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a b s t r a c t

Flexoelectricity and the concomitant emergence of electromechanical size-effects at the
nanoscale have been recently exploited to propose tantalizing concepts such as the
creation of “apparently piezoelectric” materials without piezoelectric materials, e.g.
graphene, emergence of “giant” piezoelectricity at the nanoscale, enhanced energy
harvesting, among others. The aforementioned developments pertain primarily to hard
ceramic crystals. In this work, we develop a nonlinear theoretical framework for
flexoelectricity in soft materials. Using the concept of soft electret materials, we illustrate
an interesting nonlinear interplay between the so-called Maxwell stress effect and
flexoelectricity, and propose the design of a novel class of apparently piezoelectric
materials whose constituents are intrinsically non-piezoelectric. In particular, we show
that the electret-Maxwell stress based mechanism can be combined with flexoelectricity
to achieve unprecedentedly high values of electromechanical coupling. Flexoelectricity is
also important for a special class of soft materials: biological membranes. In this context,
flexoelectricity manifests itself as the development of polarization upon changes in
curvature. Flexoelectricity is found to be important in a number of biological functions
including hearing, ion transport and in some situations where mechanotransduction is
necessary. In this work, we present a simple linearized theory of flexoelectricity in
biological membranes and some illustrative examples.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Piezoelectrics are an intriguing class of materials where a uniform mechanical strain can induce an electric field and
conversely, a uniform electric field can cause mechanical actuation. This phenomenon has found wide applications: in
energy harvesting, sensing and actuation, advanced microscopes, artificial muscles, minimally invasive surgery among
others (Wang et al., 2010; Madden et al., 2004; Gautschi, 2002; Labanca et al., 2008). Both soft materials (e.g. polymers) and
hard crystalline ceramics exhibit this phenomenon albeit the microscopic mechanisms underpinning piezoelectricity differ
in these two classes of materials (Furukawa, 1989; Damjanovic, 1998).

Recently, a somewhat understudied electromechanical coupling, flexoelectricity, has attracted a fair amount of attention
from both fundamental and applications points of view leading to intensive experimental (Cross, 2006; Ma and Cross, 2001,
2002, 2003, 2006; Catalan et al., 2004; Zubko et al., 2007; Fu et al., 2006, 2007) and theoretical activity in this topic (Sharma
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et al., 2007; Eliseev et al., 2009, 2011; Maranganti and Sharma, 2009; Majdoub et al., 2008a,b, 2009a,b; Sharma et al., 2010,
2012; Gharbi et al., 2011; Kalinin and Meunier, 2008; Dumitrica et al., 2002). The aforementioned works and nearly all the
current literature on flexoelectricity focus on crystalline materials. Since several concepts pertaining to flexoelectricity in
crystalline materials also carry over to soft matter, in the following, we provide some discussion of the former subject also.

To understand flexoelectricity better, it is best first to allude to the central mathematical relation that describes
piezoelectricity:

Pi � dijkɛjk ð1Þ

In the above equation the polarization vector Pi is related to the second order strain tensor ɛjk through the third order
piezoelectric material property tensor dijk. Tensor transformation properties require that under inversion-center symmetry,
all odd-order tensors vanish. Thus, most common crystalline materials, e.g. Silicon, and NaCl are not piezoelectric whereas
ZnO and GaAs are. Physically, however, it is possible to visualize how a non-uniform strain or the presence of strain
gradients may potentially break the inversion symmetry and induce polarization even in centrosymmetric crystals
(Tagantsev et al., 2009; Tagantsev, 1986; Maranganti et al., 2006). This is tantamount to extending relation (1) to include
strain gradients:

Pi � dijkɛjkþ f ijkl
dɛjk
dxl

ð2Þ

Here fijkl are the components of the so-called flexoelectric tensor. While the piezoelectric property is non-zero only for select
materials, the strain gradient-polarization coupling (i.e., flexoelectricity tensor) is in principle non-zero for all (insulating)
materials. This implies that under a non-uniform strain, all dielectric materials are capable of producing a polarization.
The flexoelectric mechanism is well-illustrated by the non-uniform straining of a graphene nanoribbon—a manifestly non-
piezoelectric material (Fig. 1(a)) (Dumitrica et al., 2002; Chandratre and Sharma, 2012). Flexoelectricity has been
experimentally confirmed in several crystalline materials such as NaCl, ferroelectrics like Barium Titanate among others,
e.g. Refs. (Fu et al., 2006, 2007). The mechanisms of flexoelectricity in polymers (while experimentally proven) still remain
unclear (Baskaran et al., 2011, 2012; Chu and Salem, 2012) and atomistic modeling (being conducted by the authors) is
expected to shed light on this issue in the near future. We speculate that the presence of frozen dipoles and their thermal
fluctuations is the cause of flexoelectricity in soft materials, however, we cannot offer a more definitive explanation at this
point and simply emphasize that this phenomenon has been experimentally confirmed (Baskaran et al., 2011, 2012; Chu and
Salem, 2012) and further elucidation is a subject of future research. It is worthwhile to note that the term “flexoelectricity”
was first coined in the context of liquid crystals (Meyer, 1969; deGennes, 1974). A substantial literature on flexoelectricity in
thermotropic liquid crystals does exist—a detailed discussion of which is beyond the scope of the current paper. The reader
is simply referred to a recent text that summarizes much of the literature on that topic (Eber and Buka, 2012).

