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1. INTRODUCTION
Quantum dots (QDs) are tiny dimensionally confined (typically semiconductor) objects
where quantum effects become obvious, for example, energy spectra become discrete (see
Fig. 1). QDs are characterized by a sharp density of states (DOS) reminiscent of “atoms.”
To be more precise, a semiconductor material cluster may be termed a quantum dot if its
characteristic dimensions become comparable to the exciton Bohr radius. For example, in
case of GaAs, the exciton Bohr radius is roughly 10 nm. They are of immense technological
importance and (while several technological barriers remain) are often considered as basis
for several revolutionary nanoelectronic devices and applications (Fig. 2), for example, next-
generation lighting [1–2], lasers [3–4], quantum computing, information storage and quan-
tum cryptography [5–7], biological labels [8], sensors [9] and many others [10–12, 18–20].
QDs and quantum wires (QWRs) are typically embedded in another material with differing
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Figure 1. As the dimensionality of the structure reduce DOS, g�E�, becomes sharper and pronouncedly discrete.

elastic constants and lattice parameter. Because of the lattice mismatch, both the QD and
host matrix strain and relax elastically to accommodate this mismatch and thus admit a state
of stress (Fig. 3). As is well known, the electronic structure and the consequent optoelec-
tronic properties of QDs are severely impacted due to this lattice mismatch induced strain
[13–16]. In this article, we review pertinent literature on various methods to calculate the
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(c)

(d)

(b)

Figure 2. Different applications of quantum wires and dots. (a) Image of a quantum wire laser operating through
the eye of a needle. Reproduced with permission from C. Jagadish, Research School of Physical Sciences and
Engineering, Australian National University, © (2005). Increased recombination probability and discrete nature of
DOS results in efficient lasing characteristics at low threshold currents along with the promise of tunable wavelength.
(b) Magnified view of quantum dot attachment to neurons. Reproduced with permission from [18], Winter et al.,
Adv. Mater. 13, 1673 (2001). © 2001, Wiley VCH, Verlag GmbH & Co. Pictured here is the magnification of quantum
dot attachment to neurons using antibody (A, B) and peptide (C, D) binding techniques. In B and D, the blue
color is the self-fluorescence of the cell’s cytoplasm, and the yellow/orange color is the quantum dot luminescence.
Using nanostructure sensors such as these, cellular-level target specificity at biological-electronic interfaces can be
achieved as against conventional silicon-based electrodes where interfaces are at the tissue level. (c) Image of a
quantum dot bases transistor. Reproduced with permission from [19], Chen et al., Phys. Rev. Lett. 92, 176801 (2004).
© 2004, American Physical Society. Transistors form vital switching components in computers. With quantum-dot
based transistors as the one shown in the figure, “quantum computers,” can be realized. The memory of a quantum
computer can simultaneously be both in “0” (off) and “1” (on) states (in general a superposition of these states)
compared to a classical computer’s memory which is made up of either a “0” bit or a “1” bit. (d) Illustration of a
quantum dot–based sensor for analyte detection. Reproduced with permission from [20], Medintz et al., Nat. Mater.
2, 630 (2003). © 2003, Nature Publishing Group.
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Figure 3. (a) Illustrates two materials “A” and “B” with different lattice constants; (b) formation of a “coherent”
interface between A and B, requires that the lattice mismatch is completely accommodated by elastic deformation;
(c) depicts the situation where the lattice mismatch is so high that further elastic deformation is energetically too
costly and it is preferable to nucleate misfit dislocations. Such an interface is called a semicoherent interface.

state of strain in embedded coherent QDs and QWRs; That is, interface dislocations are
absent. The impact of dislocations, if formed, on optoelectronic properties is so severe that
an entirely different sort of discussion is required. In this review article, we mainly focus on
the scenario when misfit dislocations are absent in the very near vicinity of the QD. This is
indeed practical for small QDs [17].
The chapter is semitutorial in nature to make it accessible to readers from a broad range

of disciplines. The rest of this chapter is organized in two broad sections. In Section 2, we
provide, intermixed with a literature review, details on various methods and issues in calcula-
tion of strains in embedded QDs. Our particular focus is on cataloging the known analytical
expressions. Physical insights obtained from both analytical results and numerical simula-
tions of various researchers (including our own) are also discussed. The effect of various
parameters such as material anisotropy, QD shape, surface image forces, elastic nonlinearity
and piezoelectricity are addressed (Section 2.2–2.6). Typically classical continuum mechanics,
which is intrinsically size independent, is employed for strain calculations. To address this,
we have also included a brief discussion on the effect of QD size on strain calculations since
most QD are in the sub-20-nm range, and one indeed expects a departure from classical
mechanics at such small sizes (Section 2.7). In Section 2.8, we briefly review some relevant
results in the elastic theory of inclusions, which while well known in the solid mechanics
community, may be less known in the QD literature and are thus likely to be useful to
engineers and scientists working in the latter research area. We conclude with a summary in
Section 3 where we also present a rather terse personal viewpoint on some future research
avenues in this research topic.

2. REVIEW OF STRAIN FIELD CALCULATIONS
IN QUANTUM DOTS AND WIRES

QDs occur or are fabricated in a variety of shapes, sizes, and material combinations. Clas-
sical continuum elasticity (and less frequently, atomistic methods) are typically employed
to calculate the strains in these structures, which are then linked to suitable band struc-
ture calculation methods to estimate the strained optoelectronic behavior. A review of band
structure calculation methods for strained quantum structures is beyond the scope of the
present article and the reader is referred to some excellent resources in the literature [12,
21–22].
Classical linear elastostatics is governed by the following set of partial differential equations

(Eq. [1]) along with appropriate boundary conditions at the interfaces/surfaces (Eq. [2]):

� = 1
2
��� ⊗ u�T + �� ⊗ u�� (1a)

div � + f = 0 (1b)

� = C� ��− �m� (1c)
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Equation (1a) relates the second-order strain tensor (�) to the displacement vector (u).
� is the gradient operator and superscript “T ” indicates transpose operation. Equation (1b)
written in terms of the second-order stress tensor (�) is the equilibrium equation with
external body forces (f) while Eq. (1c) relates the stresses and strain (note that �m is the
lattice-mismatch strain) through a fourth-order elasticity tensor (C). We shall use both bold-
face and index notation as convenient. Unless noted otherwise, all tensors are Cartesian and
conventional summation rules for repeated indices apply. Boundary condition can be either
prescribed tractions or displacements. In the context of embedded QD/QWRs (typically),
the following conditions at the interfaces and free surfaces are obeyed:

���n = 0
 �u� = 0 (2)

The vector n is the normal at a point on the interface. The symbol [•] denotes jump in the
field quantities across an interface. In particular for free surface, the traction-free condition
� · n = 0 is satisfied.
Considering the easy and economic availability of commercial numerical packages (e.g.,

finite element tools) that can solve Eq. (1) for arbitrary geometry, material symmetry, and
boundary conditions, discussion of analytical solutions may seem somewhat redundant and
antiquated. However, much effort has been expended to develop such analytical models that
have proved to be extremely useful in obtaining explicit physical insights and often, rea-
sonable accuracy. Further, one must note that eventually, the strain calculations must be
coupled to quantum mechanical equations for band structure calculations, which often pro-
ceeds numerically. Analytical expressions for strain can significantly simplify that process. In
Section 2.1, we provide a simple illustrative example for calculation of strain in the idealized
case of a deeply buried, embedded spherical quantum dot.

2.1. Simple Illustrative Example

Consider a spherical quantum dot (� ) of radius R (Fig. 4), located in an infinite amount
of host material (D). The assumption of infinite host medium corresponds to the situation
where the QD is deeply buried and the host matrix boundaries do not impact its strain state.
In other words, the distance of the QD from any free boundary is significantly larger than
the QD radius (typically > 3R).
Let the lattice parameter of the QD be aQD and that of the matrix be aM . The lattice

mismatch strain tensor is then:

�mij = �m�ij
 �m = aQD − aM
aM

(3)

Some authors choose to divide aQD − aM by the average of the two lattice parameters. We
assume for the purpose of this simple example that the material properties of both QD and
matrix are isotropic; that is, the elastic tensor can be expressed in terms of the two Lame
constants (���):

Cijkl = ��ij�ij + ���ik�jl + �il�jk� (4)

Figure 4. Schematic of the spherical quantum dot (� ) embedded in an infinite host matrix (D).
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In this simple example, it is easier to work in terms of displacement. Equations (1) can be
rewritten in terms of displacement (Navier’s equations):

�� 2u+ �

1− 2�
div grad u+ f = 0 (5)

Here, �, is the Poisson ratio. To calculate stress, any nonelastic contribution (such as the
mismatch strain) must be subtracted from the actual strain before employing Hooke’s law.
That is, for isotropic materials, the constitutive law in Eq. (1) can be rewritten as

� = �QD�Tr�− Tr�m�I+ 2�QD��− �m� (6)

Here I is the identity tensor. No subtraction of the mismatch strain is necessary when calcu-
lating the matrix stresses since (according to convention we adopted in Eq. (3), the mismatch
strain is calculated with respect to zero reference strain in the matrix.
The problem under consideration with all its attendant assumptions is manifestly spher-

ically symmetric and hence must admit a displacement field that is purely radial, that is,
u = u�r�er . The corresponding infinitesimal strain tensor in spherical polar basis �er � e�� e��
can be written as

� = �u

�r
er ⊗ er +

u

r
e� ⊗ e� +

u

r
e� ⊗ e� (7)

Equation (5) or the Navier’s equation then reduces to

�2u

�r2
+ 2
r

�u

�r
− 2u
r2

= 0 (8)

The general solutions to the differential equation of Eq. (8) are simply, r and 1/r2, that is,

u�r� = Ar + Br−2�r < R (9a)

Cr +Dr−2�r > R (9b)

Here, A, B, C, and D are constants to be determined from the boundary conditions. Two
boundary conditions are immediately obvious: (1) since the problem is a purely dilatational
problem with spherical symmetry, at the center of the quantum dot u(r) must approach zero
and (2) at points infinitely far away from the quantum dot, the displacement must decay
to zero. These restrictions render B = C = 0. Further, as per the boundary conditions in
Eq. (2), the displacements must be continuous, thus u+�r → R�� = u−�r → R�, while the
traction continuity condition ensures that #+

rr − #−
rr = 0. The final solution is obtained as

u�r� =




3KQD%
m

4�M + 3KQD
r
 r ≤ R (10a)

3KQD%
m

4�M + 3KQD

R3

r2

 r > R (10b)

Here the subscript M refers to matrix properties. Strain components and in particular the
dilation (which has the dominant effect in electronic calculations) can be trivially obtained
to be

%rr�r� = %���r� = %���r� =
3KQD%

m

3KQD + 4�M

∣∣∣∣r < R (11a)

%rr�r� =
[

3KQD%
m

3KQD + 4�M

]
R3

r3

∣∣∣∣r > R (11b)

%�� = %���r� = −
[

3KQD%
m

3KQD + 4�M

]
R3

2r3

∣∣∣∣r > R (11c)
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Yang et al. [23] performed similar analytical calculations on Si0&8Ge0&2 sphere, cylinder and
a rectangular slab embedded in an infinite Si host and linked these results to band-structure
calculations. Numerical results were also obtained for V-groove Si0&8 Ge0&2 quantum wires
under anisotropy considerations [23].
An important point to note is that for band-gap calculations, the mismatch strain is sub-

tracted from the actual compatible elastic strain. As a result while in the solid mechanics
community the compatible elastic strain is normally expressed and plotted (as we have done
so in Fig. 5), the QD research community often illustrate the subtracted strain (see, e.g.,
Yang et al. [23]). This can potentially cause confusion and care must be exercised in inter-
preting results from the solid mechanics literature. The simple idealized example in Fig. 5
illustrates and underscores several rather general features: (1) the strain state is uniform
inside the quantum dot—as shall be seen, this is a general feature for all ellipsoidal shaped
quantum dots; (2) the dilation too is uniform inside the QD; we emphasize this trivial
point here since, as will be discussed in the next section, the dilation is uniform for all
quantum dot shapes (provided certain assumptions such as unbounded host material, etc.,
are not violated); (iii) the dilation is zero outside the QD. This also is true for all QD
shapes.

