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a b s t r a c t

We develop the mechanics theory of a phenomenon in which strain is induced in nanoscale structures in
the absence of applied stress, due solely to the presence of quantum mechanical confinement of charge
carriers. The direct effect of strain on electronic structure has been widely studied in recent years, but the
‘‘reverse coupling” effect that we investigate, which is only appreciable in the smallest structures, has
been largely ignored even though its effects are present in first principles atomistic calculations. We
develop a simple effective mass approach that can be used to model this universal physical phenomenon
allowing a transparent scheme to identify its occurrence. We relate quantum field induced strain to
acoustic polarons and identify the presence of this effect in density functional theory calculations of
strain and quantum confinement in free-standing Si and GaAs quantum dots. Finally, we discuss the
use of this quantum confinement induced strain as a mechanism for universal optical actuation in nano-
wire structures in the context of recent experimental results on carbon nanotubes.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction and background

In the mechanics of solids, thermal coupling to strain is well
known. Even in the complete absence of mechanical forces, a
change in temperature induces mechanical strain. If part of the
solid subjected to the thermal field is mechanically constrained,
internal stresses may also arise. There are other similar possible
physical couplings. In certain materials, electrical or magnetic
fields may also induce strain – these effects, unlike thermoelastic
coupling, are not universal (at least not if one restricts consider-
ation to the linearized ‘‘small field” assumption). In the present
article we explore a somewhat unusual type of physical coupling:
mechanical strain due to changes in quantum field. We demonstrate
that this coupling is strongly size-dependent and occurs only in
nanostructures. We use quantum dots as a model system to inves-
tigate this fundamental effect.

In three-dimensional structures with dimensions on the scale of
nanometers, often referred to as quantum dots (QDs), quantum
mechanical effects that would be negligible in macroscopic struc-
tures become significant. For example, electron energy spectra
become discrete, with measurable energy differences between
individual levels. Spectra are characterized by sharp densities of
states reminiscent of atoms, and charge carriers are confined in all
three spatial dimensions. These structures often consist of

semiconductor material, and can be free standing, attached to a sub-
strate or embedded in another material. Quantum dots are useful in
revealing interesting basic science, and are also important for many
emerging technological applications, such as next generation light-
ing (Arakawa, 2002; Nakamura et al., 2002), lasers (Bhattacharya,
2000; Deppe and Huffaker, 2000), quantum computing, information
storage and quantum cryptography (Chye et al., 2002; Lundstrom
et al., 1999; Petroff, 2003), biological labels (Alivisatos, 2000), sen-
sors (Bhattacharya et al., 2002) and many others (Bandhyopadhyay
and Nalwa, 2003; Bimberg, 1999; Bimberg et al., 1996; Grundmann
et al., 1995; Tersoff et al., 1996; Williamson and Zunger, 1998).

Using standard top-down or bottom-up semiconductor fabrica-
tion approaches, quantum dots are often grown on lattice mis-
matched substrates, or embedded in lattice mismatched matrix
materials, resulting in large elastic strains. Many groups have stud-
ied the effects of this strain on the electronic structure of quantum
dots, which governs other transport and spectral properties funda-
mental in many device applications (Bimberg et al., 1996; Davies,
2000; Singh, 1992; Yu and Cardona, 2004). As shown in Fig. 1, elas-
tic strain modifies the basic band structure parameters in semicon-
ductor material. Dilatational strain modifies the band gap; axial
and shear components of strain break the crystalline symmetry
which lifts the energy degeneracy of the heavy hole and light hole
valence subbands. This coupling between strain and electronic
structure, particularly in quantum dots where elastic fields are
highly nonuniform, has been widely studied, and is relevant for
many emerging applications (e.g. Jiang and Singh, 1997; Johnson
et al., 1998; Stier et al., 1999). In particular, the reader is referred
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to a review article on this subject (Maranganti and Sharma, 2006)
and two papers that appear in this journal (Freund and Johnson,
2001; Johnson and Bose, 2003).

In this work we report on the mechanisms of the ‘‘reverse
effect”, i.e. inducing mechanical strain through changes in the
quantum confinement, or more generally the electronic structure,
even in the absence of an externally applied stress.

The outline of the paper is as follows: First, to illustrate this
phenomenon in the simplest possible terms and to provide an intu-
itive physical understanding, we construct an elementary effective
medium continuum model of quantum confinement induced strain
in Section 2 and describe how this so-called reverse coupling may
be interpreted in terms of quasiparticles called polarons (which are
electron-frozen phonon pairs). A more sophisticated multi-band
envelope function approach to the problem is constructed in Sec-
tion 3 and numerical results are presented for Si and GaAs quan-
tum dots in Section 4. Band edge shifts, induced strain field due
to polarons and polaron binding energy are calculated. In Section
5, we illustrate the prospects of utilizing this effect to provide a
universal mechanism for optical actuation of small nanowires. To
verify our model and to obtain additional physical insights, we also
perform, for smaller size quantum dots, ab initio calculations based
on parameter-free self-consistent density functional theory (DFT)
in both local density and generalized gradient approximations for
the polaron binding energy. Larger quantum dots beyond the com-
putational capability of DFT are handled via semi-empirical atom-
istic methods. The conventional envelope function method (EFM),
unlike our modified EFM model or atomistic calculations, predicts
zero polaron binding energy for all QD sizes. The present work is par-
tially based on our previous article (Zhang et al., 2007) that discusses
the same subject from a condensed matter viewpoint.