Flexoelectricity results in the size-dependency of electromechanical coupling and researchers (including us) have
advocated several tantalizing applications that can result through its exploitation. For example, the notion of creating
piezoelectric materials without using piezoelectric materials (Sharma et al., 2007, 2010; Chandratre and Sharma, 2012; Fu
et al., 2007), giant piezoelectricity in inhomogeneously deformed nanostructures (Majdoub et al., 2008a, 2009a), enhanced
energy harvesting (Majdoub et al., 2008b, 2009b), the origins of nanoindentation size effects (Gharbi et al., 2011),
renormalized ferroelectric properties (Catalan et al., 2004; Eliseev et al., 2009, 2011), the origins of the dead-layer effect in
nanocapacitors (Majdoub et al., 2009) among others. In fact, Chandratre and Sharma (2012) have recently shown that
graphene can be coaxed to behave like a piezoelectric material merely by creating holes of certain symmetry. The artificial
piezoelectricity thus produced was found to be almost as strong as that of well-known piezoelectric substances such as
quartz. Such a constructed graphene nanoribbon may be considered to be the thinnest known piezoelectric material. We
briefly elaborate on this notion (Fig. 2). Consider a material consisting of two or more different non-piezoelectric dielectrics
—as a concrete example that has been studied in the past we may think of a (dielectric) graphene nanoribbon impregnated
Fig. 1. Flexoelectricity in membranes. (a) Bending of graphene: upon bending, the symmetry of the electron distribution at each atomic site is broken,
which leads to the polarization normal to the graphene ribbon; an infinite graphene sheet is semi-metallic; however, finite graphene nanoribbons can be
dielectric depending upon surface termination. (b) Bending of a lipid bilayer membrane: due to bending, both the charge and dipole densities in the upper
and lower layers become asymmetric. This asymmetry causes the normal polarization in the bilayer membrane.



Fig. 2. Creating a piezoelectric material without using piezoelectric materials. (a) A material with a second phase, under a uniform stress, will produce local
strain gradients and hence local polarization due to flexoelectricity. If the shape of the second phase is non-centrosymmetrical, the average polarization
will be non-zero as well thus, from a macroscopic viewpoint, exhibiting a piezoelectric like effect. In this figure, this concept is illustrated by riddling a
sheet with triangular holes. Such a sheet, with circular holes will yield a net zero average polarization. (b) The concept may also be realized by using a
superlattice of differing materials. However, here care must be taken. A bilayer superlattice will result in a zero average polarization and (c) a trilayer
superlattice is required to break the requisite symmetry. Nevertheless, finite bilayers (due to symmetry breaking at the free surfaces) will produce this
effect.
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with holes (Fig. 2(a)) (Chandratre and Sharma, 2012). Upon the application of uniform stress, differences in material
properties at the interfaces of the materials will result in the presence of strain gradients. Those gradients will induce local
spatially varying polarization due to the flexoelectric effect. As long as certain symmetry rules are followed, the net average
polarization will be non-zero. Thus, the artificially structured material will exhibit an electrical response under uniform
stress, behaving therefore like a piezoelectric material.1 The length scales must be “small” since this concept requires very
large strain gradients and those for a given strain are generated easily only at the nanoscale. Here we should mention that
the precise scale at which this effect becomes prominent depends on the strength of the flexoelectric coefficients. For
several materials studied in the past, sub-100 nm characteristic length scales are required (e.g. Majdoub et al., 2008a, 2009a;
Eliseev et al., 2009) albeit (as this study will also show) the ramifications of flexoelectricity can also manifest with feature
size of a few microns. Regarding symmetry: Topologies of only certain symmetries can realize the aforementioned concept.
For example, circular holes distributed in a material will not yield apparent piezoelectric behavior even though the
flexoelectric effect will cause local polarization fields. Due to circular symmetry, the overall average polarization is zero.
A similar material, but containing triangular shaped holes or inclusions aligned along a given direction, will exhibit the
required apparent piezoelectricity.2 In a similar vein, a finite bilayer configuration may also be used although a bilayer
superlattice would not work (Fig. 2(b))–see discussions in Sharma et al. (2010).

Flexoelectricity is also important for a special class of soft materials: biological membranes. In this context,
flexoelectricity is referred to as the development of polarization upend changes in the curvature (Fig. 1(b)). Petrov has
discussed this in a series of works (Petrov, 1975, 1998, 1999, 2002, 2006, 2007; Petrov et al., 1993, 1996) and references
therein—these include several detailed experimental confirmation of this phenomenon. Simply, P¼ f eKhn. Here P is the
polarization (per unit area), Kh is the mean curvature, n is the normal vector and fe is the flexoelectric coupling constant that
dictates the strength of the electromechanical coupling. A recent, quite definitive experimental evidence of flexoelectricity
in biological membranes (specifically the converse effect) was recently provided in a work by Brownell et al. (2003) where
its role in cell-membrane tether formation was also elucidated. In addition, flexoelectricity has been found to have
important implications for ion transport (Petrov et al., 1993), hearing mechanism (Brownell et al., 2001, 2003; Raphael et al.,
2000), tether formation (Breneman and Rabbitt, 2009) among others.

