

þ e0

2
�dx

dz

� �2
#
�M

@uzðxÞ
@x






x¼L

x¼�L

;

(C.5)

where all quantities are expressed in a one-dimensional setting.

The equilibrium state of the system is obtained by minimizing

the free energy of the system subjected to Maxwell’s equations:

min{F[uz,p]:(uz,p) A S and (uz,p) satisfies (C.4)}, (C.6)

where S is the admissible set of functions

S ¼ uz; pð Þj uz 2 C4ð½�H;H�;RÞ;
ð

O

jpj2 o þ1
� 

:

(C.7)

Using standard calculus of variation, equilibrium equations

and boundary conditions for a beam with unit width are

derived as

c11I
@4uz

@x4
� @2

@x2

ðH

�H

B31pzdz

� �
¼ 0; (C.8)

dx

dz
þ p

e33 � e0
� B31z

@2uz

@x2
¼ 0; (C.9)

c11I
@3uz

@x3
� @

@x

ðH

�H

B31pzdz

� �� 	




x¼L

x¼�L

¼ 0; (C.10)

c11I
@2uz

@x2
�
ðH

�H

B31pzdz�M

� 	




x¼L

x¼�L

¼ 0; (C.11)

d31 ¼ �B31 e33 � e0ð Þ
c11

: (C.2)

§§§ There are multiple ways to present constitutive equations for piezoelectricity.

From (C.1), we can relate stress components sij to electric field components Ek

and strain component Skl through the following relations

sij ¼ cijkl � Bmij D
�1

� �
mn
Bnkl

� �
Skl þDkmBmijEk;

where Dkm are the components of tensor D. Another alternative for the consti-

tutive relation for piezoelectric materials may be expressed as

Sij = sEijklskl + dkijEk,

where sijkl and dkij are, respectively, components of compliance tensor and

piezoelectric tensor and superscript E indicates that the quantity has been

measured in constant or zero electric field. Introducing sEmnij
�1 such that

sEmnij
�1sEijkl ¼ dmkdnl this constitutive relation can be rearranged as

sij ¼ sEijkl
�1Skl � sEijkl

�1dmklEm;

Comparing this constitutive relation with the stress–strain relation presented

based on the energy formulation and assuming cijkl � Bmij(D
�1)mnBnkl E cijkl, we

arrive at the relation in (C.2) for a one-dimensional model.
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where I ¼
ÐH
�H

z2dz. Polarization can be determined in terms of

displacement by substituting eqn (C.9) into eqn (C.4):

p ¼ e0 e33 � e0ð Þ
e33

B31

@2uz

@x2
zþ e33 � e0ð Þ2

e33

H

2
b31

@2uz

@x2
: (C.12)

Substituting eqn (C.12) into eqn (C.8), we have

kb
@4uz

@x4
¼ 0; (C.13)

where kb is an apparent bending stiffness:

kb ¼ c11I �
e33 � e0ð Þ 3e33 þ e0ð Þ

4e33
b31

2I : (C.14)

Solving eqn (C.13) using boundary conditions eqn (C.10) and

(C.11), we find that the relation between bending moment and

deformation is

M

kb
¼ @2uz

@x2
: (C.15)

Eqn (C.15) can be used to describe all quantities in terms

of applied bending moment M. Electric displacement d = dez
can be determined using eqn (C.15), (C.12), (C.9) and (C.1),

namely

d ¼ Mb31 e33 � e0ð ÞH
2kb

: (C.16)

Physically,
M

kb
and d represent the curvature of the Euler

beam and induced charge at the electrodes, respectively. The

piezoelectric coefficient of this bimorph can be obtained by

measuring the electric displacement due to bending and by

using relation (C.16). From eqn (C.16) and (C.2) we have

d31 ¼ � 2kb

c11H

@d

@M
: (C.17)

D. Solution for bending problem of flexoelectric beam

introduced in Section 4.3

The solution of bending of an Euler beam accounting for

flexoelectricity is presented here and is needed to define the

apparent flexoelectric coefficient for the electret considered in

Section 4.3. The procedure is similar to what was documented

in Appendix C for a piezoelectric bimorph. We assume that the

beam has dimensions 2H � 2L and with unit width. Coordi-

nates are considered to be similar to Fig. 9 and following Euler

beam kinematics, deformation is considered to be same as

eqn (C.3). We assume polarization only exists in thickness

direction and introduce pSðxÞ ¼
ÐH
�H

pðxÞdz where p = p(x)ez.