2.2. Effect of Shape

Some of the commonly occurring configurations of quantum dots and wires are illustrated
in Fig. 6.
The reader is referred to these references [24–29] that report evidence of a wide variety of

shapes, including pyramidal, truncated pyramidal, lens shaped, hemispherical, multifaceted
domes, and so on, for the widely studied InxGa1−xAs/InAs quantum dot system. Owing to the
inherent size independence of classical continuum elasticity, strain state calculations depend
exclusively on inclusion shape—to be more precise, self-similar structures if scaled larger or
smaller yield identical results for strains and stresses.
Several of the methodologies that emerged in the context of QD/QWR strain calculations

can be considered to be off-shoots or modifications of the now classical work of Eshelby
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Figure 5. Plot of the strain components for a Si0&8 Ge0&2 spherical quantum dot embedded in an infinite Si matrix
versus the ratio (r /R). Uniform strain %in exists inside the quantum dot. Outside the dot, %�� is one of the tangential
components of strain and %rr is the radial component of strain. As is noticeable, the dilation of strain %ii outside
the dot is zero. One can notice the rapid decay of the strain outside the dot to a zero value at values of r/R as
low as 3.5.
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Figure 6. Common configurations of QDs and QWRs. (a) Cuboidal, (b) conical, (c) lens shaped, (d) pyramidal,
(e) truncated pyramidal, (f) hemispherical, (g) trapezoidal QWR, (h) cylindrical QWR.

[30–32] on inclusions and inhomogenities. His elegant formalism provides rather straight-
forward means to evaluate the effect of shape for, in principle, arbitrary shaped quantum
dots and wires. We first discuss his formalism briefly before reviewing the specific litera-
ture on QD/QWRs. In addition to providing a historical setting, Eshelby’s work provides an
excellent perspective on inclusion problems and more specifically, then the related works on
QD/QWRs can be discussed in appropriate context. This discussion will greatly facilitate our
presentation (Section 2.8) of some results on the theory of inclusions (based on Eshelby’s
approach) that though widely known in the micromechanics community, do not appear to
have been fully exploited in the context of quantum dots and wires.

2.2.1. Eshelby’s General Formalism for Shape Effects
Consider an arbitrary shaped inclusion (quantum dot) embedded in an unbounded material
(the impact of finiteness of the surrounding material will be discussed in Section 2.3). Let
a stress-free uniform transformation strain be prescribed within the domain of the QD
(Figure 7). Lattice mismatch induced strain is an example of such a stress free transformation
strain and so are, for example, thermal expansion mismatch strains, phase transformation
strains among others. For the moment, we assume identical material properties for the QD
and the matrix.
Although Eshelby’s general approach is not restricted to isotropic materials, analytical

results are generally not tractable in the fully anisotropic case. Issues related to anisotropy
are fully discussed in Section 2.4.1. For now, we assume isotropic elastic behavior. By defi-
nition, the transformation strain is only nonzero within the QD domain �x ∈ � �, and thus
we can write the constitutive law for the QD-matrix as follows:

#ij = 2��%ij − %mij H�+ ��ij�%ll − %mllH� (12)

Figure 7. A quantum dot of arbitrary shape (� ) inside an infinite matrix (D).
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Here “H” is the step function defined as H�x� =
{
1 x ∈ �
0 x � �

. We can, analogous to Eq. (5),

rewrite a Navier’s type equation:

�ui� ll + ��+ ��ul� ll = −���%mll �ik + 2�%mik�H�x���k (13)

Clearly, the divergence of the mismatch stain %ikH�x� defined over the inclusion volume
act as delta functions across the inclusion surface i.e., %mik��S� (e.g., Refs. [30, 33]). A com-
parison with the Navier’s Eq. 5 indicates that the mismatch strain terms can be simulated as
body forces. The displacement vector can be obtained using the Green’s function (of Eq. 5
or 13) as

ui�x� = ��%mll �jk + 2�%mjk�
∫
S
Gij�x− x′�dSk�x

′�

= −��%mll �jk + 2�%mjk�
∫
V
Gij� k�x− x′�dV �x′� (14)

Here Gauss theorem has been used to convert the surface integral into a volume integral.
The Green’s function for Navier’s equation is available in most books on elasticity (e.g.,
Ref. [34]) and can be written as

Gij�r� =
1

8-��+ 2��

[
��+ 3��

�ij

�r� + ��+ ��xixj�r�3
]

r = x− x′
 r = �r�
(15)

Upon substituting the Green’s function in Eq. (14) and invoking the strain-displacement
law, we readily obtain [30]:

%ij�x� =
1

8-�1− �� �/kl� klij − 2��kk� ij − 2�1− ����ik� kj + �jk� kl�� (16)

where / and � are biharmonic and harmonic potentials of the inclusion shape (� ). They
are given as:

/ij�x� = /%mij = %mij

∫
0
�x− x′�d3x′ (17)

�ij�x� = �%mij = %mij

∫
0

1
�x− x′�d

3x′ (18)

Equation (16) is usually cast in the following form:

��x� = S�X�� �m x ∈ �

��x� = D�x�� �m x � �
(19)

Here S and D are the so-called Eshelby tensors for interior and exterior points, respectively:

1Sijkl�Dijkl2 =
1

8-�1− 3�1/klij − 23�kl�ij − �1− 3���kj�il + �ki�jl + �lj�ik + �li�jk�2 (20)

One obtains S or D depending upon whether the vector x in Eqs. (17 and 18) is located
within the quantum dot or outside it. Eshelby’s tensors for various shapes (spheres, cylin-
ders, ellipsoids, discs, and cuboids) are well documented in Mura [35]. For example, in the
case of a spherical inclusion or quantum dot, we have

/�x� =



− 1
60
�r4 − 10R2r2 − 15R4� r ∈ �

R3

15

(
5r + R2

r

)
r � �

(21)
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��x� =



−1
6
�r2 − 3R2� r ∈ �

R3

3r
r � �

(22)

Using Eqs. (20)–(22) Eshelby’s interior tensor can be then written explicitly as [35]

Sijkl =
5� − 1

15�1− ���ij�kl +
4− 5�

15�1− ����ik�jl + �il�jk� (23)

Here, � is the Poisson ratio. The reader can trivially verify that use of Eshelby tensor expres-
sion above for strain calculation in a spherical quantum dot leads to the same results derived
in a different way in Eq. (11) of Section 2.2 (provided the matrix properties are set to be
the same as those of the quantum dot).
The implications of Eshelby’s formalism are manifest. An evaluation of the harmonic and

biharmonic potentials (Eqs. [17] and [18]) for various shapes, in principle, allows calculation
of Eshelby’s tensor and hence the complete strain state inside and outside the embedded
quantum dot. An interesting outcome of Eshelby’s analysis [30] is that for inclusions of
ellipsoidal shape, S is uniform. This implies that any quantum dot belonging to the ellipsoidal
family immersed in an unbounded matrix subject to a uniform mismatch strain will admit a
uniform strain! This is rather useful since the ellipsoidal shape is very versatile and can be
used to mimic and approximate a variety of shapes (see Fig. 8). For the simple case of a
spherical quantum dot, this fact has already been noted in the context of Eq. (11) and Fig. 5.
This notion remains true even in the case of arbitrary anisotropy. This uniformity of strain
rule does not in general hold true for nonellipsoidal shapes (e.g., polyhedral, pyramidal),
in absence of linearity or if the matrix is not unbounded. As Eshelby [30] has pointed out,
the peculiar property that ellipsoidal inclusions admit a uniform strain state under certain
conditions is also very useful for taking into account the mismatch between the elastic moduli
of the quantum dot and the surrounding matrix.
If only the dilatation is of interest, matters simplify considerably and we obtain:

Tr��� = − 9K%m

4�+ 3K
� 2� (24)

Thus only the harmonic potential needs to be evaluated. Further, the general properties
of the harmonic potential [30, 36–37] ensure that the dilation inside the quantum dot is
shape independent! Again caution must be exercised in using this notion when, for example,
the surrounding medium is not unbounded. Within the strict assumptions of the derivation

Flat Ellipsoid

Elliptical Cylinder

EllipsoidCircular Cylinder

Penny Shaped Sphere

Figure 8. An illustration of the variety of shapes, which fall under the gamut of the general ellipsoid.
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given by Eshelby [30] and partly reproduced here, this rather interesting fact suggests that
in an isotropic unbounded medium, shape effects are of secondary importance insofar as
dilation is concerned.
Since the strain state within the inclusion is uniform for ellipsoids, Eshelby [30] was able

to devise an elegant method to mimic an inhomogenity, that is, an inclusion with a mismatch
strain and material properties differing from the host matrix, by an inclusion containing a
fictitious transformation strain. Mura [35] defines an inclusion to be a subdomain in which
a stress-free strain is prescribed but the material properties are same everywhere. An inho-
mogeneity is defined as an inclusion that has differing material properties from those of
the surrounding matrix. The so-called equivalent inclusion method simply entails equating
the elastic state of an inhomogenity to that of an inclusion albeit with the aforementioned
fictitious transformation strain that is,

CM� 1�− �m − �f 2 = CH� 1�− �m2 (25a)

� = S� 1�m + �f 2 (25b)

}
x ∈ �

Equations (25) are simply algebraic equations that allow explicit determination of the
fictitious transformation strain and hence the elastic moduli mismatch in the case of ellip-
soidal quantum dots. For more general shapes, Eshelby’s tensor is no longer uniform and
hence these equations become rather complicated integral equations. This is will be further
discussed when we address arbitrary shaped QDs in the next section.

2.2.2. Quantum Dots
In the specific context of QDs, fair amount of effort has been expended on general solutions
(for example, see [38–44]). Some of the earlier works in regards to quantum dots strain
calculations are due to Grundmann et al. [48] (see also Refs. [45–47]). They presented some
simple analytical results for shapes such as slabs, circular cylinder and spherical. One notes
that these results can, of course, also be recovered from Eshelby’s formalism discussed in the
previous section. For the specific case of InAs pyramidal-shaped quantum dots embedded
in a GaAs matrix, Grundmann et al. [48] presented numerical simulations for the strain
distributions. This shape is of course a bit difficult to handle analytically although closed-
form solution can indeed be derived as will be discussed shortly. Although it is beyond
the scope of the present article, their computation of the strain-linked electronic properties
of InAs QDs is also of interest and they succeed in obtaining reasonable agreement with
experimental data on luminescence and absorption.
Downes et al. [49] devised a simple method for calculating the strain distribution in deeply

buried QD structures. Six vectors Aij are defined such that �A yields the stress components
�sph for a point spherical inclusion:

Axx = Dx i
 Axz = −Dxk
 Axy = −Dxi (26a)

Ayy = Dyj
 Ayz = −Dzj
 Azz = Dzk (26b)

D = 7

�x2 + y2 + z2�3/2 
 7 = E%m

4-�1− v� (26c)

Here, E is the Young’s modulus. The stress tensor for a given QD shape can then be written as

��x� =
∫
V
� · A�x− x′� dV �x′� (27)

Divergence theorem can then be invoked to convert the volume integral in Eq. 27 to a
surface integral to obtain the strain field in and around an arbitrarily shaped QD.