2. Single band toy model of quantum confinement induced
strain and physical interpretation

In this section, inspired by the particle-in-a-box model widely
presented in textbooks, we develop a similar model to illustrate

the phenomenon of quantum confinement induced strain. We con-
sider a charge carrier, such as an electron, in a quantum dot. This
model is less accurate in the case of the smallest quantum dots
but the intent in this section is to highlight the general ideas. We
assume that a known strain field exists that interacts with the elec-
tronic structure and perturbs it. Within the assumptions of the sin-
gle band toy model under consideration, the impact of the strain on
the electronic structure may be computed by solving the following
equations (Davies, 2000):

Ec �
�h2

2m�
r2

 !
wðrÞ þ ac � TrðeÞwðrÞ ¼ EwðrÞ

e ¼ e0; r ¼ C : e; divr ¼ 0 ð1Þ

Here m� is the effective mass of the electron, r and e are elastic
stress and strain tensor, respectively, and are constrained to obey
the linearized elasticity relation r ¼ C : e. The Cauchy strain is the
symmetric part of displacement gradient, i.e. e ¼ 1

2 ðruþrT uÞ. Ec

is the energy of the band edge for the conduction or valence band.1

ac is the so-called deformation potential constant and determines
the extent to which mechanical strain modifies the electronic struc-
ture of the quantum dot, e.g. its band gap.

We note that Eq. (1) allows only for a one-way coupling; i.e.
strain can modify the electronic structure and hence the band
gap and a host of opto-electronic properties of quantum dots but
not vice versa; changes in electronic structure do not modify the
strain. In the following we show that Eq. (1) are only approximate
in this sense.

The total Lagrangian of the coupled system (the charge carrier
and the continuum), apart from the unperturbed cohesive energy,
is the summation of contributions from the carrier, the elastic field
and the interactions between them (Emin and Holstein, 1976), or
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Fig. 1. (a) Effect of strain on the conduction band, or DEc , due to dilatational strain. (b) Effect of strain on the valence band. Symmetry is broken by an axial component of
strain. The terms ‘‘hh” and ‘‘lh” denote heavy hole and light hole band, respectively. e denotes strain, k is the wave number and ac is the deformation potential constant.
Adapted from Davies (2000).

1 If dealing with the valence band, identical equations apply but the effective mass
and the deformation potential constants are different, than in the conduction band
case.
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Ltotðu;ru;w;rwÞ ¼ LE þ Le þ Linteraction ð2Þ

where,

LE ¼
Z

V
�1

2
r : e

� �
dx

Le ¼
Z

V
wyEcw�

�h2

2m�
rwy � rw

( )
dx

Linteraction �
Z

V
wyð�acTrðeÞÞwdx

e ¼ 1
2
ruþrT u
� �

ð3Þ

Using standard variational techniques (e.g. the Euler–Lagrange
equations), and assuming elastic isotropy we obtain the following
governing equations:

Ec �
�h2

2m�
r2

 !
wðrÞ þ ac � TrðeÞwðrÞ ¼ EwðrÞ

e ¼ e0 � ac

3K
jwðrÞj2I|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}; r ¼ 3Kð1� 2vÞ

ð1þ vÞ eþ 3Kv
1þ v TrðeÞI; divr ¼ 0

ð4Þ

Here, K is the bulk modulus of the quantum dot, v is the Poisson’s
ratio and E is the electronic spectrum of energies. We note now that
changes in the quantum field (via the wave function) can also mod-
ify the strain field in the form of a ‘‘reverse coupling”. As already
evident from Eq. (1), the typical practice is to ignore the bracketed
term in Eq. (4). An interesting corollary to Eq. (4) is that even in
complete absence of external strain, i.e. e0 ¼ 0, a dilatational strain
proportional to the probability density jwðrÞj2 emerges. The square
of the wavefunction scales inversely with size and thus we expect
this ‘‘quantum confinement induced strain” to be appreciable only
for very small sizes. This simple result is the basis of our paper.
Small changes in the confinement or the quantum field via changes
in the size, or electrical fields or any other mechanisms will induce a
mechanical strain applied in quantum dots of sufficiently small size.
Choosing Si as an example, the induced strain is estimated to be
around 0.024% for a �3 nm cubic quantum dot (with the choice of
as 6.4 eV) and K as 98 GPa (Paul, 2004; Peng et al., 2006) – not a
negligible insubstantial amount by the standards of continuum
mechanics.

In position space jwðrÞj2 represents the spatial probability den-
sity distribution of the charge carrier. The strain field is propor-
tional to the charge density and thus implies that the charge
carrier moves along with an associated displacement. The electron
coupling to a ‘‘deformation cloud”, in a discrete view, is referred to
as polaron (Emin, 1972; Emin and Holstein, 1976) – and thus is a
type of electron-frozen acoustic phonon pair. A polaron is depicted
conceptually in Fig. 2.

Thus, a polaron caused by electron–phonon coupling, in our
context, is a charge carrier that carries with it a localized lattice
deformation field. Any field that disturbs the electron (e.g. in-
creased or decreased confinement, applied electric fields, etc.) will
also disturb the distortion field surrounding it, thus modifying the
strain implied by Eq. (4). Thus, changes in the electronic motion
can cause changes in the attached distortion around the charge
carrier.

The acoustic polaron corresponds to an interaction between the
carrier and the acoustic phonons, which, in a long wavelength
approximation, form the elastic strain field. Therefore, the interac-
tion between the carrier and the strain field, through Eqs. (2)–(4),
correspond to the formation of acoustic polarons. The latter are quite
different from piezoelectric and optical polarons, which are dis-
cussed widely in the condensed matter literature (Mahan, 2000).
The piezoelectric polaron is related to the carrier–piezoelectric

phonon interaction. The optical polaron (Bastard et al., 2002;
Minnaert, 2001), or polar coupling polaron, is caused by the inter-
action of electrons and optical phonons. Optical polarons are
mostly important for polar materials, including most II–VI or
III–V semiconductors. The latter have already been investigated
for quantum dots through an all-discrete approach (Bastard et al.,
2002; Minnaert, 2001). In the present work, only the acoustic pola-
rons (which are relevant to the elastic–quantum field coupling)
will be investigated, although we will provide more perspective
on this when we compare results for Si quantum dots (non-polar)
with CdSe (polar).

We note here that the strictly dilatational nature of the quan-
tum confinement induced strain is due to the assumed isotropy
of the elastic properties and the nature of the single band toy mod-
el. This artifact is removed when we construct a more rigorous
model in the next section.