The energy density function is given as:66,69

c x; uz; p
S

� �
¼ 1

2
c11I Duzð Þ2�fpSDuz þ

1

2
a pS


 

2; (D.1)

where f is flexoelectric coefficient.¶¶¶ Also, D(�) is Laplace

operator and a ¼ 1

2H e� e0ð Þ where e is electric permittivity for

this homogeneous flexoelectric material. From eqn (D.1), the

free energy of the system can be written as

F½uz; p� ¼
ðL

�L

1

2
c11I

@2uzðxÞ
@x2

� �2

�fpS
@2uzðxÞ
@x2

þ 1

2
a pS


 

2

" #
dx

�M
@uzðxÞ
@x






x¼L

x¼�L

:

(D.2)

Again, using standard calculus of variation, the equilibrium

equations and boundary conditions are derived as

@2

@x2
c11I

@2uz

@x2
� fpS

� �
¼ 0; (D.3)

apS � f
@2uz

@x2
¼ 0; (D.4)

@

@x
c11I

@2uz

@x2
� fpS

� �� 	




x¼L

x¼�L

¼ 0; (D.5)

c11I
@2uz

@x2
� fpS �M

� 	




x¼L

x¼�L

¼ 0: (D.6)

Substituting eqn (D.4) into eqn (D.3), we have

kb
@4uz

@x4
¼ 0; (D.7)

where kb here is

kb = c11I � 2Hf 2(e � e0). (D.8)

Using eqn (D.7) and boundary conditions eqn (D.5) and (D.6),

relation between bending moment and deformation is derived

exactly similar to eqn (C.15). This relation may be used to write

down the electric displacement d = dez in terms of bendingmoment:

d ¼ M

kb
f e� e0ð Þ: (D.9)

We observe that the flexoelectric coefficient of the beam may

be identified by measuring curvature and induced charge

at the electrodes. Flexoelectric coefficient is determined from

eqn (D.9):

f ¼ kb

e� e0ð Þ
@d

@M
: (D.10)

E. Bending of soft composite dielectric block

In a prior work, Bigoni et al.70 extended Rivlin’s analysis of a

purely mechanical flexure problem of a soft block to that of a

¶¶¶ In some of the literature, flexoelectric tensor l is defined such that consti-

tutive relation between polarization Pi, strain gradient
@Sjk

Xl

and electric field Ei is

expressed as Pi ¼ DijEj þ mijkl
@Sjk

@Xl

; where Dij is a component of D. However, we

can also define the flexoelectric tensor f such that the internal energy density

function is given by c ¼ W elast þ 1

2
Pi D

�1
� �

ij
Pj þ fijklPi

@Sjk

@Xl

þ @Sij

@Xj

gijklmn

@Slm

@Xn

. This

internal energy density function will lead to the following equation:

Pi ¼ DijEi �Dij fjklm
@Sjk

@Xl

. So, we can conclude that Dij fjklm = �mijkl or in a one-

dimensional setting, f (e � e0) = �mflexo.
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composite consisting of multiple layers. In this section, we use

their analysis as a starting point and extend their analysis for a

dielectric electret structure made of two materials where a layer

of electric charge with surface charge density q has been

inserted at their interface of two materials (Fig. 19). Throughout

this section, we will use subscripts t and b to describe proper-

ties of layers on top and bottom, respectively. Two different

coordinate systems are used to specify material points in the

reference configuration for the two different materials.

ORb ¼ f Xb;Y ;Zð Þ 2 R3:jXbj � H
aþ 1

2
; jY j � L; jZj � Wg;

(E.1a)

ORt ¼ f Xt;Y ;Zð Þ 2 R3:jXtj � H
1� a

2
; jY j � L; jZj � Wg:

(E.1b)

We consider the same class of deformation and kinematic

constraints as we did in the preceding sections while analyzing

homogeneous structures:

rb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AbX þ Bb

p
; yb ¼ Y

Ab

; z ¼ Z for layer b;

rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AtX þ Bt

p
; yt ¼

Y

At

; z ¼ Z for layer t:
(E.2)

Electric boundary conditions are identified as

x(r1) = 0, (E.3a)

x(r2) = 0, (E.3b)

x(rch) = Vi, (E.3c)

where r1, rch and r2 are the inner radius, interface radius and

outer radius of the deformed structure, respectively. The vol-

tage Vi is the unknown electric potential at the interface of two

materials and is created due to insertion of the charge layer.