��x� =
∫
S
A�x− x′� · dS�x′� (28)

The QD surface may be discretized appropriately to convert the surface integral into a
summation. This approach facilitates analytic solutions in the case of simple structures like
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cuboidal QDs. Formally, this approach by Downes et al. [49] can be related to computing
Eshelby’s tensor. As example, the stress state of a parallelepiped dot can be easily related
to its geometry, that is, lengths and the angles. For such a parallelepiped dot, centered on
the origin and aligned along the Cartesian axes, with dimensions, 2a × 2b × 2c, Eq. (28)
provides the following stress components [60]:

#xx =
∑−7 tan−1

(
�b ± y��c ± z�

�a± x�√�a± x�2 + �b ± y�2 + �c ± z�2
)

(29a)

#xz =
∑
q7 log

{√
�x ± a�2 + �y ± b�2 + �z± c�2 − �y ± b�

}
(29b)

Here the summation is over the various combinations of + and −. In Eq. (28b), q is +1
for one or 3 plus signs and −1 for 0 or 2 plus signs. Identical results can be obtained using
Eshelby’s approach and indeed have been derived by Chiu [50] and are also documented
in Mura [35]. When the dimension of the parallelepiped along one direction is very large
compared with the other two dimensions, it degenerates to the case of a rectangular QWR
and the results for the buried strained layer, both of which will be discussed later in this
section. As noted by Downes et al. [49], the integral that is used to evaluate �xx is similar to
the integral for the solid angle subtended by the two (100) faces of a parallelepiped aligned
along the Cartesian axes (see Fig. 9). The hydrostatic stress inside such a dot (#xx+#yy+#zz)
is thereby proportional to the solid angle subtended at an interior field point by all the faces
of the cube (4-). This fact automatically ensures the constancy of the dilation within the
dot. The solid angle is zero for an outside point and so is the hydrostatic strain.
One of the more common shapes for self-assembled quantum dots is the pyramidal geom-

etry (Fig. 10). Finite-element methods have been employed to treat the strain distribution
problem for pyramidal quantum dots [48, 51]. However, analytical solutions (although some-
what tedious) can also be readily obtained.
A generic point, �x01� x

0
2� x

0
3� inside the volume of the pyramidal dot illustrated in Fig. 10

can be mathematically represented by

− a
(
1− x03

h

)
≤ x01 ≤ a

(
1− x03

h

)
(30a)

− b
(
1− x03

h

)
≤ x02 ≤ b

(
1− x03

h

)
(30b)

0 ≤ x03 ≤ hf (30c)

P(x,y,z)

A

B

Figure 9. Illustration of the solid angle subtended at point P�x� y� z� by two opposing faces, “A” and “B” of a
cuboid. Adapted from Downes et al. [49].
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(0,0,0)

2b
x1

x2

x3

hf

h

Figure 10. The geometry of the pyramidal quantum dot considered by Pearson and Faux [52] is illustrated; “f ”
represents the degree of truncation of the pyramid. Adapted from Pearson and Faux [52].

Here, f is the degree of truncation of the pyramid (see Fig. 10). With the volume of
integration given by Eq. (29), and using the method developed in Ref. [60] (described in
the preceding pages), Pearson and Faux [52] arrived at complex but, nevertheless, closed-
form solutions for the stress distribution of pyramidal shaped and illustrated their results
for the InAs-GaAs system (relying on the experimental data from Fry et. al. [53] for the
geometry in Fig. 10). They also investigated QDs with nonuniform composition. In such a
case, the pyramidal QD is sliced into a large number of smaller truncated pyramids, and the
small slices are assumed to have uniform composition. Several aspects of their results are
of interest. As the reader will gather from Fig. 11 (specific to InAs-GaAs), the magnitudes
of the strain components were found to be the largest at the QD/matrix interface (at x3 =
55 nm), especially at the vertices with the strain attenuating rapidly in the barrier material.
This is consistent with the notion that classical continuum elasticity admits a singular solution
close to the vertices. Also, the strain distribution in the matrix material immediately below
the square face remains unchanged for different truncations (f ) considered because the base
of the pyramidal dot remains unchanged. %11 and %22 are compressive through out the dot
though lesser in magnitude than the initial misfit strain of −6.7% owing to strain relaxation.
Outside the dot, %33 is compressive within the barrier material owing to the QD relaxing
outward along x3, compressing the local host material in the process. Interestingly, as a
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Figure 11. Illustration of the variation of %11 (left) and %33 (right) traced along x3 obtained by analytical calculations
on a pyramidal quantum dot (based on actual InAs/GaAs quantum dot geometry because of Fry et al. [53]) by
Pearson and Faux [52]. The height of the dot is 55 Å. (The base of the dot is located at x3 = 0 and the apex at
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analysis. Reproduced with permission from [52], Pearson et al., J. Appl. Phys. 88, 730 (2000), Figs. 2, 6. © 2005,
American Institute of Physics.
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result of this, %33 tends to overrelax inside the dot with tensile strains existing in QDs with
low truncation factors (compare with Fig. 11). However, Pearson et al. [52] note, as the
truncation factor is made higher, the Poisson effect of %11 and %22 is much reduced which
results in a compressive %33 in the QD.
In the analysis of Pearson and Faux [52], dots with graded composition exhibited smaller

strains at the base because the mismatch strain is lower at the base for this case (compared
against dots with uniform composition of InAs). The other trends follow patterns similar to
the instance of QDs with uniform InAs composition discussed hitherto. In yet another case of
an array of QDs discussed in Pearson et al. [52], superposition of tensile stresses of adjacent
material results in further relaxation of the compressive strain component %11 of the QD in
the center of the array. %33 is always compressive within the dot in an array (compare this
with the isolated quantum dot) due to the compressive stresses of the surrounding material
superposing with the small tensile stress.
Davies [54] drew an analogy with the Poisson equation of electrostatics and the lattice

mismatch induced strain problem in quantum dots. In a treatment that can be easily related
to that of Eshelby [30] as well as Downes et al. [49], he formulated solutions of spherical,
cuboidal and pyramidal dots. In this analogy, lattice mismatch plays the role of charge den-
sity. Alternatively, as discussed by Eshelby [30], the mismatch transformation strain may be
considered the density of an astronomical body while the dilation is related to the Laplacian
of the “gravitational” potential of the quantum dot or inclusion shape.
Several works [55–61] have resolved strain distribution in different shapes via numerical

methods. For example, Shin et al. [61] used the finite element method and analyzed struc-
tures similar to those in Faux and Pearson’s work [52]. Additionally, Shin et al. [61] also
reported the change in strain distribution with change in dot truncation as a function of
stacking period. Some representative pictures and results from Shin et al. [61] are shown in
Figs. 12 and 13.

2.2.3. Atomistic versus Continuum Calculations
of Strain Distributions in QD/QWRs

A few of the works have resorted to atomistic calculations for strain distributions [61–64].
Since by the very nature and size scale of the lattice mismatch embedded quantum dot
problem, millions of atoms have to be considered, ab initio methods are computationally
too intensive. Empirical force-field molecular dynamics must be resorted to. The accuracy
and the value of empirical force field atomistic calculations lie in the choice of a suitable
potential. The latter is either fit to available experimental data for the material under con-
sideration or alternatively may be developed using ab initio methods. As pointed out by
Pryor et al. [58], atomistic methods are faithful to the true point symmetry of the material
while analogous continuum models may not necessarily reflect this in their coarse-grained
sense. Further nonlinearities (anharmonic effects) are automatically embedded in an atom-
istic formulation. (However, to be accurate, the potential must have been parameterized
appropriately to account for anharmonic effects.)
The valence force field (VFF) [65] provided by Keating [66] and Martin [67] is perhaps

the simplest. Anharmonicity is inadequately accounted for in this approach and only nearest
neighbors are accounted for. Stillinger-Weber [68–71] potentials and Tersoff potentials are
more involved. Stillinger-Weber potentials have been applied to Si/Ge QDs [69–71]. The
Tersoff potential has been used for InGaAs/GaAs quantum dots [72]. Kikuchi et al. [190]
have compared the VFF and Stillinger-Weber potential for the SiGe/Si system and conclude
that for smaller quantum dots, the Stillinger-Weber potential may be better as VFF yields
some physical results in the strain profiles (see also Ref. [191]).
Notably, Pryor et al. [58] have presented an interesting comparison between continuum

elasticity and atomistic simulations (Fig. 14). For large mismatch strains (e.g., 7% strain
mismatch for InAs/GaAs quantum dots) only minor discrepancies from continuum elasticity
were found (Fig. 14). Other groups have similarly found that continuum elasticity for most
cases provides reasonable answers, for all practical purposes, even at the monolayer level
[63, 73].
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Tad́ic et al. [59] have also made a comparative study of strain distribution in cylindrical
InAs/GaAs and InP/InGaP QDs as obtained from isotropic elasticity theory, anisotropic elas-
ticity and atomistic simulations [42]. Davies’ approach [54] outlined above was used for the
isotropic case, while finite element method was employed for the anisotropic case. For the
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atomistic simulations, both VFF and Stillinger-Weber potentials were used and compared.
Better agreement was found between the strain contours between the four methods employed
for InP/InGaP Qds than in InAs/GaAs QDs. This observation was attributed to the smaller
lattice mismatch in the InP/InGaP system. In particular, differences are only observed in
regions where strain changes very rapidly, that is, the edges and corners of the structures.

2.2.4. Quantum Wires
Some of the early literature on shape dependence effects on quantum dots strain focused on
quantum wires (QWR), which are one-dimensional analogues of quantum dots (zero dimen-
sional). In particular, much emphasis was placed on solving problems for specific QWR or
QD shape. A strained QWR (Fig. 15) is a region of material that has two of its dimensions
very small in comparison to the third. The cross-sectional size of the wire is of the order of
a few tens of nanometers giving rise to quantum confinement of electrons in these two spa-
tial dimensions. Eshelby’s formalism [30] can be readily employed to tackle various shaped
QWRs. A QWR with a uniform circular cross section (see Fig. 15) surrounded by an infinite
host matrix happens to be a special case of an ellipsoidal inclusion in an infinite medium
and Eshelby’s well-known solution [30] for such ellipsoidal inclusions, discussed earlier, can
be invoked to find the strain and displacement fields.

Embedded
Quantum wire 

Figure 15. A quantum wire in the form of an infinite elliptical cylinder embedded in an infinite medium.
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Notwithstanding early analytical work on thin films or islands present in the vicinity of
a free surface [38–44], Downes and Faux [74] were among the first to explicitly deal with
the problem of analytical strain-distribution calculation for buried strained layers; the case
of a quantum wire with square cross section degenerating to a special instance of this more
general problem. The problem addressed by Downes and Faux [74] is schematically depicted
in Fig. 16, which illustrates a buried strained layer (� ) surrounded by an infinite host matrix
(D). The dimension of the structure in the z-direction is assumed to be very large so that
plane strain conditions apply.
Downes and Faux [74] proposed an approach similar to one already outlined for the

three dimensional case (Downes et al. [49]). (However, we note that, chronologically, the
two-dimensional work preceded the three-dimensional formulation even though we have
discussed the latter in an earlier section.) They obtained (for the problem in Fig. 16)

� layer�x� y� =
∫ +l

−l

∫ +c

−c
� cyl�x − x0� y − y0�dy0dx0 (31)

The stress fields for “point” cylindrical inclusion serve as Green’s function for this problem.
They are

#cylxx = ?�x2 − y2� (32a)

#cylyy = ?�y2 − x2� (32b)

#cylxy = ?�xy� (32c)

? = 72

�x2 + y2�2 
 72 =
E%m

2-�1− ��
Explicit analytical expressions (Eqs. [33]) have been provided by Downes and Faux [74] for
a single strained layer after evaluating the integral in Eq. 31

Figure 16. Illustration of a cross section through a buried strained layer. (Inset three-dimensional rendering of a
strained layer). Adapted from Downes and Faux [74].
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#xx = 72

[∑
tan−1

(
l ± x
c ± y

)]
(33a)

#yy = 72

[∑
tan−1

(
c ± y
l ± x

)]
(33b)

#xy =
72

2

[∑
p ln1�l ± x�2 + �c ± y�22] (33c)

Once again, the summation is over various combinations of + and −. In Eq. (33c), p is +1
for odd number of plus signs and −1 for even number of plus signs.
The strained layer reduces to a quantum wire with square cross-section when l equals c

(Fig. 16). From the expressions for the strain field in and around a quantum wire with a
square cross section, one can deduce that only a small fraction of the lattice mismatch strain
is accommodated across the cross-section of the wire, with considerable strain relaxation
occurring along these shorter dimensions [75].
Quantum wires are often synthesized in situ as arrays and also occur in device structures

(say, e.g., lasers, see Fig. 17) as periodic arrangements [76–79].
Considering a periodic array of trapezium-shaped wires buried in an infinite medium

(Fig. 18), Gosling and Willis [80] tackled the array problem by simulating each of the wires
to be an Eshelby-like inclusion. Modeling trapezium-shaped QWRs as inhomogenities (with
elastic constants different than the surrounding host material) can considerably complicate
calculations; consequently, same elastic constants are chosen for the quantum wires and
the matrix. Further assuming all materials to be isotropic, and employing the elastic Green
function and Fourier transformations, exact analytical expressions for the stress field were
provided [80].
As can be inferred from Fig. 18, the case of a buried strained epitaxial layer can be

recovered when one allows “w” to equal “p.” Also by allowing p → �, the case of an
isolated wire can be examined. Gosling and Willis [80] applied these expressions to compare
the structural stability and electronic properties of an array of wires with that of an isolated
wire and found that for array periods of five wire widths or more the stability (see Ref.
[81–87] for literature on stability issues in nanostructures) and band-gap characteristics of
the periodic arrangement were similar to those of isolated wires.
Faux et al. [88] have employed the stress field because of a point cylindrical inclusion