There are other types of electromechanical couplings. For example, all insulating materials exhibit electrostriction and
the so-called “Maxwell stress effect” whereby an application of electric field can deform the material. Although
mathematically similar, electrostriction and “Maxwell stress” have different physical origins (Zhao and Suo, 2008). In these
two phenomena, however, a converse effect does not exist (in stark contrast to both flexoelectricity and piezoelectricity).
Moreover, reversal of the electric field does not reverse the deformation direction. Maxwell stress effect and electrostriction,
in addition to being only a one-way electromechanical coupling, are also inherently nonlinear in nature and usually only
appreciable in soft materials. Indeed, there has been intense recent activity in understanding and exploiting electrostriction
and Maxwell stress effect in soft materials. The motivation for considering soft electromechanical materials is well
articulated by a recent overview article by Suo (2010). Inspired from nature, soft materials that respond to multi-field stimuli
can be used in intriguing applications such as (more human like) soft robots and polymer actuators (Trivedi et al., 2008;
Shankar et al., 2007; Pelrine et al., 2000). There is a fair amount of history associated with mechanics oriented research on
this topic. We avoid an elaborate literature review but, to establish appropriate context, highlight a few papers that are
pertinent to the present work. In particular, the reader is referred to Suo et al. (2008) for a literature survey. While one of the
earliest definitive work on deformable electromechanical media is due to Toupin (1956), different flavors have appeared
1 The converse effect can also be shown to exist. A uniform electric field may induce a non-zero average strain.
2 We remark that even for triangular holes or inclusions, if they are distributed randomly, the average polarization will be zero.



Fig. 3. An illustrative example of an electret material. Charge or dipoles are embedded in a homogeneous material. The inhomogeneity may be simply be
due to voids and then usually charge is deposited on the void surfaces through a corona discharging process. Due to the Maxwell stress effect, an applied
stress leads to a change in the pre-existing polarization thus causing the appearance of a linearized piezoelectric type coupling.
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over the years (e.g. Dorfmann and Ogden, 2005; McMeeking and Landis, 2005; Suo et al., 2008; Steigmann, 2009; Eringen
and Maugin, 1990; Liu, 2013a). In particular, in a series of works, Suo, Hong, Zhao and co-workers have explored a variety of
topics related to soft electromechanical materials: instability, energy generation, theoretical formulations, etc. (Zhao and
Suo, 2009; Koh et al., 2009; Wang et al., 2012).

We highlight here a concept related to the so-called electret materials which we will have occasion to analyze later in the
paper. This concept illustrates an interesting use of the “Maxwell stress effect” to create soft “apparently piezoelectric”
materials even though the actual materials are not intrinsically so. The idea is simple yet effective. Take a non-piezoelectric
polymer. Embed layers of charges or dipoles in it. The embedded charge/dipole state is called the electret state. Assume that
this state is reasonably stable (recall that charges will try to migrate to the surface and neutralize). Such a material behaves
like a piezoelectric material provided the elastic properties in the material are non-uniform—e.g. multilayers with charge
layers at the interfaces, or a foamy material containing charges on the void surfaces (Fig. 3). Due to the nonlinear Maxwell
stress effect, deformation of the sample, induces a change in its pre-existing macroscopic polarization and similarly, a
converse effect also exists. For all practical purposes, the “electret composite” behaves like a piezoelectric material—
experimentally, a two-way linear coupling between stress-electric field can be detected even though microscopically the
cause is the Maxwell stress effect. As will become evident through our mathematical derivations, a uniform homogeneous
material with electrets will not exhibit this effect—inhomogeneity in material properties is a must. Usually, especially in
cellular polymers like polypropylene, the air in the voids within the material is broken down through corona charging
process thus depositing charge. Such prepared electret materials are found to be surprisingly stable for long durations of
time. Experimental work has shown that electret-polypropylene foams can produce apparent piezoelectric coefficients up to
1200 pC/N—which is more than 6 times that of PZT (Hillenbrand and Sessler, 2008; Bauer et al., 2004)! Such “apparently
piezoelectric” materials are especially desirable since they are highly flexible and are expected to have wide applications
(Buchberger et al., 2008; Dansachmuller et al., 2007; Graz et al., 2006). To date, the work on this topic is primarily
experimental in nature with only very simple models purporting to describe the experiments. In addition, the interaction of
flexoelectricity (which leads to nanoscale size-effects) and electrets has remained unexplored.

In this paper we develop a nonlinear theoretical framework for flexoelectricity in soft materials—presented in Section 2.
For transparency (without almost any loss of generality) we restrict ourselves to one-dimensional notation for most of the
manuscript. In Section 3, we present a nonlinear derivation of the electret response and compare with some of the simpler
approximate linear results. Apparently, a fully nonlinear solution to this problem has been conspicuously absent from the
literature—somewhat surprising given that the targeted material systems undergo large deformations. We extend our
earlier ideas of “creating apparently piezoelectric materials without using materials” to soft materials and illustrate this for a
bilayer (Section 4) and subsequently explore the coupling between the Maxwell stress effect and flexoelectricity (Section 5).
In particular, we illustrate an interesting nonlinear interplay between these two effects and electret states and show that
unprecedentedly high values of electromechanical coupling can be achieved even in simple composite structures. Finally,
predicated on a simple linearized theory of flexoelectricity in biological membranes, we present a few illustrative examples
on its role in the linkages between electrical and mechanical stimuli.