3. General theory and multiband envelope function method

There are numerous atomistic electronic structure calculation
methods, ranging from computationally expensive first principles
atomistic methods in the category of density functional theory
(DFT) approaches, to semi-empirical methods such as the empirical
pseudopotential method (EPM) and the tight-binding approach
(TB). Continuum or effective medium approaches such as the enve-
lope function method (EFM) offer significant computational advan-
tages, but are limited in accuracy which restrict their use to certain
classes of problems. Nevertheless, for many systems these meth-
ods are the only practical approaches. Several recent reviews com-
pare various electronic structure methods and the continuum
approaches in particular (Bastard, 1991; Davies, 2000; Singh,
1992; Yu and Cardona, 2004).

The EFM approach in the 8 � 8 Hamiltonian form (Kane, 1966)
is an effective medium approach that accounts for three spin-
degenerate valence energy subbands and one spin-degenerate
conduction energy subband in the bulk electronic structure. The
unknown envelope part of the wave function is tensor-valued over
the 8 subband basis, and the effective mass, a material property, is
tensor-valued over the spatial coordinates. Finding the envelope
part of the wave function requires the numerical solution of a stea-
dy state Schrödinger equation for the electron and hole energy
eigenvalues in this tensor-valued framework. This model has been
frequently applied to quantum dots (Efros and Rosen, 1998;
Gashimzade et al., 2000; Pryor, 1998; Sercel et al., 1999; Sercel

Fig. 2. Pictorial representation of an acoustic polaron. A charge carrier carries along
it with a local distortion. Perturbation of the charge carrier (which interacts with
quantum fields) changes the distortion surrounding the charge carrier (i.e. perturbs
the polaron) manifesting as an observable mechanical strain.
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and Vahala, 1990; Stier et al., 1999) and even to quantum dot het-
erostructures (see for example, Burt, 1992, 1999). This approach
increases in accuracy if more than 4 energy bands are retained in
the basis set – indeed, the well known particle-in-a-box toy prob-
lem (discussed in the previous section) corresponds to a single
band approximation in one spatial dimension, whereby the tensor
unknowns reduce to scalars. Mechanical strain can be accounted
for in the Kane model as a perturbation of the 8 � 8 standard
Hamiltonian (e.g. Bastard, 1991; Davies, 2000; Pollak, 1990; Singh,
1992; Stier et al., 1999; Yu and Cardona, 2004), albeit one that is
readily tractable numerically. In this formalism, non-homogeneous
strains may also be dealt with rigorously via the work of Zhang
(1994).

In this approach the strain itself is usually calculated a priori by
means of continuum elasticity (numerically or analytically
depending on geometrical and anisotropic assumptions) and
sometimes through empirical force field molecular dynamics (e.g.
Andreev et al., 1999; Bellaiche et al., 1996; Bernard and Zunger,
1994; Cusack et al., 1996; Davies, 2000; Davies et al., 2002;
Downes et al., 1997; Ellaway and Faux, 2002; Glas, 2001; Grundmann
et al., 1995; Jiang and Singh, 1997; Johnson and Freund, 2001;
Johnson et al., 1998; Keating, 1966; Korkusinski and Hawrylak,
2001; Makeev and Madhukar, 2003; Martin, 1970; Migliorato
et al., 2002; Nishi et al., 1994; Pan and Yang, 2001; Pearson and
Faux, 2000; Pryor, 1998; Pryor et al., 1998; Pryor et al., 1997;
Romanov et al., 2001; Shin et al., 2003; Stillinger and Weber,
1985; Tadic et al., 2002; Yang et al., 1997; Yu and Madhukar,
1997a,b). The envelope function approach is attractive, simple
and physically intuitive and thus widely used for both bulk semi-
conductors and nanostructures. However, this standard approach
suffers from several shortcomings and its applicability to nano-
structures appears questionable. Indeed, several authors have dis-
cussed this (see, for example the review by Carlo (2003)) and
alternative atomistic approaches such as the TB method, EPM or
DFT are often preferable when dealing with small quantum dots
in the size-range of a few nanometers. In various works Zunger
and co-workers (1996, 1999, 2001) have highlighted and clarified
the various shortcoming of the envelope function approach when
compared with EPM calculations. Wang and Zunger (1996, 1999)
have made an important advance by modifying the standard enve-
lope function approach to be more accurate for small quantum
dots. While the EPM is fairly accurate provided the pseudopoten-
tial that replaces the effect of the core electrons and the nucleus
has been well fitted empirically, it is computationally expensive
for large systems, underscoring the importance of the Wang–
Zunger works (1996, 1999) on the modification of the k.p model
for quantum dots. Self-consistent DFT computations, while param-
eter free, often tend to underestimate the energies as DFT is best
suited for only ground state energy calculations. Even within
DFT, accuracy may suffer if the typically used local density approx-
imation is used in place of more accurately modeling nonlocal
effects. Nevertheless, relative effects are often faithfully captured
by DFT and its advantage of being parameter-free is notable for
new materials and effects. Applications are, however, generally
limited to quantum dots smaller than 2.5 nm in diameter and in-
deed embedded quantum dots often prove to be beyond computa-
tional reach. More discussion on the applicability of DFT to the
problem addressed in this paper is provided in Section 5.

In this section we develop a modified EFM approach that incor-
porates the ‘‘reverse coupling” illustrated earlier using the single
band toy model. While quantum confinement induced strain is al-
ways implicitly present in numerical calculations, the toy model in
the preceding section and the more sophisticated approach devel-
oped here allows us to separate this effect.

Based on a discrete model of polarons, an EFM model may be
constructed following Emin and Holstein (1976). Alternatively, in

this work, we construct a long wavelength model in a manner that
if quantum confinement induced strain is ignored, simplifies to the
standard multi-band k.p approach. The general form of the quan-
tum mechanical Lagrangian is:

Fig. 3a. Ground state band energy shift for conduction band due to quantum
confinement induced strain in a cuboidal QD.

Fig. 3b. Ground state band energy shift for conduction band due to quantum
confinement induced strain in a nanowire QD of cross-sectional dimension
a = 0.5 nm and variable length L.