Charge distribution is exactly same as eqn (54). So, using

Maxwell’s equations, voltage Vi can be determined from follow-

ing equation:

Aq ¼ Vi

eb

log
rch

r1

þ et

log
r2

rch

0
B@

1
CA: (E.4)

Consequently, the electric field in the layers may be determined

to be:

eb ¼ �Vi

r

1

log
rch

r1

er;

et ¼
Vi

r

1

log
r2

rch

er:

(E.5)

Since purely circular bending is considered, the mechanical

boundary conditions for the model are as follows:

yb(L) = yt(L), (E.6a)

rb = rt at r = rch, (E.6b)

trb ¼ rb
� �LabIð Þer ¼ 0 at r ¼ r1; (E.6c)

trt ¼ rt
� �LatIð Þer ¼ 0 at r ¼ r2; (E.6d)

1trU = 0 at r = rch, (E.6e)

M ¼
ðrch

r1

r syyb
� �Labð Þdrþ

ðr2

rch

r syyt
� �Latð Þdr: (E.6f)

Lagrange multipliers Lab and Lat can be determined sol-

ving equilibrium equation for each layer and using boundary

conditions (E.6c) and (E.6d):

Lab ¼ srrt
� þ

ðr

r1

1

r0
srrb

�ðr0Þ � syyb
�ðr0Þð Þdr0;

Lat ¼ srrt
� þ

ðr

rch

1

r0
srrt

�ðr0Þ � syyt
�ðr0Þð Þdr0

�
ðr2

rch

1

r
srrt

�ðrÞ � syyt
�ðrÞð Þdr:

(E.7)

From eqn (E.6a), we conclude that Ab = At = A. Similar to

eqn (45), A, Bb and Bt can be expressed in terms of r1, r2 and rch
and using continuity of deformation (eqn (E.6b)) at the inter-

face between two materials, r = rch, deformation can be

expressed in terms of the two independent constants:

lb ¼ rch � r1

ð1þ aÞH










; Lb ¼ rch

r1
; (E.8)

where L2 ¼ Lb
2 þ a� 1

a
. Finally, eqn (E.6e) can be used to

determine stretch lb in terms of radius ratio L

lb
4 ¼ 32C11L

2 1� a2
� �

mt þ ðaþ 1Þ2mb
� �

ffiffiffiffiffiffiffiffi
C11

p
þ

ffiffiffi
2

p� �4
1� a2ð Þmt þ ðaþ 1Þ2mbL2ð Þ � 16q2E11

;

(E.9)

where coefficients Eij are listed in the Appendix A. Also, eqn (E.6f)

can be written in terms of radius ratio and stretch:

M ¼ H2q2lb
4E18 þ

H2

64E12

�
32 E13mb þ E14mtð Þ:

þ lb
4 E15mb þ E16mt � E17 mb � mtð Þ log 2

C21

� ��

þ 2E17ma logðLÞ
	

(E.10)

Fig. 19 A composite block made of two layers with two different dielectric

materials and a layer of charge is inserted between two layers. (a) Undeformed

configuration. (b) Deformed configuration.
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We can simply substitute eqn (E.9) into (E.10) to obtain a

relation between the radius ratio and bending moment. Also,

in order to extract a linear relation similar to (59), the resulting

relation can be linearized for small values of �k using Taylor

series expansion and eqn (51). Since the linearized relation is

rather long, we avoid presenting it here and just present the

following limiting case:

lim
�k!0

M

4H2
¼ q2 1� a2

� �
ð1� aÞ2ebmt � ðaþ 1Þ2mbet
� �

4 ð1� aÞeb þ ðaþ 1Þetð Þ2

� ðaþ 1Þmb þ ð1� aÞmt þ
1� a2
� �

q2

ð1� aÞeb þ ðaþ 1Þet

� ��1

:

(E.11)

Earlier we had emphasized that for an electret made of a single

material, a non-zero curvature is observed in the block even in

the absence of mechanical loading unless the charge layer is

located exactly in the middle of the block. However, eqn (E.11)

shows that a non-zero bending moment is required to maintain

a flat block even if the charge layer is located in the middle. In

the other words, for a composite electret, and in absence of

mechanical loading, a non-zero curvature can be observed in

the block even if the charge layer is located in the middle of the

block. The reason is that the material in-homogeneity intensi-

fies non-uniformity of the Maxwell stress inside the material

and this non-uniform distribution of stress bends the block.

As before for a single homogeneous electret material, the

definitions (71) and (68) may be used to determine the apparent

flexoelectric coefficient of the composite block:

f app ¼ 1

e0 � e0ð Þ
2Hq 1� a2

� �
eteb

aet � aeb þ et þ ebð Þ2
; (E.12)

where e in relation (71) has been replaced with e0 and is

defined as

2

e0
¼ ð1þ aÞ

eb
þ ð1� aÞ

et
: (E.13)

In contrast to a homogeneous electret, we now note that the

optimal position for the charge layer is not in the center of the

structure and there is an optimum thickness for each layer

which maximizes the apparent flexoelectric coefficient.
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