Fig. 4. The electro-elastic model: a film subject to an applied voltage.
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2. Nonlinear formulation of flexoelectricity in soft materials

Consider a one-dimensional system (a thin film) shown in Fig. 4. Let ðX;Y ; ZÞ be the Lagrangian coordinates of material
points, Pe

0ðXÞ be the external polarization (along X-direction, per unit volume), ρe0ðXÞ be charge density (in the reference
configuration), and be0ðXÞ, te0 be the body force, surface traction (equal and opposite at top and bottom faces) in X-direction,
respectively. The electrodes on the top and bottom faces are assumed to be mechanically trivial. Nevertheless, the
conducting electrodes maintain constant electrostatic potentials on both the top and bottom faces.

The electro-elastic state of the film is described by deformation and polarization—these are the independent variables in
our formulation. In the presence of external charges, dipoles, applied voltage, and mechanical loads the film is deformed;
the deformation is denoted by ðx; y; zÞ ¼ χ ðX;Y ; ZÞ with ðx; y; zÞ being the Eulerian coordinates in the current configuration.
Let P be the intrinsic polarization in X-direction per unit volume (in the reference configuration). Since the film is thin
(the thickness H is much smaller than the width L in the other two directions) and transversely isotropic, for simplicity
we restrict ourselves to the following class of deformation and polarization:

x¼ XþuðXÞ; y¼ YαðXÞ; z¼ ZβðXÞ; P ¼ PðXÞ; ð3Þ

where the scalar functions u; α; β; P : ð0;HÞ-R are determined by the equilibrium conditions. We remark that the above
kinematic assumption about the possible form of deformation is the equivalent to that in the classic theory of extension.
Following the standard framework of nonlinear continuum mechanics, we introduce the stretches in X (resp. Y,Z)-direction:
λ1 ¼ 1þ∂u=∂X (resp. λ2 ¼ ∂y=∂Y ¼ α; λ3 ¼ ∂z=∂Z ¼ β). Let F¼Grad χ be the deformation gradient, J ¼ det F¼ λ1λ2λ3 be the
Jacobian, and for brevity,

λ¼ λ1; λ2; λ3ð Þ and Λ¼ Λ1;Λ2;Λ3ð Þ ¼ dλ1
dX

;
dλ2
dX

;
dλ2
dX

� �
:

To model flexoelectricity we postulate that the internal/stored energy of the film is given by

U½χ ; P� ¼ L2
Z H

0
WðX; λ;Λ; PÞ dX;

where the explicit X-dependence ofW reflects that the film may be heterogeneous. Further, the polarized and deformed film
induces electric field and interacts with external electrical and mechanical loading devices. To account for energies
associated with electric fields and loading devices, we shall first solve for the electric field by the Maxwell equations, i.e., the
electric field e¼ �ξ;x in the current configuration is determined by

½�ε0ξ;xþpðxÞþpeðxÞ�;x ¼ ρeðxÞ on ð0;hÞ;
ξð0Þ ¼ 0; ξðhÞ ¼ V ;

(
ð4Þ

where, without loss of generality, we have assumed that xð0Þ ¼ 0, xðHÞ ¼ h, and the intrinsic polarization (per unit volume),
external polarization (per unit volume) and charge density in the current configuration are given by

p¼ P
J
; ρe; pe
� �¼ 1

J
ρe0; P

e
0

� �
: ð5Þ

Upon a change of variables, in the reference configuration we can rewrite the Maxwell equation (4) as

�ε0
1
λ1

ξ;Xþ
PðXÞþPe

0ðXÞ
J

� �
;X
¼ λ1

J
ρe0 Xð Þ on 0;Hð Þ;

ξð0Þ ¼ 0; ξðHÞ ¼ V :

8><
>: ð6Þ
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Taking into account of the energy of the electric field and external electrical and mechanical devices, we identify the total
free energy of the system as (Liu, 2013a)

F½χ ; P� ¼ U½χ ; P�þEelect½χ ; P��L2
Z H

0
be0xðXÞ dX�L2½te0ðXÞxðXÞ�

����
X ¼ H

X ¼ 0
; ð7Þ

where

Eelect χ ; P½ � ¼ ε0
2
L2
Z h

0

J
λ1

ðξ;xÞ2 dxþL2
J
λ1

ξ �ε0ξ;xþpþpe
� �� ������

x ¼ h

x ¼ 0

¼ ε0
2
L2
Z H

0

J
λ21

ðξ;XÞ2 dXþL2
1
λ1

ξ �ε0
J
λ1

ξ;XþPþPe
0

� �� ������
X ¼ H

X ¼ 0

: ð8Þ

We remark that Eelect½χ ; P� is the electric energy, i.e., the sum of the electric field energy (the fringe field is neglected) and
potential energy associated with the battery maintaining the potential difference, and that the second equality in (8) follows
from a change of variable x-X and (5). Also, one recognizes the last two terms in (7) are the familiar potential energies
contributed by the applied body force and surface tractions, respectively.