Fig. 3c. Ground state band energy shift for conduction band due to quantum
confinement induced strain in a nanowire QD of length L = 10 nm and variable
cross-sectional dimension a.
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Le ¼
Z

v

i�h
2

Wy _W� _WyW
h i

� �h2

2m
rWy � rW�WyXðxÞW

( )
dx

Li ¼
Z

v
Wyð�WstrainÞWdx

ð5Þ

where W and wy are the spatial time dependent wave function and
its Hermitian conjugate. XðxÞ is the external potential apart from
the elastic field, while Wstrain is the potential due the strain field.
Separating the time-dependent part, Wðx; tÞ ¼ wðxÞeiEt

�h , and using
the Euler–Lagrange equations, we obtain:

� �h2

2m
r2wðxÞ þXðxÞwðxÞ þWstrainwðxÞ ¼ EwðxÞ ð6Þ

�r � C : eþ wðxÞy oWstrain

oe
wðxÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

" #
ð7Þ

With the boundary condition C : eþ wðxÞy oWstrain
oe wðxÞ

h i
nj ¼ Fi,

C : eþ wðxÞy oWstrain
oe wðxÞ should be equal to classical stress if boundary

traction Fi is prescribed.
The strain e can be decomposed into a classical part ecl satisfy-

ing �r � ½C : ecl� � 0 and a non-classical part eqs such that

e ¼ eqs þ ecl

and

e- ¼ �S : wðxÞy oWstrain

oe
wðxÞ ð8Þ

where S is the elastic compliance tensor. Here the subscript qs de-
notes quantum confinement induced strain.

The Multi-band EFM, or the k.p method, is based on expanding
the wave function in terms of atomic functions basis (Wang and
Zunger, 1996) or

wðrÞ ¼
XNb

n¼1

X
k

bnðkÞeik��hr

" #
/n;k¼0ðrÞ ð9Þ

where The terms
P

kbnðkÞeik��hr are the envelope functions. Nb is the
number of bands, and /n;k¼0ðrÞ is the Bloch wave functions at k=0. It
is common practice to transform Eq. (6) into the EFM model given
byX

m

ðHnmðrÞ þWnmðrÞÞFmðrÞ ¼ EFn ð10Þ

where Fn ¼
P

kbnðkÞeik��hr. In a typical four band Luttinger–Bir–Pikus
model (Bir and Pikus, 1974; Kane, 1966), HnmðrÞ and WnmðrÞ are de-
fined by the matrices of differential operators given by

Hmn ¼

�P þ Q �Sy R 0
�S �P � Q 0 R

Ry 0 �P � Q Sy

0 Ry S �P þ Q

26664
37775 ð11Þ

Wmn ¼

�pþ q �sy r 0
�s �p� q 0 r

ry 0 �p� q sy

0 ry s �pþ q

26664
37775 ð12Þ

where,

P ¼ �Ev � c1
�h2

2m
r2

Q ¼ �c2
�h2

2m
o2

x þ o2
y � 2o2

z

� �
R ¼

ffiffiffi
3
p �h2

2m
c2 o2

x � o2
y

� �
� 2ic3oxoy

h i
S ¼

ffiffiffi
3
p

c3
�h2

2m
ozðox � ioyÞ

p ¼ avðexx þ eyy þ ezzÞ

q ¼ b ezz �
1
2
ðexx þ eyyÞ

� �

r ¼
ffiffiffi
3
p

2
bðexx � eyyÞ � idexy

s ¼ �dðexz þ ieyzÞ

ð13Þ

The material parameters in the expressions listed above are gener-
ally evaluated empirically or through ab initio calculations and are
listed in Appendix A for the materials (Si and GaAs) investigated in
this work.

Eq. (8) also has to be cast into a multiband framework. The
wðrÞy oWstrain

oeij
wðrÞ expression can be rewritten as

wyDijw ¼ ajxh i x bDij

��� ���aD E
ð14Þ

where Dij ¼ oWstrain
oeij

is a differential operator while bDij is the corre-

sponding quantum operator. They are related through

x bDij

��� ���x0D E
¼ Dijðx0Þoðx� x0Þ. The wave function is the position oper-

ating on a specific quantum state, i.e. wðrÞ ¼ hxjai.
Eq. (14) may be expanded on position operator x0 as

wyDijw ¼
Z

x0
hajxi x bDij

��� ���x0D E
hx0jai ð15Þ

Using Eq. (9) we have

wyDijw ¼
Z

x0

XNb

n¼1

X
k

bnðkÞeik��hx

" #
/yn;k¼0ðxÞ x bDij

��� ���x0D E
�
XNb

m¼1

X0
k

bmðk0Þeik0 ��hx0

" #
/m;k¼0ðx0Þ ð16Þ

This can be further simplified to

wyDijw ¼
XNb

m¼1

XNb

n¼1

X
k

bnðkÞ
Z

x0
/yn;k¼0ðxÞ x bDij

��� ���x0D E
/m;k¼0ðx0Þ

h"

� eiðk�k0 Þ��hx0
i
dx0
X

k0
bmðk0Þ

#
ð17Þ

While,

Z
x0

/yn;k¼0ðxÞ x bDij

��� ���x0D E
/m;k¼0ðx0Þeiðk�k0 Þ��hx0

h i
dx0 ¼ Dnm

ij dk;k0 ð18Þ

here Dnm
ij are the components of Dij in a Hilbert space consisting of

the atomic basis m and n. Therefore we can further simplify Eq.
(17) to be

3814 X. Zhang et al. / International Journal of Solids and Structures 46 (2009) 3810–3824



Author's personal copy

wyDijw ¼
XNb

m¼1

XNb

n¼1

X
k

bnðkÞDmn
ij dk;k0

X
k0

bmðk0Þ
" #

¼
XNb

m¼1

XNb

n¼1

X
k

bnðkÞDmn
ij bmðkÞ

" #

¼
XNb

m¼1

XNb

n¼1

X
k

bnðkÞe�ik�xDmn
ij bmðkÞeik�x

" #

¼
XNb

m¼1

XNb

n¼1

X
k

FynðxÞD
mn
ij FmðxÞ

" #
ð19Þ

Eq. (19) may be substituted in Eq. (8) to finally yield

eij ¼ ecl
ij � Sijkl ¼

XNb

m¼1

XNb

n¼1

FynðxÞD
nm
kl FmðxÞ

	 

ð20Þ

where Dnm
ij is a new term that may be written in matrix form as

Dnm
ij ¼

�avdij þ qij �s�ij rij 0
�sij �avdij � qij 0 rij

r�ij 0 �avdij � qij s�ij
0 r�ij sij �avdij þ qij

26664
37775
ð21Þ

with

qij ¼
� b

2 0 0

0 � b
2 0

0 0 b

264
375 rij ¼

ffiffi
3
p

b
2 �id 0

�id �
ffiffi
3
p

b
2 0

0 0 0

264
375 sij ¼
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This completes the development of the multiband k.p method. We
now formulate expressions for various energy terms.