(similar to the way the point sphere stress solution was applied in the three-dimensional
case [49]) as a “Green function” to calculate the stress field about an arbitrarily shaped
QWR buried in an infinite medium. Analogous to the reduction of the three-dimensional
volume integral to a surface integral in the case of arbitrary-shaped quantum dots [49], their
scheme reduces the problem to the evaluation of a path integral around the boundary of

Figure 17. AFM cross-section image (left) of two V-groove QWR lasers separated by a distance of 3 �m. TEM
cross-section image (right) of a single V-groove QWR laser with five vertically stacked QWRs in the waveguide
core. Reproduced with permission from [79], Weman and Kapon, www.ifm.liu.se/matephys/nanopto/QWires.html,
© 2005, Weman.
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Figure 18. Schematic of a periodic array of trapezoidal quantum wires illustrating the geometry of the wire. “p” is
the period of the array, “w” is the width of each wire at the apex, “y” is the height of the wire. The characteristic
angles are also shown. (Inset: a three-dimensional rendering of the trapezoidal quantum wire). Adapted from
Gosling and Willis [80].

the quantum wire. Consider the three vectors [88]:

Axx = −D2yi
 Ayy = D2xj
 Axy =
D2

2
�xi− yj�

D2 =
72

x2 + y2 
 72 =
E%m

2-�1− ��
(34)

Similar to the three-dimensional case [49], the vectors of Eq. (34) are chosen such that
� × A yields the cylindrical Green’s function components #xx� #yy , and #xy which are given
by Eq. (32).
With the aid of Eqs. (32) and (34), the stress distribution due to a quantum wire with

arbitrary cross section was obtained by evaluating the following surface integral [88]:

��r� = ∫� × A�r − r′� · dS�r′� (35)

The integration is performed over the area of the QWR. With the application of Stokes
theorem, this surface integral (Eq. [35]) was reduced to a line integral around the boundary
of the wire [88]:

#�r� =
∮
A�r − r′� · dr′ (36)

For simple geometries such as rectangular wires, the line integral in Eq. (36), can be per-
formed analytically providing, for example, similar results to the strained layer case visited
earlier. For QWRs with a rectangular cross section, Faux et al. [88] have noted that with a
proper choice of the integrand, only the horizontal boundaries of the rectangular QWR can
be made to contribute to #xx and only the vertical boundaries to #yy , which simplifies the
computation further. Faux et al. [88] apply their methodology to an InP wire of triangular
cross section embedded in GaAs host with a lattice mismatch strain, %m = −3&7%. Nishi
et al. [89] have also performed strain calculations on the exact same wire configuration using
the finite element method. For the triangular cross section, some results are illustrated in
Fig. 19 [88]. They are found to agree well with Nishi et al.’s [89] results.
As Faux et al. [88] have noted from Fig. 19, significant strain relaxation is found to occur

over most of the area of the wire with the magnitude of the strain components %xx and %yy
being less than about %m/2 at all points in the QWR, except at the apex of the triangle.
Further, %xx is least relaxed at the base resulting in over-relaxation of %xx, which is manifest
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Figure 19. Strain contours (in % units) %xx (left) and %yy (right) for an InP triangular wire within an infinite GaAs
matrix. The initial misfit strain is assumed to be 3.7%. Reproduced with permission from [88], Faux et al., J. Appl.
Phys. 80, 2515 (1996), Fig. 1. © 1996, American Institute of Physics.

in the positive values that %yy assumes. In agreement with inclusion theory, the trace of the
strain tensor is constant for all points in the inclusion.
For complicated shapes the QWR boundary may be discretized and the contour integral

can be converted into a summation. Arbitrary shapes can be approximated to be composed
of a combination of line elements and circular arcs. In some cases, this decomposition may
be exact. By employing the simple expressions for line elements, and so forth, contributions
due to a line element and a circular arc, stress/strain evaluations can be obtained. In fact,
precisely on these lines, Downes et al. [90] in a subsequent work have provided analytic
expressions for the strain field due to a lattice-mismatched QWR whose cross section is
composed of any combination of line elements and circular arcs. The authors applied this
methodology to GaAs/AlGaAs crescent-shaped wire [90]. Typically, crescent-shaped quan-
tum wires are grown in situ using organometallic chemical vapor deposition of thin layers on
V-grooved substrates. The position of the QWR is germinated at the position of the initial
groove on the patterned substrate, leading to highly self-ordered wire arrays.
As illustrated in Fig. 20, the wire was approximated as consisting of two lines and two arcs

[90] (the thin quantum wells on the valley sides (not shown in Fig. 20) are usually ignored).
For a given radius of curvature of the lower arc and a given thickness of the QWR (this data
obtained from Kapon et al. [76] for the GaAs/AlGaAs system), the radius of curvature of
the upper arc can be arrived at (using geometry) and the strain contours inside and outside
the QWR were obtained (Fig. 21).

Figure 20. Decomposition of the boundary of a crescent shaped wire into line and arc elements. Adapted from
Downes et al. [90].
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Figure 21. Strain contours in units of percent indicating �xx (left) and �yy (right) for a GaAs/AlGaAs crescent-
shaped wire (geometry of wire based on Kapon et al. [76]) with initial misfit strain of 1%. Reproduced with
permission from [90], Faux et al., J. Appl. Phys. 82, 3754 (1997), Fig. 6. © 1997, American Institute of Physics.

As can be observed in Fig. 21, Downes et al. [90] noted that, for an initial misfit strain
of 1% (the wire is initially under tensile strain), the maximum strain in the x-direction is
about 0.75% (at the center and near the top of the wire, where the width is the largest).
�yy is negative within the QWR. Expectedly, the dilation is constant inside the wire (zero
outside the wire). In a rectangular QWR with a high-aspect ratio, the strain relaxation occurs
predominantly in one dimension (�yy would be about −0.9% and �xx would tend to �0). The
crescent-shaped QWR has smaller peak strain values because strain relaxation occurs in two
dimensions.
Provided wires of the same thickness are considered, on incorporation of the thin lateral

quantum wells, the strain fields have been observed to be similar [90] except at the corners
of the structure. This similarity finds reason in the fact that as the QWs are thin, the contour
integral contribution along the lower line of the well is almost cancelled by the contribution
because of the upper line.
We have seen that almost all the analyses discussed far assume identical elastic constants

for the quantum dot and the barrier material, which begets the question whether this kind
of treatment is justified. Clearly, for the ellipsoidal shape quantum dots embedded in an
unbounded matrix, Eshelby’s equivalent inclusion method [30] provides an easy recipe to
account for modulus mismatch. More generally, this is not easy. So are we justified in using
the same elastic constants for both the materials? Downes and coworkers [90] have outlined
the following issues to consider: (1) Two different materials, at least, are used. (2) The
materials are generally semiconductor alloys. (3) At least one of the materials is in a state of
strain (It is difficult to estimate the elastic constants for alloys in a state of strain.) Downes
and co-workers [90] argue that Keyes scaling relationship [91–92] for III–IV semiconductors
suggests that the it is appropriate to choose the elastic constants of the barrier material for
all materials in the system because all materials have the same lattice spacing before misfit
strain relaxation takes place. As an illustration, the elastic constants for a strained InAs QD
in a GaAs matrix will be closer to the GaAs values than those for unstrained InAs. In the
present authors opinion, this issue requires further investigation. If necessary, the modulus
mismatch can be accounted for as a perturbation (see, for example, Andreev et al. [93]).

2.3. Effect of Presence of a Free Surface in Near Vicinity

Because of their mode of fabrication and operation, QDs/QWRs are most often buried fairly
close to a free surface rather than being embedded in an “infinite” matrix where the host
material boundaries play no role. Such “shallowly” buried quantum dots act like stressors
and the resulting elastic fields coerce vertical dot ordering during growth of subsequent
layers of self-assembled quantum dots. (Lateral ordering of dot layers is known to occur in
the presence of regular dislocation arrays or buried strained layers [94–95].) Furthermore,
both qualitatively and quantitatively, the strain behavior of embedded QD/QWRs that are
located close to a free surface is quite different from one embedded in an infinite medium
For example, the famous Eshelby rule that an ellipsoidal shaped inclusion with a uniform
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misfit will admit a uniform elastic state no longer holds true. For some simple shapes and
cases, closed-form results are available although given the complications in satisfying the
traction free boundary conditions at the host material boundaries, resort must be made
toward numerical methods. As already indicated, typically, if the distance of a quantum dot
from the free surface is larger than 3R (in case of a spherical dot), an infinite space solution
may be invoked with reasonable accuracy. Otherwise, the so-called half-space solution is
recommended. The schematic of the semi-infinite domain (defined by x3 ≥ 0) is shown in
Fig. 22 below:
In the context of half-space, Mindlin and Cheng’s seminal work [96–97] addressed a center

of dilatation. This solution can be elegantly expressed in terms of the thermoelastic poten-
tials of an infinite solid [98]. Following Mindlin and Cheng [96–97], we briefly discuss the
displacement field of a spherical dot buried at depth, h, from the free surface. Isotropicity
is assumed and both the QD and the matrix are assumed to have identical elastic moduli.
The relation for displacement u�r� in a semi-infinite region 0 ≤ z with a free surface at

z = 0 as provided by Mindlin and Cheng is [97]:

4-u�r� = −��− �2�2 (37)

where � is the harmonic potential of the infinite system given by Eq. (24) and �2 is the
reflection transform of � in the plane z= 0. For an infinite solid Goodier [98–99] showed that
(for purely dilatation axisymmetric problems) the displacement potential obeys the following
Poisson’s equation:

� 2� = −4-
1+ �
1− � %

m = −4-
9K

3K + 4�
%m (38)

The operator �2 is given by [97]

�2 = �3− 4��� + 2�z
�

�z
− 4�1− ��êz� 2z (39)

The radii to a point of interest (x� y� z) from (0, 0, h) and its image point (0,0, −h) are,
r = �x2 + y2 + �z − h�2�1/2 and r2 = �x2 + y2 + �z + h�2�1/2, respectively. Thus � and �2
are [97]

� = 4-a3%m

3R
� �2 =

4-a3%m

3R2
for r ≥ a (exterior to the dot)

� = 2-%m�3a2 −R2�

3
� �2 =

4-a3%m

3R2
for r < a (points inside the dot)

(40)

Figure 22. Illustration of a semi-infinite space with a plane free surface (z < 0). An embedded inclusion can also
be seen.
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From Eq. (26), we have the solutions for displacements as [97]

ue =
a3%m

3

[
r
r3

+ �3− 4��r2
r32

− 6z�z+ h�r2
r52

− 2k
r32
1�3− 4���z+ c�− z2

]
for r > a

ui = ue +
a3%mr

3

(
1
a3

− 1
r3

)
for r < a

(41)

Where ue is the displacement field for an exterior point, and ui is the displacement field for
a point inside the quantum dot. The strain field can be recovered in the usual manner from
strain-displacement relationships.
Davies [100] has extended Mindlin and Cheng’s [97] approach. He showed that the

displacements and strains for the semi-infinite solid can be, in a rather simple manner,
expressed in terms of those for an infinite solid and their corresponding derivatives normal
to the surface. He finds the following expression for displacement [100]:

u = u� + �3− 4��ū� + 2z
�

�z
�ū�

x � ū
�
y �−ū�

z � (42)

where

ū��x� y� z� = u��x� y�−z� (43)

The displacement at the free surface, which can be obtained by setting z = 0, is found
to be increased by a factor of 4�1− �� compared to the displacement of the same plane in
an infinite solid. The same factor relates the strains at the free surface: %xx� %yy , and %xy to
their counterparts in the infinite sample. As noted by Davies [100], part of this enhancement
occurs because the QD/QWR is less contained by a free surface than in an infinite solid but
the remaining part is due to less obvious effects arising out of distortion of the surrounding
which pushes the inclusion toward the surface. A dilation of −4�1− 2��%̄�zz arises due to the
presence of the free surface. Unlike the infinite medium case, the dilation is neither uniform
within the QD/QWR nor zero outside it.
Alternative (although essentially equivalent) methods are also available to solve such semi-

infinite problem for shallowly embedded QD/QWRS. Many problems of elasticity can be
simplified by reducing to force distribution problems over some region, which then can be
solved through use of Green function techniques. The Green function for the half-space
(Eq. [44]) (corresponding to Fig. 22) was derived by Mindlin [101]:

Gij�x�x
′�= 1

16-��1−��




3−4�
r

�ij+
1
r2
�ij+

�xi−x′i��xj−x′j �
r3

+
�3−4���xi−x′i��xj−x′j �

r32
+ 2x3x′3

r32

{
�ij−

3�xi−x′i��xj−x′j �
r22

}
+

4�1−���1−2��
r2+x3+x′3

{
�ij−

�xi−x′i��xj−x′j �
r2�r2+x3+x′3�

}



(44)

In Eq. (44), the effect of the free surface occurs through the terms containing r2. Subse-
quently, Seo and Mura [102] and Chiu [50] employed the half-space Green’s function to
obtain the Eshelby tensor for dilating ellipsoidal and cuboidal inclusions respectively (in a
manner similar to Eq. [14]). For the case of an ellipsoid, closed form expressions are possible
only when two of the semiaxes of the ellipsoid are equal [35].
On the lines of the preceding discussion, an interesting work is due to Glas [44]. Consider

a uniformly thick layer of a semiconducting material coherently deposited on a substrate
and covered by a capping layer of the same substrate material (Fig. 23). Such embedded
layers frequently develop nonuniform mismatch strains either due to spatial distribution of
temperature or variations in the composition of the quantum well material.
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Figure 23. Illustration of a buried strained layer, with a sinusoidally modulated dilational mismatch strain, in the
presence of a free surface as considered by Glas et al. [36].