By the principle of minimum free energy, the equilibrium state of the film is determined by

min
ðχ ;PÞAS

F½χ ; P�; ð9Þ

where the admissible space S of state variables include all deformations and polarizations ðχ ; PÞ satisfying (3).3

To find the Euler–Lagrange equations associated with a minimizer of (9), by (3) we consider variations

P-Pδ ¼ PþδP1; χ-χ δ ¼
XþuðXÞþδu1ðXÞ;
YαðXÞþYδα1ðXÞ;
YβðXÞþZδβ1ðXÞ;

8><
>: ð10Þ

for arbitrary scalar functions P1;u1; α1; β1 : ð0;HÞ-R. Then standard variational calculations yield

1

L2
d
dδ

U χ δ; Pδ

	 
���
δ ¼ 0

¼
Z H

0

∂W
∂λ

� u1;X ; α1; β1
� �þ ∂W

∂Λ
� u1;XX ; α1;X ; β1;X
� �þ ∂W

∂P
P1

� �

¼
Z H

0
�u1

~T 1;Xþα1 ~T 2þβ1 ~T 3þ
∂W
∂P

P1

� �
þ ~T 1u1þ

∂W
∂Λ2

α1þ
∂W
∂Λ3

β1

� ������
X ¼ H

X ¼ 0

þ∂W
∂Λ1

u1;X

����
X ¼ H

X ¼ 0
ð11Þ

where the second equality follows by integration by parts, and

~T i ¼
∂W
∂λi

� d
dX

∂W
∂Λi

i¼ 1;2;3ð Þ ð12Þ

is the “generalized” (normal) stress in a strain gradient theory. Further, to calculate the first variation of the electric energy
Eelectðχ δ; PδÞ, we write the associated electrostatic potential as

ξδ ¼ ξþδξ1þoðδÞ: ð13Þ
From (4) and (8), and the detailed calculations in the Appendix, we find that

Eelectðχ δ; PδÞ ¼ Eelectðχ ; PÞþδVar1þoðδÞ; ð14Þ
where

Var1¼ L2
Z H

0
P1

ξ;X
λ1

þu1;X ~Σ1þα1 ~Σ2þβ1 ~Σ3

� �
dX; ð15Þ

and

~Σ1 ¼ � J
λ21

ξ;X � ε0
λ1

ξ;Xþ
PþPe

0

J

� �
� ε0J

2λ31
ðξ;XÞ2 ¼ � 1

λ21
ξ;X PþPe

0

� �þ ε0J
2λ31

ðξ;XÞ2; ~Σ2 ¼ � ε0J
2λ21λ2

ðξ;XÞ2; ~Σ3 ¼ � ε0J
2λ21λ3

ðξ;XÞ2:

ð16Þ
We remark that the above expression is the analogue of Piola stress of the familiar Maxwell stress which may be referred to
as the Piola–Maxwell stress. A more systematic derivation of the Piola–Maxwell stress can be found in Tian (2007) and Liu
(2013a).
3 The differentiability and integrability conditions are omitted for simplicity.
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Collecting all terms contributed by the right-hand side of (7), by (11) and (15) we find the first variation of the total free
energy is given by

1

L2
d
dδ

F χ δ; Pδ

	 
���
δ ¼ 0

¼
Z H

0
�u1½ð ~T 1þ ~Σ1Þ;Xþbe0�þα1ð ~T 2þ ~Σ2Þþβ1ð ~T 3þ ~Σ3Þ
h

þ ∂W
∂P

þ ξ;X
λ1

� �
P1

�

þ ~T 1þ ~Σ1�te0
� �

u1

h i����
X ¼ H

X ¼ 0
þ ∂W

∂Λ2
α1þ

∂W
∂Λ3

β1þ
∂W
∂Λ1

u1;X

� �����
X ¼ H

X ¼ 0
: ð17Þ

The equilibrium state ðχ ; PÞ, i.e., a minimizer of (9), shall be such that the first variation (17) vanishes for arbitrary scalar
functions P1;u1;α1; β1, and henceforth necessarily satisfies the following system of ordinary differential equations:

∂W
∂P

þ 1
λ1

ξ;X ¼ 0 on ð0;HÞ;

½ ~T 1þ ~Σ1�;Xþbe0 ¼ 0 on ð0;HÞ;
~T 2þ ~Σ2 ¼ 0 on ð0;HÞ;
~T 3þ ~Σ3 ¼ 0 on ð0;HÞ;

8>>>>>><
>>>>>>:

ð18Þ

and the boundary conditions:

½ ~T 1þ ~Σ1�te0�
���
X ¼ 0 & H

¼ 0;

∂W
∂Λ1

����
X ¼ 0 & H

¼ ∂W
∂Λ2

����
X ¼ 0 & H

¼ ∂W
∂Λ3

����
X ¼ 0 & H

¼ 0:

8>><
>>: ð19Þ

We remark that (18) and (19), together with the Maxwell equation (6), form a closed differential systemwith five differential
equations and five unknown scalar functions (i.e., ξ; P;u; α; β). In principle we can solve these equations for any physical
quantities of interest. Also, this one dimensional theory is the electro-elastic counterpart of the classic nonlinear extension
theory of a bar.
2.1. Isotropic nonlinear flexoelectric materials

To demonstrate the flexoelectric effects in soft matters, consider isotropic flexoelectric materials with the internal energy
density given by

W λ;Λ; Pð Þ ¼Welast λð Þþ g
2
jΛ1j2þ fΛ1Pþ

1
2ðε�ε0ÞJ

jPj2; ð20Þ

where WelastðλÞ is the familiar strain energy density function dictating the mechanical properties of materials, the last term
implies that the dielectric constant (i.e., permittivity) ε of the material is independent of deformation in the absence of
flexoelectric effects, i.e., the third term fΛ1P, the second term ðg=2ÞjΛ1j2 guarantees that the natural state ðλ;Λ; PÞ ¼ ð0;0;0Þ is
the stable equilibrium state of the film in the absence of all external electrical and mechanical loads. Here, constants f, g40,
ε4ε0 are material properties which can be determined by benchmark experiments.