The total ground state energy of the system is

Etot ¼
Z

V
½FynðxÞHnmðxÞFmðxÞ�dxþ

Z
V

FynðxÞD
mn
ij eijFmðxÞ

h i
dx

þ 1
2

Z
V
rijeij dx ð23Þ

The normalization constrain is
R

V FynðxÞFnðxÞdx ¼ 1, Einstein summa-
tion notation is not adopted here. The envelope function FmðxÞ and
the strain eij minimize the total energy Etot. If we consider DE as the
shift of the ground energy, incorporating this reverse coupling, the
relative polaron binding energy is defined as �DE (Alexandre et al.,
2003). Where,

DE ¼
Z

V
FynðxÞD

mn
ij eijFmðxÞ

h i
dxþ 1

2

Z
V
rijeij dx ð24Þ

Here, the first integral is the band energy shift due to quantum con-
finement induced strain and the second integral is the correspond-
ing elastic deformation energy. Assuming no external stress is
applied and assuming the absence of any pre-existing strain, from
Eq. (20), the developed strain field may be written as
eij ¼ �SijklF

y
nðxÞD

nm
kl FmðxÞ. With the subscripts band and elastic indi-

cating the shift of the band energy and the elastic energy, respec-
tively, we then have:

DE ¼ DEband þ DEelastic

DEband ¼ �Sijkl FysðxÞD
st
ij FtðxÞ

h i
FynðxÞD

nm
kl FmðxÞ

	 

dx

DEelastic ¼
1
2

Sijkl

Z
v

FysðxÞD
st
ij FtðxÞ

h i
FynðxÞD

nm
kl FmðxÞ

	 

dx

ð25Þ
This leads us to an important conclusion: DEband ¼ �2DEelast. This
relation is only valid for the carrier–acoustic phonon interaction
and provides a simple test of the theory when we seek to confirm
it using ab initio calculations.

Fig. 4a. Ground state band energy shift for valence band due to quantum
confinement induced strain in a cuboidal QD.

Fig. 4b. Ground state band energy shift for valence band due to quantum
confinement induced strain in a nanowire QD of cross-sectional dimension
a = 0.5 nm and variable length L.

Fig. 4c. Ground state band energy shift for valence band due to quantum
confinement induced strain in a nanowire QD of length L = 10 nm and variable
cross-sectional dimension a.
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4. Numerical results

The modified EF based model that incorporates quantum con-
finement induced strain developed in the preceding section is
solved numerically for Si and GaAs quantum dots. Spherical, cubic
and wire-shaped QDs are considered. No external stress is applied
and thus e0 ¼ 0. Dirichlet boundary conditions are applied and the
equations are solved in a self-consistent manner. To elaborate, the
quantum confinement induced strain components in Eq. (10) are
initially set to zero, which corresponds to the conventional models.
Solution of the eigenvalue problem in Eq. (10) provides initial esti-
mates of the relative envelope functions Fn for the ground state
conduction or valence bands. Eq. (20) is then used to obtain mod-
ified strains that are inserted into Eq. (10) for further iteration. This
self-consistent scheme is carried out until the difference between
the successive ground state band energies is less than 0.0001 eV.

The system of self-consistent equations (Eqs. (4), (10) and (20))
is solved numerically using the finite difference method. An appro-
priate discrete scheme needs to be chosen to remove the nonherm-
icity of the differential in a regular center discrete scheme.
Alternatively, one could develop a finite element scheme as was
done for the classical EF approach by Johnson et al. (1998). We note
here that spurious results can be produced if the discrete scheme is
not chosen properly (e.g. Godfrey and Malik, 1996; Meney et al.,
1994; Szmulowicz, 2005). In our numerical calculations of the
developed EF model, a relatively well-tested discrete scheme is
chosen to retain the hermicity of the differential operator (Burt,
1992, 1999). Thus,

A
o

oxi
) 1

2
A

o

oxi
þ o

oxi
A

� �
A

o

oxi

o

oxj
) 1

2
o

oxj
A

o

oxi
þ o

oxi
A

o

oxj

� � ð26Þ

The first and second derivatives are therefore discretized using this
central difference scheme for position dependent variable A. For
example, the two differential operators (Eq. (26)) are written in dis-
crete form along the x-direction as

A
o

ox
F
����

x¼x0

¼½Aðx0þdÞþAðx0Þ�Fðx0þdÞ�½Aðx0�dÞþAðx0Þ�Fðx0�dÞ
4d

A
o

ox2
F
����

x¼x0

¼½AðxþdÞþAðxÞ�½FðxþdÞ�FðxÞ�
2d2 �½AðxÞþAðx�dÞ�½FðxÞ�Fðx�dÞ��

2d2

ð27Þ

Here d is the finite difference step size along the x-direction.

For both the single band and four band models, at each self-con-
sistent loop, a large scale linear eigen-system is solved. The linear
eigenvalue problem in each iteration is handled by the blocked
Jacobi–Davidson method in shift and invert mode (Sleijpen and
Van der Vorst, 1996). The conventional Jacobi pre-conditioner is
used to speed up convergence. The necessary material parameters
are presented in Appendix A.