Glas [44] using an Eshelby-like cutting and welding gendaken combined with the method
of images (to account for the boundary conditions) obtained an analytical solution to a sinu-
soidally modulated dilatational mismatch strain problem. The relaxation of a general misfit
dilational inhomogenity was obtained in the form of an integral, which can be evaluated
when the stress-free strain admits a simple Fourier transform. Glas [44] applied his method
to a coherent parallelepipedic inclusion (rectangular quantum wire) and to a step formed at
the interface between a substrate and a coherent capping layer to arrive at fully analytical
solutions.
Further, in a later work, Glas [103] also provided a closed-form solution for the strain

fields of truncated fourfold pyramidal QDs and trapezoidal QWRs buried in half-space.
To solve the problem, the pyramidal QDs were decomposed into elementary cuboids of
infinitesimal height and varying areas. The displacements obtained from each of them were
then summed up to obtain the net displacements by superposition principle. Glas [104]
extended his solution of a single QD to the study of buried QD arrays and later periodic
arrays of QWRs in half-space [105]. Starting with the cases of single and periodic trapezoidal
wires in half space, the calculation is extended to QWRs of arbitrary polygonal section.
Analytical formulae for strain fields have also been found for a right-angled triangular section
lying in half-space using results for those of a semi-infinite rectangular slab and a semi-
infinite beveled slab.
Barabash and Krivoglaz [106] employed Fourier transform of the displacement filed due

to a random distribution of point inclusions submerged under a plane with a given density-
depth profile. The relaxation of the displacement was determined as a one-dimensional
Laplace transform of the inclusion density.
Romanov et al. [107] compared the dilation of strain obtained for cuboidal and trapezoidal

QDs using finite element method with analytical expressions provided for an spheroidal
inclusion (with the same volume as the trapezoidal and cuboidal inclusion) [92] buried at
identical depths. Except at the interface between the dot and the matrix (i.e., in the imme-
diate vicinity of the dot), the spheroidal inclusion model provided good approximation to
the finite element models of the cuboidal and trapezoidal inclusions (for both isolated and
periodic inclusion models) even at significantly shallow levels of submergence, following
which Romanov et al. [107] have suggested using the ellipsoidal inclusion model to obtain
reasonable (if not very accurate) estimates of stresses for most geometries of dots.

2.4. Effect of Material Anisotropy and Nonlinearity

2.4.1. Anisotropic Effects
Most semiconductor compounds crystallize to cubic crystallinity. Against the isotropic value
of 1, the anisotropy coefficient (defined as C11-C12/2C44� for most III–IV semiconductors is
around 0.5. For some cases, the assumption of elastic isotropy may be justified or alterna-
tively the uncertainty in other material and configurational parameters (e.g., lattice parame-
ters, dimensions, etc.) may far exceed the error due to neglect of the anisotropic effects. In
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fact, some authors suggest that the isotropic approximation is reasonable for some cases of
the two-dimensional problems [108]. (Caution should be exercised in taking this statement
too literally and broadly. The reader is referred to Ref. [108] for further details.)
Explicit analytical expressions for the anisotropic Green’s functions are unavailable (except

for hexagonal symmetry) so the oft-used technique of reducing an elastic problem to a force-
distribution problem cannot be employed readily. For the cubic anisotropic case, approx-
imate solutions for the point force equation can be realized perturbatively and thus are
applicable only for weakly anisotropic materials. Dederichs and Liebfried [109] have inves-
tigated different approaches for the estimation of approximate cubic Green’s function [see
also Ref. 110–112].
Starting with the point-force formalism of Green’s functions and assuming identical elastic

constants for both the QD and the host material, Andreev et al. [93] suggested a general
analytical method for the Fourier transform of the anisotropic Green function and presented
explicit results for cubic crystals (in Fourier space). With this analytical result in hand, the
expression of the Fourier transform of the strain tensor was also obtained. In their results,
the shape effect of the quantum dot structure appears as the Fourier transform of a charac-
teristic shape function. Equation (45) provides the Fourier-space strain solution [93]:

ẽsij ��� = %mD̃QD���



�ij −

�C11 + 2C12�FiFj/F
2

1+ �C12 + C44�
∑
F2p/C44F

2 + CanF2p

×1
2

[
1

C44 + CanF2i /F2
+ 1
C44 + CanF2j /F2

]



(45)

D̃QD��� is the transformed characteristic shape function of the quantum dot structure
defined by

DQD�r� = 1� r being a point inside the inclusion

= 0� r being a point outside the inclusion (46)

and Can is given by

Can = C11 − C12 − 2C44 (47)

In the isotropic limit, Can = 0 and the expression for the transformed isotropic strain sim-
plifies to [93]:

ẽisoij �F� = %0D̃QD�F�

(
�ij −

3�+ 2�
�+ 2�

FiFj/F
2

)
(48)

Transforming this strain back into real space and taking the trace, we recover the isotropic
result discussed earlier (Andreev et al. [93] calculate the subtracted strain; that is, the mis-
match strain is subtracted from the actual elastic strain. We have modified their expression
to show the latter.):

Tr��� = %m
9K

3K + 2�
DQD�r� (49)

Equation (49) emphasizes the constancy of dilation within the QD and that it vanishes for
points outside it. As evident from Eq. (45), this may not hold true for all shapes in the cubic
anisotropic case.
Andreev et al. [93] also provide a comparison between isotropic and anisotropic models

for cubic crystals. As mentioned earlier the degree of anisotropy can be characterized by the
anisotropic coefficient, which is about 0.5 for III–IV semiconductors. As an example, the
effective Poisson’s ratio varies between 0.333 in the (001) direction to about 0.2 in the (111)
direction. This variation in Poisson’s ratio might be expected to result in a strong dependence
of strain on the space direction. However, this was not found to be the case. In most cases
where the “anisotropy” in shape of the QD is more than or equal to the anisotropy in
the elastic properties, the dominant contribution to the strain distribution is caused by the
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“anisotropy” in shape rather than the anisotropy in elastic properties. Figure 24 illustrates
how the anisotropic solution of the radial component of the strain tensor %rr for a spherical
InAs/GaAs quantum dot system (misfit strain of −3.7%) plotted along three directions,
compares with the isotropic case.
As Andreev et al. [93] have pointed out, the influence of elastic anisotropy is small within

the dot with both models yielding nearly the same constant value. Outside the sphere,
however, anisotropy considerations are observed to produce significant deviations from the
isotropic model. As a matter of fact, the isotropic model effectively gives the strain dis-
tribution averaged over the different directions outside the dot. For a cubic dot, with the
symmetry of the elastic properties being the same as that of the geometry, the effect of elas-
tic anisotropy is even smaller than for the spherical dot. Unlike the spherical quantum dot,
the difference between the two models for a pyramidal QD, exhibiting lesser cubic symmetry
than the elastic properties, was observed to be less outside the dot than inside it.
While an exact expression for Green’s function for the cubic case is not possible, it can

be expressed in terms of a perturbation series where the first term is the isotropic Green’s
tensor and the subsequent terms are correction terms of increasing order, converging to the
full anisotropic result [113–114]. Faux and Pearson [115] exploited this notion and presented
explicit (but approximate) Green’s tensors to permit rapid calculation of strain distribution
in and around QDs. Computational effort is significantly reduced as excellent agreement
was found with results of Andreev et al. [93] even with a first-order correction.
Pan and Yuan [116] expressed the half-space anisotropic Green’s function, for traction-

free surface, as a sum of the infinite space Green function and an image part based on
the extended Stroh formalism. The image part can be expressed as a one-dimensional inte-
gral. Using these Green functions, the elastic fields of a quantum dot can be expressed as
simple integrals over the surface of the dot employing Betti’s reciprocal theorem. If the
QD is a point source, then the strain fields can be expressed in analytical form. Other
notable works on Green’s functions (assuming traction-free surface conditions) are due to
Refs. [122, 126–128]. The reader may also refer to Pan [129], who in a later work, derived the
anisotropic Green’s functions for generalized boundary conditions, based on the extended
Stroh-formalism.
Pei et al. [122] investigated the elastic fields due to an array of lens-shaped anisotropic

QDs buried under a capping layer of finite thickness using a three dimensional finite ele-
ment method. The various geometrical parameters used in the model have been shown in

Figure 24. Radial strain tensor component �rr for different directions through a spherical dot. The radius of the
dot considered is 3nm and the center of the QD is the origin of the coordinate system used. The misfit strain is
6.7% and parameters for GaAs have been used. The solid line represents the isotropic model while the dotted
dashed lines represent anisotropic models. Reproduced with permission from [93], Andreev et al., J. Appl. Phys. 86,
297 (1999). © 1999, American Institute of Physics.
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Fig. 25. Values of anisotropy ratio A�= 2C44/(C11–C12)) ranging from 0.25 to 4.0 were con-
sidered both for the QDs and the matrix. The ratios of the cap-layer thickness to dot height
considered were 2.0, 3.0, 4.0, 5.0, and 6.0, respectively.
From Fig. 26, Pei et al. [122] noted that the value of %xx contour increases with A changing

from 1.0 to 4.0 while it decreases with A changing from 1.0 to 0.25. Also, when A > 1,
[100] and [1̄00] are the “elastically soft” directions with the strain decaying rapidly in these
directions. These same directions become the “elastically hard” directions when A < 1. For
different values of A, %xx has a positive value in the matrix and increases from zero to a
local maximum at the interface between the matrix and the wetting layer. In the QD region,
it changes sign and its absolute value reduces till one reaches the interface between the
QD and the capping layer. In the cap layer, %xx changes its sign again to being positive.
Compressive strain increases significantly with increase in A from 0.25 to 4.0. The %xx profile
is also significantly affected due to anisotropy considerations.

2.4.2. Nonlinear Effects
Generally, elastic material properties are assumed to be independent of strain. Ellaway
and Faux [123] examined the accuracy of this assumption by investigating the behavior of
elastic stiffnesses of InAs under uniform strain using atomistic methods. By using the three
distortions as advised by Mehl [124–126] the three independent elastic stiffnesses C11, C12,
and C44, for a cubic crystal, were determined. Small distortions were applied to the crystal
over a range of volumetric strains to evaluate the effective elastic stiffness at each strain
level. For the atomistic simulation, Stillinger-Weber potentials [68] were employed using
the parameters for InAs provided by Ichimura [127]. The elastic stiffnesses C11 and C12
increased with volumetric strain demonstrating that materials tend to become harder on
being compressed. C44 was however found to hardly vary with volumetric strain [123]. Clearly,
the strain dependence of elastic parameters renders the elastic boundary value problem
nonlinear. After proper accounting for strain dependent elastic parameters, Ellaway and
Faux [123] found significant difference in the hydrostatic strain calculation for a spherical
InAs QD embedded in an GaAs matrix.
Ellway and Faux [128] also investigated the effect of volumetric strain on the degree of

anisotropy and on the two-dimensional (biaxial) Poisson’s ratio. The anisotropy coefficient
was found to have very weak dependence on the volumetric strain while the two-dimensional
Poisson’s ratio was found to increase with pressure showing good agreement with the esti-
mate provided by Frogley et al. [129–130]. Lepkowski and Majewski [131–132] investigated

Figure 25. Schematic of an array of lens-shaped QDs. Distance (D) is 45 nm; thickness of the wetting layer (WL)
is 1 nm. The base diameter (d) is 24 nm, while the height of the QD (h) is taken to be 6 nm. A lattice mismatch
strain of 4% is assumed. Adapted from Pei et al. [122].