Inserting (20) into (12), we find that the generalized normal stress is given by

~T i ¼
∂Welast

∂λi
�δ1iðgΛ1þ fPÞ;X :

Inserting (20) into (18)–(19) we obtain

P
ðε�ε0ÞJ

þ fΛ1þ
1
λ1

dξ
dX

¼ 0 on ð0;HÞ;
∂Welast

∂λ1
þ ~Σ

′
1�ðgu;XXþ fPÞ;X

� �
;X
þbe0 ¼ 0 on ð0;HÞ;

∂Welast

∂λ2
þ ~Σ

′
2 ¼ 0 on ð0;HÞ;

∂Welast

∂λ3
þ ~Σ

′
3 ¼ 0 on ð0;HÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð21Þ

and the boundary conditions:

∂Welast

∂λ1
þ ~Σ

′
1�ðgu;XXþ fPÞ;X�te0

� �����
X ¼ 0 & H

¼ 0;

ðgu;XXþ fPÞ
���
X ¼ 0 & H

¼ 0;

8>>><
>>>:

ð22Þ
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where

~Σ
′
i ¼ ~Σ i�

P2

2ðε�ε0ÞJλi
:

We remark that if the elastic properties of the soft materials are specified, e.g. the Neo-Hookean hyperelastic model with (μ
—shear modulus, κ—bulk modulus)

Welast λð Þ ¼ μ

2
J�2=3 λ21þλ22þλ23

� ��3
h i

þ κ

2
ðJ�1Þ2; ð23Þ

then Eqs. (21)–(22) together with (6) form a closed boundary value problem which can be solved to determine the state
variables ðχ ; PÞ (i.e., u; α; β; P) and electrostatic potential ξ.

Moreover, if the material is incompressible with J ¼ λ1λ2λ3 ¼ 1, the state variables as given by (3) shall satisfy

J ¼ ð1þu;XÞαβ¼ 1:

To explore the implication of the above constraint, by the method of Lagrangian multiplier we add to the total free energy
(7) a termZ H

0
q½ð1þu;XÞαβ�1� dX;

where q : ð0;HÞ-R can be interpreted as the hydrostatic pressure as in the classic context. Repeating the calculations from
(10) to (17) and taking into account the contribution of the above additional term, we find the associated Euler–Lagrange
equations

∂W
∂P

þ 1
λ1

ξ;X ¼ 0 on ð0;HÞ;

~T 1þ ~Σ1þ
q
λ1

� �
;X
þbe0 ¼ 0 on ð0;HÞ;

~T 2þ ~Σ2þ
q
λ2

¼ 0 on ð0;HÞ;

~T 3þ ~Σ3þ
q
λ3

¼ 0 on ð0;HÞ;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð24Þ

and the boundary conditions:

~T 1þ ~Σ1þ
q
λ1

�te0

� �����
X ¼ 0 & H

¼ 0;

∂W
∂Λ1

����
X ¼ 0 & H

¼ ∂W
∂Λ2

����
X ¼ 0 & H

¼ ∂W
∂Λ3

����
X ¼ 0 & H

¼ 0:

8>>>><
>>>>:

ð25Þ

For incompressible flexoelectric Neo-Hookean material described by (20) and (23), based on symmetry we observe that a
solution of the above boundary value problem (24) and (25) and the Maxwell equation (6) shall satisfy

λ2 ¼ α¼ λ3 ¼ β¼ λ�1=2
1 on ð0;HÞ: ð26Þ

Further, we can rewrite the strain energy density (23) as

Welast λ1ð Þ ¼ μ

2
λ21þ

2
λ1

�3
� �

; ð27Þ

which, by (12), (24)3,4 and (26), implies

~T 2 ¼ ~T 3 ¼ 0; ~Σ2 ¼ ~Σ3 ¼ �qλ1=21 on ð0;HÞ:
Eliminating q in (24)1,2 by the above equation, we obtain the following explicit boundary value problem for u, ξ, P:

P
ðε�ε0Þ

þ f λ1;Xþλ�1
1 ξ;X ¼ 0 on ð0;HÞ;

½μðλ1�λ�2
1 Þþ ~Σ eq�ðgu;XXþ fPÞ;X �;Xþbe0 ¼ 0 on ð0;HÞ;

½�ε0λ
�1
1 ξ;XþPþPe

0�;X ¼ λ1ρ
e
0 on ð0;HÞ;

ξð0Þ ¼ 0; ξðHÞ ¼ V ; ðgu;XXþ fPÞjX ¼ 0 & H ¼ 0;

½μðλ1�λ�2
1 Þþ ~Σ eq�ðgu;XXþ fPÞ;X�te0�jX ¼ 0; & H ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð28Þ

where λ1 ¼ 1þu;X ,

~Σ eq ¼ ~Σ1�λ�3=2
1

~Σ2 ¼ � 1
λ21

ξ;X PþPe
0

� �þ ε0
λ31

ðξ;XÞ2:
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In the absence of flexoelectricity (f ¼ g ¼ 0), the above boundary value problem can be rewritten as

P
ðε�ε0Þ

þλ�1
1 ξ;X ¼ 0 on ð0;HÞ;

½μðλ1�λ�2
1 Þþ ~Σ eq�;Xþbe0 ¼ 0 on ð0;HÞ;