The numerical results for the band energy shift ðEc=vðclÞ � Ec=vðqsÞÞ
in the GaAs and Si quantum dots are presented in Figs. 3(a)–(c) and
4(a)–(c) . Here subscripts c and v indicate conduction and valence
bands, respectively.

Based on the toy model developed in Section 2, we expect

Ec=vðclÞ � Ec=vðqsÞ to roughly scale with � a2
d

K jwðrÞj
2. This energy differ-

ence is size-dependent and quadratic in the deformation potential
constant. Thus, as evident in panels (a)–(c) we expect the GaAs QD
to have larger quantum confinement induced strain coupling than
Si, as the conduction band deformation potential of GaAs is nearly
1.5 times that of Si. In panels (a)–(c) the silicon QD valence band
energy exhibits a larger shift than GaAs due to its higher valence
band deformation potential. We finally note that quantum confine-
ment induced strain is very small for quantum dots with size larger
than 2 nm emphasizing the strong role of size in this peculiar type
of coupling.

The dilation due to electron and holes is plotted in Fig. 5 for a
cuboidal Si quantum dot.

The dilation strain induced by the electron confinement effect is
much larger than that induced by the hole due a large difference in
their deformation potentials. The strain fields induced by the
ground state hole are more complicated due to the multiband
interactions.

For the electron induced strain (Fig. 5(a)), the only nonzero
strain fields are exx ¼ eyy ¼ ezz. This is different from the hole in-
duced strain field described by the four band model. The three
shear strains are highly non-uniform and interestingly, the volume
average of the dilation induced by the hole polarons is nearly zero.
This is explained by noting that the strain contributions from the
heavy hole band and the light hole band offset each other. The vol-
ume averages of shear stresses induced by valence hole are always
zero, due to the orthogonality between different envelope
functions.

The strain distribution in a cuboidal Si QD is shown in
Fig. 6 while the size-dependency of the quantum confinement
induced strain field (maximum value) is depicted in Figs. 7
and 8.

Fig. 5. Magnitude of the strain (dilation) for a cuboidal Si QD (a = 7 Å) on the z = 0 plane (shaded in the inset) viewed from top. (a) Conduction band. (b) Valence band. No
external stress is applied and the strain depicted is entirely due to quantum confinement.
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5. Prospects of optical actuation in nanowires

The concept of quantum possible field induced strain mediated
by acoustic polarons, in principle, provides a mechanism for ‘‘actua-
tion at a distance”. Remote actuation has numerous applications in
areas as diverse as biomedical diagnostics and defense. Remote
actuation may be most easily achieved via optical stimulus. Indeed,
incident light of appropriate energy will create electron–hole pairs
in nanowires. As results from the preceding sections show, provided
that the size of the nanowire is sufficiently small, the electron and
hole pairs will create polarons thus inducing mechanical strain. As
was noted in the previous section, the strain due to an electron po-
laron does not cancel the strain due to a hole polaron.

As an illustration, the strain distribution in a (square cross-sec-
tion) GaAs nanowire (a = 0.5 and L = 5 nm) is presented in Fig. 9.

The variation of the maximum strain as a function of nanowire
length is shown in Figs. 10 and 11 for both Si and GaAs. If we con-
sider a GaAs nanowire with cross-sectional dimension a = 2 nm
and length L = 10 nm, the total length change in the x-direction is
about 0.0008 nm. Assuming linear superposition, allowing multi-
ple polarons to be added linearly, we deduce that the total length
change for 100 polarons is about 0.8 Å. Thus an intense enough
optical absorption can easily create substantial deformations.
While the assumption of linear superposition can be only be rigor-
ously correct in the dilute limit, a recent work on many-body po-
laron theory achieved by Maniadis et al. (2008) indicates that the

Fig. 6. Distribution of strain fields induced by a confined hole in a cuboidal Si QD (a = 7 Å) on the z ¼ 0 plane. (a) exx , (b) eyy , (c) ezz , (d) exy , (e) exz , and (f) eyz . No external strain
is applied; the strain shown here is entirely due to quantum confinement.
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energy per polaron changes by less than 0.7% corresponding to a
nearly 37% change in the number of polarons. Clearly, while the
interaction energy plays a role, our linear superposition based
computation is at least approximately correct. Limited experimen-
tal evidence (in the context of carbon nanotubes) may be cited. A
theoretical model involving polarons, based on the effective mass
approximation, was suggested by Verissimo-Alves et al. (2001) to
explain nanotube expansion in the experiments of Baughman
et al. (1999) upon electron doping. Zhang and Iijima (1999) also
observe macroscopic displacement of carbon nanotube bundles
under visible light illumination. This displacement is also attrib-
uted to the formation of polarons by Verissimo-Alves et al.

6. Ab initio calculations and comparison

In this Section, we present ab initio calculations to verify our
model and obtain additional insights. A straightforward way to
reconcile the concept of quantum-confinement-induced-strain
and polarons and to validate our modified EFM model is to contrast
the computed electron polaron binding energy with ab initio
calculations.

Various sized clusters for this study are constructed via trunca-
tion of a bulk crystal. The truncation is carefully performed to en-
sure that no single atom has less than two dangling bonds for
materials with diamond like structure. The obtained nanoclusters
are appropriately passivated to saturate all the dangling bonds

and keep the clusters charge neutral. The resulted neutral clusters
are atomically relaxed via various schemes. This last step, while
time consuming, is quite important as it eliminates the surface
relaxation induced strain effects. After relaxation, an electron or hole
is doped into the QD and relaxed further from the optimized state
of the neutral QD. The change of the total energy from non-relaxed
to relaxed doped quantum dot is the polaron binding energy (Alex-
andre et al., 2003).