A Review of Strain Field Calculations in Embedded Quantum Dots and Wires 27

Figure 26. Contours in the midplane of one of the lens-shaped dots from Fig. 26 for different values of anisotropy
ratio A. Reproduced with permission from [122], Pei et al., J. Appl. Phys. 93, 1487 (2003). © 2003, American
Institute of Physics.

the pressure dependence of elastic constants in zinc-blende InN, GaN, and AlN using density
functional formulism and demonstrated results similar to previous works discussed [123, 128].

2.5. Effect of Coupled Fields: Piezoelectricity

In addition to the coupling with the band structure, the stress arising out of a misfit quan-
tum dot in a piezoelectric semiconductor material, additionally couples with the carriers
through the piezoelectric effect. Like strain-band structure coupling, piezoelectric effect too
can significantly alter the electronic and optical properties of semiconductor devices [22,
133–135].

2.5.1. Piezoelectric Effect Around a Spherical Dot
Once again, we consider first the simplest example: a spherical QD of radius, R, located in
an infinite medium. The piezoelectric polarization, P, induced by strain is given by

Pi = eijk%jk (50)

where eijk is the piezoelectric tensor and %jk is the usual strain tensor.

eijk = e14 for 1ijk2 = 11232 or permutations

= 0 otherwise (51)

where e14 is the piezoelectric constant [136].
The polarization vanishes inside the spherical dot because the purely dilational strain

present inside the sphere does not cause piezoelectric effect in a material with 4̄3m sym-
metry. As a result there is no piezoelectric potential within a spherical quantum dot. For
the region outside the dot, the polarization, P, can be related to the charge density per unit
volume, H�r� as follows:

H�r� = −� · P (52)

which when combined with Eqs. (50), (51), and (11), results in [54]

H�r� = −270Ke14
3K + 4�

%mR3 xyz

r7
(53)

At the surface, the charge density # is given by

# = P · n̂ (54)
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which can be written as

# = 6e14

(
9K

3K + 4�

)
%m
xyz

R3
(55)

Because of the polarization described by Eq. (54–55), the piezoelectric potential I�r� inside
the dot can be written as [54]

I�r� = −3e14%mR
∈0∈r

9K
3K + 4�

(
R

r

)2
[
1−

(
R

r

)2
]
xyz

r3
(56)

where ∈r , is the dielectric constant of the semiconductor and ∈0 is the dielectric constant
of free space. The maximum potential occurs at, r = a

√
2. This potential would penetrate

inside an inclusion possessing a less symmetric shape and one would expect it to shift the
energy levels of electrons inside the dot. However, because of the presence of the extremely
small length factor of R (the radius of the quantum dot) in Eq. (56), this potential tends to
be very small and exercises little if any influence on the energies of electrons [54].

2.5.2. Piezoelectric Effect Around Any Dot
As highlighted by Davies [54], the elastic displacement, u, in the presence of a lattice mis-
match strain, can be described by a scalar potential D in a manner similar to the electric
field-elastic potential relationship:

u = �D (57)

This potential obeys Poisson’s equation:

� 2D = 9K
3K + 4�

%m (58)

Using the usual Green’s function for the Laplace equation the following relationship can be
obtained for D, at a generic point in space [54],

D�r� = − 1
4-

9K
3K + 4�

∫ %m�r′�d3r′

�r − r′� (59)

The piezoelectric charge density is given in terms of D by

H�r� = −eijkDijk (60)

We know that

� 2I�r� = − H�r�∈0∈r
(61)

Using Eqs. (61), (60), and (58), we have [54]

� 4I�r� = 9K
3K + 4�

(
eijk

∈0∈r
%�r�mijk

)
(62)

Davies has [100] defined a “piezoelectric pseudopotential” J such that

� 2J�r� = D�r� (63)

From Eq. (51) we obtain

� 4J�r� = 9K
3K + 4�

%m�r� (64)
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thereby expressing I in terms of J in a biharmonic equation. The piezoelectric potential
can then be obtained after some further manipulation as a surface integral of the following
form [100]:

I�r� = 9e14%m

4- ∈0∈r

(
9K

3K + 4�

) ∮ �x − x′��y − y′��z− z′��r − r′� · dS′

�r − r′�5 (65)

In the analytical models previously described (and some finite-element models notably [137]),
the elastic field induced is first determined subject to given mechanical boundary conditions.
The elastic solution is then used to estimate the polarization, which induces the electric
potential and field. The electric field is then solved for by imposing purely piezoelectric
boundary conditions. Such an approach is often called the “semi-coupled model”.
A fully coupled model was proposed by Pan [138] predicated on earlier works involving the

determination of displacement Green’s functions in a fully coupled and generally anisotropic
piezoelectric half space [139]. In a fully coupled model, the elastic stress field, #ij , and the
electric displacement field, Di, are coupled by the following constitutive relations:

#ij = Cijlm%ij − ekjiEk (66a)

Di = eijk%jk+ ∈ij Ej (66b)

where ∈ij is the dielectric tensor and Ek is the electrical field. The strain %ij and the electric
field Ei are related to the elastic displacement ui and the electric potential � by their
corresponding constitutive relations.
Use of the Barnett-Lothe notation [140] allows one to recast Eqs. (66a) and (66b) into a

unified single equation. For a finite-sized QD, Pan [138] then expressed the induced elastic
and piezoelectric fields in terms of boundary integrals on the surface of the QD and the
point-force/point-charge Green’s function solutions.
To facilitate comparison between the semi-coupled and the fully coupled model, Pan [138]

presented the cases of GaAs and AlN quantum dots for both the infinite-space and half-space
situations. Under the assumptions of elastic isotropy, analytical solutions have been arrived
at, using the semi-coupled model in the full- and half-space GaAs and in the full-space AlN.
Some of the results of Pan [138] are now discussed. In his work, a lattice mismatch %m

of 7% was assumed while modeling the quantum dot system for both GaAs and AlN. The
quantum dots themselves are point spheres with an equivalent volume of 4

3-a
3�a = 1� nm

and are located at the origin r = �0� 0� 0� for the full-space case and at r = �0� 0� h��h =
2 nm� for the half space case; z = 0 being the free surface. The electromechanical coupling
factor g for a piezoelectric material is defined as

g = emax√∈max /Cmax

(67)

where emax�∈max, and Cmax are the maximum absolute values of the piezoelectric coefficients,
dielectric constants, and elastic constants. For the specific case of GaAs, with a weak elec-
tromechanical coupling (g = 0&04), the semicoupled model was found by Pan [138] to yield
results similar to the fully coupled model for the elastic and piezoelectric fields (for full- and
half-space). However, in the case of AlN, which has a rather strong electromechanical cou-
pling (g = 0&32 opposed to 0.04 for GaAs), the semicoupled model rendered substantially
different results from the fully coupled model. This is well illustrated in Fig. 27, where both
fully coupled and semicoupled models predict nearly identical electric fields in the case of
the GaAs, while significant differences are observed between the two-models while estimat-
ing the electric-field for the AlN case [138]. In fact at r = �1� 1� 1� nm, the electric field
predicted by the semi-coupled model in the GaAs case falls short of that predicted by the
fully coupled model by nearly a factor of 2.
On a related note, Pan in a subsequent work [141] applied the three-dimensional Green’s

function solution based on the fully coupled model to four substrates, namely, GaAs (001),
GaAs (111), Iso (001), and Iso (111) to show that the isotropic model fails to predict the
induced elastic and piezoelectric fields for piezoelectric semiconductors. The elastic constants
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Figure 27. A comparison between the electric-field Ex predicted by the semi-coupled and fully coupled models
for two different quantum dot systems (a) AlN and (b) GaAs in infinite space. The dot is point spherical with
an equivalent radius of a = 1 nm and is located at r = �0� 0� 0�. The variation in the above diagram is traced
along r = �x� x� x�. Reproduced with permission from [138], E. Pan, J. Appl. Phys. 91, 3785 (2002), Fig. 3. © 2002,
American Institute of Physics.

for Iso (001) and Iso (111) were assumed to be isotropic. The elastic and piezoelectric fields
on the surface of these substrates, due to a buried point quantum dot with an initial dilational
misfit strain, were also studied (Figs. [28]–[30])& In the examples that Pan illustrates, the QD
is a point sphere buried at a depth h (h = 10 nm), with an equivalent radius of a (a = 3 nm);
an initial mismatch strain of %m = 7% is assumed.
From Fig. 28, as Pan [141] noted, it is clear that the isotropic model is clearly not suitable

to estimate the elastic fields in anisotropic GaAs. While the isotropic hydrostatic strain has
complete rotational symmetry about the z-axis, GaAs (001) displays a C4 symmetry and
GaAs (111) exhibits a C3 symmetry. The values of strain relaxation achieved at the surface
for the three cases are also markedly different with high-hydrostatic strain prevailing in the
GaAs (111) case (10% of misfit strain in the GaAs (111) case as against 7% and 3% for Iso
(001) and GaAs (001), respectively).
For similarly orientated GaAs and Iso semiconductors (for example, GaAs (001) or (111)

and Iso (001) or (111), respectively), Pan [141] have reported some similarities between
the contours of piezoelectric potential (Fig. 29) (even the horizontal electric field has been
demonstrated to display the said similarities) at the surface. However, as Fig. 30 show, the
vertical electric field Ez, at the surface in GaAs (001) or (111) does not exhibit any similarity
to the isotropic case. Pan [141], therefore, have suggested use of caution while applying the
isotropic assumption to the GaAs semiconductor case to avoid arriving at erroneous results.

2.6. Effect of Size

As evident so far in our review, generally speaking, researchers have used the well estab-
lished continuum elasticity theory (both numerically and analytically) to estimate mechanical
strains. Those then are coupled to some suitable band-structure calculation method (such
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Figure 28. Contours of %il�10−3�, the hydrostatic strain due to a point QD of volume �a = 4-a3/3 buried at a depth
of h = 10 nm , (a) on the surface of the isotropic crystal (the contours are similar for Iso(001) and Iso(111)); (b) on
the surface of GaAs(001); (c) on the surface of GaAs (111). Reproduced with permission from [141], Pan, J. Appl.
Phys. 91, 6379 (2002), Fig. 2(a–c). © 2002, American Institute of Physics. These figures clearly indicate that the
isotropy model is not suitable to determine strain distributions in anisotropic GaAs semiconductor. Other elasticity
fields (like stress and displacement) show similar variation to the strain shown in the diagram.

as tight binding or the k.p approach) to estimate the impact of strain on the optoelectronic
properties. Classical continuum mechanics, is however, intrinsically size independent. This is
in contradiction to the physical fact that at the size-scale of a few nanometers, deformations
and elastic state are size dependent and a qualitative departure from classical mechanics is
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Figure 29. Contours of piezoelectric potential due to a point quantum dot of volume �a = 4-a3/3, and buried
under a depth h = 10 nm; (a) at the surface of GaAs (111); (b) at the surface of GaAs (001). Reproduced with
permission from [141], Pan, J. Appl. Phys. 91, 6379 (2002), Fig. 3(a–b). © 2002, American Institute of Physics.
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Figure 30. Contours of vertical electric field Ez�107V/m� due to a point quantum dot of volume �a = 4-a3/3 and
buried under a depth h = 10 nm; (a) at the surface of Iso (001); (b) at the surface of Iso (111); (c) at the surface
of GaAs (001); (d) at the surface of GaAs (111). Reproduced with permission from [141], Pan, J. Appl. Phys. 91,
6379 (2002). Fig. 5(a–d). © 2002, American Institute of Physics.

expected. The obvious alternative method to compute strain is the use of atomistic simula-
tions. Nevertheless, a field theoretic method is highly desirable (in the same vein several of
the models discussed so far) albeit that does also account for the scaling or size effects in
strain likely to be prevalent at these small length scales.
There are chiefly two physical mechanisms that may alter continuum elasticity predictions

and result in scaling or size effects in the strain calculations in quantum dots: (1) surface
or interfacial energy effects and (2) nonlocal elastic interactions. Both are likely to be small
and only of importance for exceedingly small quantum dots, nevertheless these effects can
be important in certain cases.