½�ε0λ
�1
1 ξ;XþPþPe

0�;X ¼ λ1ρ
e
0 on ð0;HÞ;

ξð0Þ ¼ 0; ξðHÞ ¼ V ;

½μðλ1�λ�2
1 Þþ ~Σ eq�te0�jX ¼ 0 & H ¼ 0:

8>>>>>>>>><
>>>>>>>>>:

ð29Þ

In the absence of external dipoles, charges and body force, i.e., Pe
0 ¼ ρe0 ¼ be0 ¼ 0, upon a change of variable X-x the above

equation can be rewritten as

p
ðε�ε0Þ

þξ;x ¼ 0 on ð0;hÞ;

½μðλ1�λ�2
1 Þþ ~Σ eq�;X ¼ 0 on ð0;hÞ;

½�ε0ξ;x�;x ¼ 0 on ð0;hÞ;
ξð0Þ ¼ 0; ξðhÞ ¼ V ;

½μðλ1�λ�2
1 Þþ ~Σ eq�te0�jX ¼ 0 & H ¼ 0:

8>>>>>>>><
>>>>>>>>:

ð30Þ

A solution to the above problem is obviously given by ξðxÞ ¼ ðx=hÞV , and

μ λ1�λ�2
1

� �¼ � ~Σ eq ¼ te0�
1
λ1

ε
V
h

� �2

¼ te0�
1
λ31

ε
V
H

� �2

: ð31Þ

We comment that the term �εðV=hÞ2 is often termed as “the equivalent electromechanical pressure” in the engineering
literature. For small strain ðh�HÞ=H51 (which requires te05μ), we immediately have

λ1�1¼ h�H
H

� 1
3μ

te0�ε
V
H

� �2
" #

: ð32Þ
3. Nonlinear behavior of electrets: creating soft piezoelectric materials

In this section, we study an electret composite as discussed in the Introduction. We chose the simplest possible
configuration: a simple bilayer with charge embedded at the interface. Using crude approximations, this problem has been
earlier studied by Kacprzyk et al. (1995)—the analytical models are fairly simple and the role of Maxwell stress is not
evident. A discussion of the experimental work may be found in Hillenbrand and Sessler (2008) and Bauer et al. (2004). As
shown in Fig. 5, let X ¼Ha and X ¼ �Hb correspond to the top and bottom surfaces, respectively. The interface between two
layers locates at X¼0. Then the charge density can be written as ρe0ðXÞ ¼ q0δðXÞ. δðXÞ is the Dirac delta function which is only
non-zero at X¼0.

Below we present a nonlinear solution of this problem by the theory developed in the last section—in this section, we
ignore flexoelectricity. Without loss of generality, assume that the deformation x : ð�Hb;HaÞ-R and electrostatic potential
ξ : ð�Hb;HaÞ-R satisfy

xðX ¼ 0Þ; xðX ¼HaÞ ¼ ha; xðX ¼ �HbÞ ¼ �hb;

ξðX ¼ 0Þ ¼ 0; ξðX ¼HaÞ ¼ Va; ξðX ¼ �HbÞ ¼ �Vb;

where hi;ViAR ði¼ a; bÞ are constants to be determined. By (29)1,3,4 we have

VaþVb ¼ V ;
εa

λ2a

Va

Ha
� εb

λ2b

Vb

Hb
¼ q0 ð33Þ

In the absence of flexoelectricity (f¼g¼0), by (30)–(31) we have4

μi λi�λ�2
i

� �¼ te0�
1
λ3i

εi
V i

Hi

� �2

i¼ a; bð Þ: ð34Þ

We remark that (33) and (34) are nonlinear algebraic equations which can be conveniently solved numerically.
Although we will eventually present nonlinear numerical results, it is instructive to obtain an approximate analytical

solution also; which we do through linearization. For that purpose, with the assumption of small strains, by (32) equations
4 Subsequently we drop the subscript ‘1’ associated with stretching λ1 in X-direction; the subscript ‘i’ now represents the phase a or b.



Fig. 5. The electret composite: a bilayer with embedded charge at the interface.
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in (34) imply:

λi�1¼ hi�Hi

Hi
� 1

3μi
te0�εi

Vi

Hi

� �2
" #

: ð35Þ

Solving (33) and (35) for Vj;hj with the assumption of small strains (λa, λb -1), we obtain

Va ¼Ha
q0HbþVεb
εaHbþεbHa

; Vb ¼Hb
�q0HaþVεa
εaHbþεbHa

; ha ¼Haþ
Ha

3μa
�εa

Va

Ha

� �2
 !

; hb ¼Hbþ
Hb

3μb
�εb

Vb

Hb

� �2
 !