The atomistic calculations are carried out by including both DFT
approach and a semi-empirical method (which is more computa-
tionally expedient for larger sizes). The quantum dots with fewer
than 500 atoms were performed by the DFT method. The DFT cal-
culation was done using OpenMX2 and PWSCF3 with the direct
inversion iterative sub-space (DIIS) method and the quasi-Newton
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method, respectively,
for the geometrical relaxation. The local density approximation is
applied with the Ceperley–Alder functional (LDA-CA) and general-
ized gradient approximation of the Perdew–Burke–Ernzerhof func-
tional (GGA-PBE) without spin-orbital coupling. The geometric
relaxation criterion is chosen as 0.02 eV/A. For larger sized quantum
dots, the semi-empirical simulation is performed using PM3 geomet-
ric optimization in the GAMESS package4 only for silicon quantum
dots. The geometric relaxation convergence criterion requires a den-
sity gradient of less than 0.005 eV/A between two sequential relaxa-
tion steps to ensure energy tolerance of less than 0.5 meV.
Unrestricted Open Shell Hartree–Fock (UHOF) self-consistent field
(SCF) is chosen with the DIIS mixing to speed up the SCF calculation
for carrier doped quantum dots.

There are two important issues related to the DFT calculation.
The first one is the passivation of the dangling bonds of QDs. It is
necessary to eliminate the surface states between the LUMO
(Lowest Unoccupied Molecular Orbital) and the HOMO (Highest
Occupied Molecular Orbital) in the electronic spectrum. One sin-
gle valence bond must contain two electrons. For type IV semi-
conductors, such as Si, one unsaturated dangling bond contains
one electron. Therefore, a regular hydrogen atom can be used to
passivate the dangling bond. However, the valence bonds of type
II–VI or III–V semiconductors are polarized and the dangling
bonds contain partial charges. For example the Cd atom (of the
CdSe QD) contains 0.5 valence charge. This requires a pseudo-
hydrogen passivating atom, symbolized as X, with 1.5 valence
charge, while maintaining the overall charge neutrality of the
quantum dot. The next step is to determine the bond length of
Cd–X. Typically the tetrahedral structure CdX4 is configurationally
relaxed to determine the Cd–X bond length. In our simulations,
the dangling bond length of Cd–X is found to be 1.80 Å and of
Se–Xa is 1.59 Å, where Xa is a neutral pseudo-hydrogen atom
with 0.5 core and valence charge. Interested readers are referred
to Huang et al. (2005) and references therein for further informa-
tion on this passivation method.

As is well known, DFT is suitable for ground state total en-
ergy calculations underestimates energy gaps. Remedies exist
to correct this (Degoli et al., 2004; Hedin, 1965; Puzder et al.,
2003; Zunger, 2001). In any event, detailed calculations examin-
ing the accuracy of DFT for strain–electronic structure coupling
were done (Peng et al., 2006) in which the super cell DFT results
are compared with a more accurate configuration interaction
singles calculation as well as an all-electron basis method calcu-

Fig. 8. Variation of the maximum strain in a cuboidal GaAs QD, where
emax ¼maxðjeijjÞ.

Fig. 7. Variation of the maximum strain in a cuboidal QD, emax ¼maxðje11jÞ ¼
maxðje22jÞ ¼maxðje33jÞ.

2 Order N DFT code, OpenMX, available on http://staff.aist.go.jp/t-ozaki in the
constitution of the GNU GPL.

3 PWSCF available on http://www.pwscf.org in the constitution of the GNU GPL.
4 The General Atomic and Molecular Electronic Structure System (GAMESS) is

available on http://www.msg.ameslab.gov/GAMESS/in the constitution of the GNU
GPL.
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lation. Reasonable qualitative and quantitative agreement is
found.

In Fig. 12 we compare the polaron binding energy predicted
from our modified EF model, the conventional EF method (the dot-
ted horizontal line) and our ab initio simulations for the Si quan-
tum dots. As shown in the figure, the polaron binding energy
from our model, which is half of the band energy shift, matches
very well with the atomistic results. The conventional k.p ap-
proach breaks down for electronic structure calculations around
4 nm or higher. In contrast, the polaron binding energy is in good
agreement with atomistic results down to nearly 0.6 nm

Fig. 13 is our density functional calculation result (within the

LDA approximation) for silicon QDs, measured by Epb �
Ec=vðclÞ�Ec=vðqsÞ

2 .
The results verify our theoretical conclusion in Section 3 regarding
the relationship of the polaron binding energy and the band energy
shift, namely, that the band energy shift should be twice the polar-

on binding energy, which implies that Epb �
Ec=vðclÞ�Ec=vðqsÞ

2 has to be
zero according to our EFM model. As far as we know this principle
only holds for electron–acoustic phonon interaction. Therefore, we
can also provide a rough estimation of the extent of electron–opti-
cal phonon interaction through the measurement

M ¼ Epb �
Ec=vðclÞ�Ec=vðqsÞ

2 . The closer M is to zero, the larger the elec-
tron–acoustic phonon interaction. In the semiconductor industry,
CdSe is an important polar semiconductor materials wherein opti-

cal polarons are likely to be significant. The electron–optical pho-
non interaction in spherical CdSe QDs is compared with that in
spherical Si QDs in Fig. 10 with the DFT (LDA) results of CdSe QDs
presented in Table 1.

In Fig. 14, Epb �
Ec=vðclÞ�Ec=vðqsÞ

2 is plotted for spherical Si and CdSe
QDs. As evident, the electron–optical phonon interaction is impor-
tant in the CdSe quantum dots as anticipated, but diminishes rap-
idly with increasing size. For quantum dots with size larger than
7A the acoustic polaronic effect appears to be dominant. As ex-
pected, since Silicon is nonpolar, the acoustic polaronic effect dom-
inates for all sizes.

The modified EF model does not appear to describe hole pola-
rons well (when compared with DFT calculations) as shown in
Fig. 15. This discrepancy may be due to the use of the EF approach
for such small sizes and perhaps more bands or a tight binding
based approach may yield better accuracy. However, the main in-
tent in developing an EF based approach is to provide analytical
transparency in identifying this unusual effect.