2.6.1. Surface/interface Energy Effects
For structures with sizes >50 nm, typically, the surface-to-volume ratio is negligible and the
deformation behavior is governed by classical volume strain energy. However, at submicron-
length scales the properties of the quantum dot surface/interface are expected to play a
role in the determination of its elastic state. Simply from dimensional considerations we
expect that strain should scale ∼ 1/R (where R is some characteristic length of the quantum
dot and that the proportionality constant is related to surface or interface energy). In the
context of quantum dots and embedded inclusions, this effect has been discussed in some
recent publications by one of the authors [142–144]. The latter works, presented the size-
dependent elastic state of QDs based on the involvement of surface/interfacial energies at
the nanoscale. For example, errors in strain calculation as high as 12% were reported in the
determination of hydrostatic strain in a buried spherical QD (in the size range of 2 nm).
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Surface elastic effects have been considered by a variety of authors in various contexts,
for example, nanostructures [145], nanocomposites, thin films [146], surface steps [147–148],
quantum dots, and soforth. The reader is referred to the following review articles and refer-
ences therein for comprehensive details. From the point of view of a mechanics, Gurtin and
Murdoch [149], Murdoch [150], and Gurtin et al. [151] appear to have established a fairly
rigorous framework to incorporate surface or interface energies which is what we following
in the present article to tackle the quantum dot strain scaling problem.
Consider an arbitrary shaped smooth interface between an embedded inclusion and sur-

rounding host matrix, characterized by a unit normal n. Let this interface be “attached”
to the bulk (i.e., both inclusion and matrix) without slipping or any other discontinuity of
displacements across it. This implies that we consider only a coherent interface. In contrast
to the classical case where surface energies are neglected, we now require that the inter-
face of the inclusion and the matrix be endowed with a deformation dependent interfacial
energy, K . The interfacial or surface energy is positive definite. This quantity is distinct from
the bulk deformation dependent energy due to the different coordination number of the
surface/interface atoms, different bond lengths, angles, and a different charge distribution
[152]. Within the assumptions of infinitesimal deformations and a continuum field theory,
the concept of surface stress and surface tension can be clarified by the (assumed linearized)
relation between the interface/surface stress tensor, � s, and the deformation dependent sur-
face energy, K��s�:

� s = LoP
s + �K

��s
(68)

Where applicable, superscripts B and S indicate bulk and surface, respectively. Here, �s is
the strain tensor for surfaces that will result from the projection of the conventional bulk
strain tensor on to the tangent plane of the surface or interface, while Lo is the deformation
independent surface/interfacial tension. The surface projection tensor, Ps which maps tensor
fields from bulk to surface and vice versa is defined as:

Ps = I− n⊗ n (69)

Consider an arbitrary vector v. The surface gradient and surface divergence, then, take the
following form [151]:

�sv = �vPs

divs�v� = Tr��sv�
(70)

Here, we have also defined the surface gradient operator (�s) and the surface divergence,
which we shall shortly employ. We repeat here the equilibrium and isotropic constitutive
equations of bulk elasticity:

div�B = 0

�B = �I3Tr���+ 2�%
(71)

At the interface, the concept of surface or interface elasticity [149, 151] is introduced, which
is excluded in the classical elasticity formulation:

��B · n�+ divs �S = 0

#S = L0P
s + 2��s − L0��S + ��s + L0�Tr��S�Ps

(72)

Isotropic interfaces or surfaces can be characterized by surface Lamé constants �s , �s , and
surface tension, L0. The square brackets indicate a jump of the field quantities across the
interface. Only certain strain components appear within the constitutive law for surfaces due
to the 2 × 2 nature of the surface stress tensor (i.e., only the tangential projection of the
strains on the interface are included consequently, Ps · n = 0�. In absence of surface terms,
Eq. (72) reduce to the usual normal traction continuity equations of classical elasticity.



34 A Review of Strain Field Calculations in Embedded Quantum Dots and Wires

Thus, while the infinitesimal strain tensor in the bulk (both inclusion and matrix) is defined
as usual, the surface strains involve the use of projection tensor (Eq. 69).

�S = 1
2
�PS�su+ �su

TPS� (73)

Implicit in Eq. (73) is our assumption of a coherent interface. Using these basic equations,
Sharma and Ganti [144, 153–155] have explicitly derived the dilatation strains for embedded
quantum dots. To be more explicit, the dilatational strain in an isotropic spherical lattice
mismatched embedded quantum dot that correctly incorporates size effect due to interfacial
energies can be written as:

Tr�%� = 3
3K%m − 2Lo/R

4�+ 3K + 2Ks/R
(74)

where Ks is the surface elastic modulus defined as 2��s + �s�. Note that for large radius
of QD (R→ �� or zero surface energy, the result reverts to the classical solution used by
several authors (see, e.g., Yang et al. [23]). Equation (74), of course implies that, even if
the QD is not embedded, there is a finite strain (which of course is very small except in the
smallest possible QDs):

Tr�%� = − 3
3KQD + 2Ks/R

(
2Lo
R

)
(75)

In a collaborative work, one of the authors presented numerical density function theory
(DFT) simulations of Si clusters that illustrated the impact of surface energy induced strains
(Peng et al. [156]). Ab initio simulations of quantum dots, for the purpose of ascertaining
scaling laws associated with their optoelectronic properties, have also been carried out by
other researchers [157–158]. These previous works, however, did not notice the aforemen-
tioned additional scaling effects since they (as is often done conventionally) constrained the
surface atoms to remain configurationally fixed thus effectively precluding the manifesta-
tion of influence of surface energies on strain. In the simplest possible picture, for the case
of unembedded quantum dots where there is no apparent source of strain (i.e., no lattice
mismatch), the effect of surface tension is excluded (see Eq. [75]). In the case of embed-
ded quantum dots, the correction to the lattice mismatch-induced strain due to interfacial
tension and elasticity is excluded. This form of simulations, where surface atoms are not
allowed to relax, is primarily employed for savings in computational time with the unfor-
tunate consequence of effectively voiding the strain-induced scaling. For example, the DFT
computation time for a surface relaxed cluster Si59H60 is 1,694 minutes, while the time for
the same cluster without atomic relaxation is 125 minutes.
We now proceed to present a test of the assertions and implications of Eq. (75) through

DFT calculations of unembedded Si clusters of various sizes. We note here the work of
Delley [159] who performed such a study without incorporating the surface effects outlined
in Eq. (75). The surface atoms were configurationally fixed in his analysis, thus excluding the
scaling effect we predict. To retain the tetrahedral configuration of silicon (refer to Fig. 31),
all the dangling bonds of the surface silicon atoms were terminated by hydrogen at initial
bond length of 1.47 Å. The clusters were varied from Si5H12 to Si239H196(i.e., from 5.8 to
21.0 Å).
The surface atoms were allowed to relax to their equilibrium state thus triggering the

strain in Eq. (75). The main results are depicted in Fig. (32), where the band gap is plotted
as a function of cluster size and compared with Delley’s [159] unrelaxed cluster study. As
already anticipated, we note a significant shift in band gap at small sizes where surface
energy-induced strains make their presence felt. A somewhat surprising result that emerges
from Fig. (32) is that this scaling effect disappears for extremely small sizes!
A maximum band-gap shift of nearly 0.51 eV is observed at a cluster size of 17 atoms.

Plausible explanations for the disappearance of this new scaling effect at sizes below 17
atoms appear to suggest that surface energy parameterized by surface tension and surface



A Review of Strain Field Calculations in Embedded Quantum Dots and Wires 35

Si99H100
Dimension: 16 Å Si239H196

Dimension: 21Å

Si5H12
Dimension: 6 Å

Figure 31. Snapshots of various-sized Si clusters used in the DFT simulations.

elastic modulus must itself be size dependent, that is,

1Lo�Ks2 ∝
1Lo�Ks2

at “large” size

1+ k/R (76)

where k is a constant. Obviously, as R→ 0, the surface energy smoothly vanishes, explaining
the disappearance of concerned scaling effect at extremely small sizes. Physically and in
hindsight this is easy to justify. The continuum field concept of surface energy, tension, and
surface elastic modulus signifies the difference between the surface atom properties with the
corresponding ones in the bulk (due to different coordination number, charge distribution,
bond length, etc.; a mismatch strain of 3.5% and K ∼ 100 Gpa and � ∼ 60 Gpa. However,
at extremely small sizes, where only few atoms remain, this difference and the distinction
between surface and bulk atoms becomes very tenuous or, in other words, the continuum
notions of surface energy (if one insists on using them) must become zero.

2.6.2. Nonlocal Effects
Nonlocal interactions are another mechanism that is only of importance when the quantum
dot size is comparable to the lattice parameter. At small length scales (approaching a few
nanometers comparable to the discrete structure of matter) the implicit long-wavelength
assumption of classical elasticity breaks down. This break down is caused partially by the
long-range interactions between atoms, which are inadequately represented by classical elas-
ticity. As one would expect, several phenomena at the level of a few lattice spacing are
inadequately captured by classical elasticity and researchers often see enriched continuum
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theories such as nonlocal elasticity as a replacement for atomistic simulations (or, alterna-
tively, a bridge between atomistic and conventional continuum mechanics). For example, the
ubiquitous singularities ahead of crack tips and dislocation cores (as predicted by classical
mechanics) are indeed a break down of traditional elasticity at short wavelengths [157]. One
possible means to circumvent the long wavelength assumption of classical elasticity is to
invoke higher order gradients in the elastic energy expansion. In a recent work [160], one of
the authors derived the complete Eshelby’s tensor for an embedded quantum dot.
Consider the classical isotropic elastic material. The strain energy function is quadratic in

strains:

W�x� = �%ij%ij +
1
2
�%2kk (77)

Here, � is the usual strain tensor related to u (displacement vector) as sym(�u), and �•�j ,
and �j will be used interchangeably to indicate differentiation with respect to spatial variable
xj . Note that the antisymmetric part of the deformation gradient that is, 0 (= asym �u)
is absent from Eq. (77) because the quadratic term in 0 is not rotationally invariant—a
necessary requirement for the energy function in Eq. (77). For small quantum dot sizes,
additional gradient terms (absent in Eq. [77]) may also contribute and are considered to
phenomenologically representative of nonlocal interactions [157–158]. The latter is achieved
by suitably adding higher-order terms containing gradients of strain and rotation. (Indeed,
the gradients of 0 are admissible because those fields are invariant with respect to the
Euclidean group of transformations SO(3)�T(3) unlike 0 itself.) The general form of the
elastic energy involving first gradients of strain and rotation is

W�x� = W��iuj� �lul� �i�lul� �i�lui� (78)

In the isotropic case, the energy density that is invariant to SO(3)�T(3) group then takes
the form [158]

W�x� = �

2
��iuj�

2 + �+ �
2

��lul�
2 + 2�+ �

2
l′2�i�lul�i�juj

+ �l2

2
��2l ui�

2
l ui − �i�lul�i�juj� (79)

Two new coupling constants (in addition to the Lamé parameters) now appear namely l′

and l. Both have units of length. For band-gap calculations in quantum dots, one typically
requires only the dilatation and in the isotropic case (as it turns out), the last term in
Eq. (79) plays no role, and hence, in the following, we set l = 0. Further, using a variational
argument (by appealing to the Euler-Lagrange equations), the governing field equation can
be derived as well as the response quantities (i.e., “stresses”). The single Navier-like equation
that emerges is

−��2ui − ��+ ���i�lul + �2�+ ��l′2� 2�i�lul︸ ︷︷ ︸ = 3K�ik�k�%
mH�x�� (80)

The underlined portion of Eq. (80) indicates the extra terms absent in size-independent
classical elasticity. Zhang and Sharma [160] have derived the solution to the problem in
Eq. (80) for the case of a misfitting spherical quantum dot. They obtain:

tr�%� =




9K%m

3K + 4�

[
1− �l′ +R�e−R/l′ 1

l′
sinh r/l′

r/l′

]
r ∈ �

9K%m

3K + 4�

(
R cosh

R

l′
− l′ sinh R

l′

)
1
l′
e−r/l′

r/l′
r � �

(81)