Molecular orbital (MO) or wave function plots are shown in
Fig. 16. The MOs are real valued functions in this case since spin
orbital coupling is ignored. Therefore, the MOs span the same
area with the isosurfaces of the particle density with the square
value (0.015 or 0.02): 25% or 50% of the maximums of ground
state conduction and valence MOs according to Fig. 15. The
MO is for ground state conduction band of the electron doped

Fig. 9. Distribution of strain fields induced by a hole confined in a GaAs nanowire (a = 0.5 and L = 5 nm) on the z ¼ 0 plane, (a) exx , (b) eyy , (c) ezz , (d) exy , (e) exz , and (f) eyz No
external strain is applied and the strain shown here is entirely due to quantum confinement.
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QD before and after the formation of a polaron. The bonding
character and anti-bonding character are still prominent for the
HOMO (highest occupied molecular orbital) and LUMO (lowest
unoccupied molecular orbital) in the doped quantum dot. There
exists a contraction of the area spanned by j0.015j isosurface and
a very large (�100%) increase of maximum MO value between

them. This implies an increase of quantum confinement for the
electron. This feature is also correctly predicted by the modified
k.p model (see Fig. 17).

Fig. 17(a) shows the difference of the square modulus of the
electron wave function jwðrÞj2qs � jwðrÞj

2
cl based on the modified

Fig. 9 (continued)

Fig. 11. Variation of the maximum strain with cross-sectional dimension a for
nanowires with length L = 10 nm and emax ¼maxðje11jÞ ¼maxðje22jÞ ¼maxðje33 jÞ.

Fig. 10. Variation of the maximum strain with length L for a nanowire with cross-
sectional dimension a = 0.5 nm and emax ¼maxðje11 jÞ ¼maxðje22jÞ ¼maxðje33jÞ.
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k.p model. This difference implies enhanced quantum confine-
ment after polaron formation in the conduction band and negli-
gible qualitative change in the valence band. As already
discussed, both features are also evident in the HOMO–LUMO
plots in Fig. 16.

7. Closure

In this paper, we explore a novel type of coupling between solid
mechanics and quantum mechanics – mechanical strain induced
due to changes in the quantum fields. One of the key features of
this phenomenon is its universality. Unlike electro-mechanical cou-
pling, the present effect in principle applies to all materials

Fig. 12. Comparison of the polaron binding energy calculated from k.p with
quantum confinement induced strain (qs in figure) and from atomistic simulations.
(a) Cuboidal Si QD and (b) spherical QD.

Fig. 13. The difference between electron polaron binding energy and the ground
state conduction band energy shift for cuboidal and spherical silicon quantum dots,
computed using DFT (LDA).

Table 1
DFT (LDA) results for CdSe QDs. The subscript ‘‘tot” indicates the total energy. The
subscript ‘‘v” indicates ground state valence hole. ‘‘�” and ‘‘+” in the brackets imply
the QDs are electron or hole doped. Ry is, the atomic unit, 13.6 eV.

Radius of QD (Å) 4 5 7

Etot clð�ÞðRyÞ �797.148 �1663.93 �5027.67
Etot qsð�ÞðRyÞ �797.165 �1663.95 �5027.68
Etot clðþÞðRyÞ �71.0104 �1663.16 �5027.04
Etot clðþÞðRyÞ �71.0194 �1663.18 �5027.05
Epbð�Þ ðeVÞ 0.232808 0.330112 0.058492
EpbðþÞ ðeVÞ 0.123142 0.258817 0.051179
Ec clð�Þ ðeVÞ �0.6768 �1.5995 �2.1914
Ec qsð�Þ ðeVÞ �1.0069 �2.1982 �2.297
Ev clðþÞ ðeVÞ �9.4308 �9.0874 �6.5455
Ev qsðþÞ ðeVÞ �9.024 �8.5715 �6.4507

Fig. 14. Electron–optical phonon interaction for spherical Si and CdSe QDs (solid
lines are guide to the eye).

Fig. 15. Comparison of the hole polaron binding energy calculated from k.p with
quantum confinement induced strain (qs in figure) and from atomistic simulations
for cuboidal Si QDs.
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although it is significant only for very small sizes. While this effect
is always implicitly present in ab initio numerical computations,
our theoretical work provides an identification of the effect. We
physically interpret this phenomenon in terms of the well-known
theory of polarons. With appropriate engineering, the present phe-
nomenon may provide a mechanism for optical ‘actuation-at-
a-distance’ for nanowires. While only anecdotal at best, some
experimental evidence also exists for this effect in the context of
carbon nanotubes (CNT). A theoretical model involving polarons
based on the effective mass approximation was suggested (Verissi-
mo-Alves et al., 2001) to explain CNT expansion in the experiments
of Baughman et al. (1999) upon electron doping. Zhang and Iijima
(1999) observe macroscopic displacement of carbon nanotube

bundles under visible light illumination. This displacement is also
attributed to the formation of polarons. We hope that the present
work provides a basis for what some researchers may term quan-
tum electro-mechanical systems.
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Fig. 16. Isosurface plot for the molecular orbitals (wave function) of a = 7 Å cuboidal QD, showing both LUMO (lowest unoccupied molecules orbital) and HOMO (highest
occupied molecules orbital). Red stands for positive value isosurface and blue stands for negative value isosurface. (a) The electron doped LUMO at the value of j0.015jwithout
polaron formation. (b) The electron doped LUMO at the value of j0.015jwith polaron formation. (c) The hole doped HOMO at the value of j0.02jwithout polaron formation. (d)
The hole doped HOMO at the value of j0.02jwith polaron formation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this paper.)

Fig. 17. Results from EFM incorporating the quantum confinement induced strain. The difference of the square modulus of the wave function (in units of nm�3) without and
with the formation of polaron for a = 7 Å cubic QD for (a) electron doped ground state conduction band and (b) hole doped ground state valence band.
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Appendix A. Table of band structure parameters (Paul, 2004).

GaAs Si

meff
c

0.067 0.26
Ec ðeVÞ 1.518 1.155
Ev ðeVÞ 0 0
ac ðeVÞ �8.013 6.4
av ðeVÞ �0.22 2.46
c1 7.1 4.285
c2 2.02 0.339
c3 2.93 1.446
b (eV) �1.824 �2.33
d (eV) �5.062 �5.32
C11 ðGPaÞ 119.0 166.0
C12 ðGPaÞ 53.4 64.0
C44 ðGPaÞ 59.6 79.6
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