In Fig. 33, the normalized dilations strain as a function of position, various inclusion sizes
and nonlocal coupling constant l′ are plotted. The location x/R = 1 indicates the boundary
of the spherical quantum dot. The size effect of the nonlocal solution is manifest. We note
that, unlike both the classical and interfacial energy-based solution, the dilation incorporating
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Figure 33. Strain dilatation as a function of position and size. The flat line with abscissa = 1 for x/R < 1 and = 0
for x/R > 1 represents the classical size-independent solution. Adapted from Zhang and Sharma [160].

nonlocal effects is inhomogeneous within the inclusion. Asymptotically, the nonlocal results
converge to that of classical elasticity for large quantum dot size. Further, note that while
the classical results predict the well-known zero dilatation outside the spherical quantum
dot, in the case of nonlocal results we observe a small nonzero dilation. Conforming to
physical intuition, artificial jumps in stresses are removed in nonlocal results and the strains
vary smoothly across the interface (or in other words the “continuum” sharp interface of the
quantum dot/matrix acquires a “diffuse boundary layer” to the order of the characteristic
length scale parameter.
To emphasize on the size dependency of our solution, the dilatation as a function of size

(for a fixed position, i.e., r = 0) is also plotted in Fig. 34. We observe that while for large
quantum dot size, roughly, R > 7l′ , the nonlocal/strain gradient solution is indistinguishable
from the classical one, the dilatation decreases significantly below this threshold and exhibits
a marked departure from classical solution.
We now proceed to draw a comparison between surface energy effects (discussed in

Eq. [74]) and nonlocal results. Unfortunately, while the nonlocal results can be adequately

Figure 34. Dilatational strain as a function of size for fixed position (r = 0). The results are normalized with respect
to classical elasticity solution. Adapted from Zhang and Sharma [160].
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normalized (i.e., independent of mismatch strain), the surface/interfacial results cannot and
are highly material dependent (both on the actual values of interfacial energy parameters as
well elastic moduli). We provide some general estimates here. The nonlocal coupling con-
stant l′ roughly corresponds to the lattice parameter of the quantum dot which is around
∼0.4 nm for most materials. For the specific case of GaAs, in a rather interesting work,
DiVincenzo [161] has determined the higher-order constants for the nonlocal elasticity the-
ory. For the particular case of GaAs, we deduce l′ to be ∼0.82 nm (which, in fact, is much
larger than the lattice parameter). So, for the purposes of general comparisons, it is safe to
adopt l′ to be roughly ∼ lattice parameter. The interfacial tension (for coherent systems)
is roughly to the order of ∼1 J/m2. Because (unlike both the classical and surface energy
based result) the nonlocal solution is nonuniform, we compare results at the quantum dot
center (r = 0). For diameters of {2, 4, 6, 8, 10} nm, respectively, the nonlocal deviation
from classical elasticity result is {22, 2.2, 0.18, 0.014, ∼0}%, while we obtain a deviation
of {19, 9.5, 6.3, 4.8, 3.8}% for interfacial energy-based results. Because of the exponential
decay in the nonlocal solution (with respect to size), these effects decay far more rapidly
than the interfacial effects but are likely to dominate for very small sizes (which though
for most materials may be impossibly small and would be irrelevant anyway as we do not
expect nonlocal theory to work for sizes smaller than 2l′—classical elasticity is expected to
breakdown at even larger sizes, roughly, 6l′).

2.7. Some Results from Inclusion Theory Useful
for Strain Calculations in Quantum Dot Structures

Since the original appearance of Eshelby’s paper [30] several works have extended, modified,
and applied the concept of Eshelby’s tensor to a diverse set of physical problems. We provide
a brief review of this body of literature here in the hope that researchers addressing quantum
dots may find them of use.

1. Bonding conditions of inclusion. The original assumption in Eshelby’s work is that the
inclusion is perfectly bonded to the matrix; that is, the normal tractions are continuous
and so are the displacements. All works on quantum dots (that the present authors are
aware of) make this same assumption, that is, matrix-quantum dot interface is perfectly
bonded. Under certain conditions these conditions must be relaxed: jumps in displace-
ment or tractions may be allowed. Various researchers have considered the imperfectly
bonded inclusion, for example, Furuhashi et al. [167], Ru and Schiavone [168], Zhong
and Meguid [169], Qu [170–171], and Kouris et al. [148]. Of course, physically, imper-
fectly bonded quantum dots will correspond to the case where defects are present at the
interface. It is quite unclear whether then it is worthwhile to investigate the strain state
in such dislocated quantum dots since most likely in comparison the mere presence of
defects will overwhelm the electronic effects.

2. Coated inclusions. Frequently for technological reasons inclusions are embedded in a
matrix with a coating (or which may be developed due chemical interaction with the
matrix). A few representative works in this area are: Walpole [172], Luo and Weng
[173], and Cherkaoui et al. [174], among many others. This scenario is very realistic
especially in multialloy quantum dots where the outer rim of a quantum dot may be
preferentially rich in one phase.

3. Nonuniform mismatch strains. Sendeckyj [175] and Moschovidis [176] considered
general polynomial transformation strain thus nonuniform lattice mismatch or ther-
mal expansion strains can be mimicked. Their work is also useful for taking into
account interactions between inhomogeneities. Asaro and Barnett [178] and Mura and
Kinoshita [179] addressed polynomial eigenstrains in an anisotropic media. Note also
must be made of the recent work of Rahman [180] who presents simplified calculations
of Eshelby type tensors for polynomial eigenstrains.

4. Enriched elasticity. The classical theory of elasticity itself has been modified in several
ways. Micromorphic elasticity takes into account additional micro-degrees of freedom
such as independent rotations, dilations and shears. An extensive account of these the-
ories can be found in Eringen [181]. As far as inclusion problems are concerned, it
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appears that the only two solutions that exist are due to Cheng and He [182–183]
who, respectively, solve the spherical and cylindrical inclusion problem. On the basis of
the latter work, Sharma and Dasgupta [184] have formulated the overall properties of
micropolar composites. Another enrichment of elasticity is whereby nonlocal interac-
tions are introduced. Again, an up-to-date survey is given by Eringen [157]. A popular
version of nonlocal elasticity is the strain gradient theory. Zhang and Sharma [160]
have recently provided solutions of embedded inclusions in the strain gradient elasticity
formalism.

5. Inclusion-inclusion interactions. As already noted above, the work of Moschovidis
[176] provides and interesting discussion on interactions between two inclusions. Rodin
and Hwang [177] provide a nice analysis of this problem and also contain several useful
references. Interestingly, two dilating inclusions (same properties as matrix) have zero
interaction energy in the isotropic limit. This is somewhat obvious since the external
dilation in the isotropic case for all inclusion shapes is zero. Hence, if we are to use
some of the isotropic results on quantum dots for dot–dot interaction, we may conclude
that an interaction is absent. Anisotropy or half-space solution must be invoked to cor-
rectly account for this interaction. Interestingly, because the external dilation is nonzero
in nonlocal elasticity (see Zhang and Sharma [160]), a finite interaction between dots
should exist even in the isotropic case. However, this interaction is likely to be weak
and only of importance for dots very closely spaced to each other. This issue requires
further investigation.

6. Anisotropicity and shape. Several works have modified Eshelby’s (originally isotropic)
formulation to incorporate anisotropic behavior. Progress has largely been made only
in the plane case. An excellent, but somewhat dated, account of these aspects is given
in the now classic monograph by Mura [35]. Some more recent works, that also contain
an extensive list of references on this subject are Ru [162] who discusses arbitrary-
shaped inclusions in anisotropic half and full plane, Li and Dunn [163] address coupled
field anisotropic inclusion problems, and Pan and Yang [164] who present a semiana-
lytical method for application to embedded quantum dots. Inclusion shapes: Chiu [50]
has considered parallelepiped inclusion. Rodin [165] considers the general polyhedral
inclusion and provides and elegant algorithmic approach to determine the elastic state
of arbitrary polyhedral. So do Nozaki and Taya [166].

In addition to the aforementioned group of papers, several other works exist in the context
of nonlinear behavior and of course in application areas (such as effective medium theories,
phase transformations, stability among others). A review of those works is beyond the scope
of this chapter. The following monographs, review articles, books, and references therein are
recommended for the interested reader: Mura [35], Nemat-Nasser and Hori [33], Markov
and Preziosi [185], Weng et al. [186], Bilby et al. [187], Mura et al. [188], and Mura [189].

3. SUMMARY AND OPEN ISSUES
In conclusion, we have reviewed and discussed several works and issues in calculation of
strains in quantum dots and wires under myriad contexts of shape effects, presence of a
free surface, anisotropy considerations, nonlinear effects, and presence of coupled effects
(piezoelectricity). We have also provided a discussion on some of the novel size-dependent
effects that may manifest themselves at the length scales at which these nanostructures exist.
Several avenues of research remain open and inadequately addressed. We highlight some

of our own personal perspectives here.
Size effects in quantum dots appear to be the least explored. The use of classical con-

tinuum mechanics for strain calculations is typical which of course is size independent. As
mentioned in the preceding Section 2.6.1 (in the context of surface energy effects), if care
is not taken, even the atomistic studies may inadvertently exclude or underemphasize size
effects. Some rather interesting scenarios are possible here. For example, we also discussed
the size effects arising out of nonlocal interactions in a previous section. In such a the-
ory, a characteristic length scale appears that is roughly in the neighborhood of the lattice
parameter, that is, size effects in strain may become appreciable for dots that are close in
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size to the lattice parameter. Obviously, this effect is small and only applicable for very tiny
dots. In a recent work, Drugan and Willis [192] show that material with multiple inclusions
behaves as a nonlocal solid with a characteristic length that may be much larger than the
lattice parameter (and roughly scales with the inclusion size)! This implies that an array of
quantum dots (depending upon the volume fraction or density) may cause a screening effect
inducing nonlocal and hence noticeable size effects. This notion, apart from clarifying size
effects, may also be a valuable tool in modeling the many body strain effects.
The discussion of possible screening effects of arrays of quantum dots on the scaling of

strain leads to another relatively less studied topic: quantum dot–quantum dot interaction. In
the isotropic limit, two dilating quantum dots in an infinite medium do not interact mechani-
cally. Perhaps this has led many to conclude that strain-mediated interactions between quan-
tum dots are of relatively less importance. There are, however, several exceptions to this
notion. If quantum dots are sufficiently close to a free surface or interface, they will inter-
act even in the isotropic limit through their image forces. Of course, proper accounting for
the typically cubic anisotropy of most quantum dot materials will also remove this isotropic
degenerate behavior. In particular, we note that the nonlocal solution of a single quantum
dot exhibited nonzero dilation in the barrier. This implies that nonlocal interactions are yet
another mechanism that may mediate dot–dot interaction (even in the isotropic case; the
interactions are expected to be yet stronger in the anisotropic case). Given the computa-
tional advances, these many body interaction effects can accounted for easily (and indeed
have implicitly done in several numerical works). To the best of the authors’ knowledge,
however, a systematic study is not yet available.
Frequently, quantum dots are assumed to have identical materials properties as the barrier.

Computationally, there is no difficulty in accounting for the modulus mismatch (and indeed
is routinely done in numerical simulations). The question, however, remains as to what truly
are the material properties of the quantum dot that is often an alloy and under strain.
Arguments may be advanced from both points of view. Indeed, some works have justified
using identical material properties based on Keyes scaling relation [90–92]. Further, in a
binary or ternary mixture, phases are not often uniformly intermixed [191]. For example,
InGaN quantum dots one often sees a preferential phase segregation into InN [193]. How
uniform is the mixing and hence the strain state in quantum dots? These aforementioned
issues certainly could benefit from more detailed experimentation and theoretical work.
Although we have hardly touched on the strain-band structure coupling in this chapter,

we mention here that several works have studied the viability and applicability of various
approaches to take into account strain-band structure coupling. An oft-quoted work is that
due to Pikus and Bir [194]. Other works have extended and modified this in various fashions,
which we do not discuss here (e.g., Ref. [195] and the eight-band model, [196–197]). The
particular reference that we would like to cite is due to Zhang [198] who presents formalism
for taking into account inhomogeneous strain. This is an important advance however, largely
predicated on the strain potential (in the quantum mechanical Hamiltonian) being local,
that is the deformation potential at a point solely on the strain at that point. As acknowl-
edged by Zhang himself (which in turn was communicated to him by C. Herring), the true
strain potential is nonlocal. The implications of altering his formulation to reflect this fact
remains unresolved. Modification of the Zhang Hamiltonian [198] along with possibly ab
initio computation to investigate this issue is an interesting research avenue.
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