: ð36Þ

Therefore, the total change of the thickness Δu is given by

Δu¼ haþhb�Ha�Hb ¼ � 1
3μa

εa
q20H

2
bHa

ðεaHbþεbHaÞ2
� 1

3μb
εb

q20H
2
aHb

ðεaHbþεbHaÞ2
� 2

3μa
εa

q0HaHbεbV

ðεaHbþεbHaÞ2

þ 2
3μb

εb
q0HaHbεaV

ðεaHbþεbHaÞ2
� 1

3μa
εa

V2ε2bHa

ðεaHbþεbHaÞ2
� 1

3μb
εb

V2ε2aHb

ðεaHbþεbHaÞ2
:

For physical transparency, it is convenient to separate Δu into two parts:

Δu¼ΔuemþΔum;

where Δuem is the displacement caused by the interaction of the electret state and Maxwell stress and is linearly
proportional to the applied voltage, and Δum is the displacement proportional to square of the applied voltage (similar to
what would happen for a homogenous material)

Δuem ¼ � 1
3μa

εa
q20H

2
bHa

ðεaHbþεbHaÞ2
� 1

3μb
εb

q20H
2
aHb

ðεaHbþεbHaÞ2
� 2

3μa
εa

q0HaHbεbV

ðεaHbþεbHaÞ2
þ 2

3μb
εb

q0HaHbεaV

ðεaHbþεbHaÞ2
;

Δum ¼ � 1
3μa

εa
V2ε2bHa

ðεaHbþεbHaÞ2
� 1

3μb
εb

V2ε2aHb

ðεaHbþεbHaÞ2
:

Similar to the form reported in the literature (Kacprzyk et al., 1995), we then define the linear change of the thickness with
respect to the applied voltage as the effective piezoelectric coefficient:

deff ¼ dΔuem

dV
¼ � 2q0HaHbεaεb

3ðεaHbþεbHaÞ2
1
μa

� 1
μb

� �
: ð37Þ

However, for soft material, the small-deformation assumption is certainly contraindicated. In the following, we present
results for the full nonlinear problem (albeit using numerics). A general purpose finite-element based partial differential
equation solver (COMSOL4.3a, 2012) was used for this purpose. Because of the highly nonlinear nature of the problem, the
quartic (4th-order) 1D finite element is used for all the calculations in this paper. Another reason of using the higher order
element here is that the high order continuity needs to be satisfied throughout the specimen. Polypropylene cellular film
and polyvinylidene fluoride (PVDF) are used for layers A and B, respectively. The material properties listed below are from
the literatures (Qu and Yu, 2011; Chu and Salem, 2012).

Layer A: μa ¼ 0:95 MPa, εa ¼ 2:35ε0, ε0 ¼ 8:85� 10�12F=m.
Layer B: μb ¼ 2 GPa, εb ¼ 9:5ε0.
Here, μi and εi ði¼ a; bÞ are the shear modulus and permittivity of the A-layer and B-layer, respectively.
It is worthwhile to note that while in the linearized analytical solution, we are able to extract the “piezoelectric type”

response by discarding the pure Maxwell stress effect (i.e., the quadratic term in the voltage), in the numerical solution we
resort to the following: two cases for q0 ¼ �1 mC=m2 and q0 ¼ 0 are calculated separately. The charge density value used for



Fig. 6. Effective piezoelectricity of a soft electret composite.

Fig. 7. A bilayer flexoelectric structure under uniform mechanical loading.
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the numerical results is of the same order as what is realized and measured experimentally (Qu and Yu, 2011; Sessler and
Hillenbrand, 1999). Then the ratio of the change of the total thickness Δu to the change of applied voltage ΔV is computed
for each case. The effective piezoelectricity deff is then the difference between the Δu=ΔV from the two cases. Fig. 6 shows
the variation of the effective piezoelectric coefficient with respect to the applied electric field. In the figure, deff is
normalized by the piezoelectric coefficient of Barium Titanate dBaTiO3 which is about 78 pC/N. When the applied electric field
is small, the predicted deff is very close to the linear model. However, as evident, the linear model is valid for a very narrow
range of applied electric field. A remarkable observation is that when the applied electric field is as high as 0.05 V/nm, we
can obtain an effective piezoelectric response which is more than twice that of Barium Titanate. As evident from the linear
model (37), by choosing a foam (i.e., polymerþvoids rather than two polymers) we can engineer an even stronger response.
4. Nonlinear flexoelectricity: creating soft piezoelectric materials

In this section, we consider the flexoelectric effect in the context of the simple bilayer structure shown in Fig. 7. The
difference between this model and the previous one is that external interfacial charge is absent. As explained in the
Introduction, the two layers will experience different deformations and result in strain gradients at the interface.
Flexoelectricity will then cause the bilayer structure to behave like an apparently piezoelectric material. For this problem,
the voltage difference between the two surfaces is maintained to be zero throughout the calculation; however, a uniform
loading t0

e
is applied. Under this loading, an electric displacement will ensue in the body. The effective piezoelectricity is

then calculated by deff ¼ d ~D=dte0.
In the absence of external polarization, charges and body force, i.e., Pe

0 ¼ be0 ¼ 0, by (28) we obtain the following explicit
boundary value problem for u; ξ; P:

P
ðε�ε0Þ

þ f λ;Xþλ�1ξ;X ¼ 0 on ð�Hb;HaÞ;

½μðλ�λ�2Þþ ~Σ eq�ðgu;XXþ fPÞ;X �;X ¼ 0 on ð�Hb;HaÞ;
½�ε0λ

�2ξ;Xþλ�1P�;X ¼ 0 on ð�Hb;0Þ [ ð0;HaÞ;
ξð�HbÞ ¼ 0; ξðHaÞ ¼ 0; ðgu;XXþ fPÞjX ¼ �Hb & Ha

¼ 0;

½μðλ�λ�2Þþ ~Σ eq�ðgu;XXXþ fP;XÞ�te0�jX ¼ �Hb & Ha
¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð38Þ
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where

λ¼ 1þu;X ; ~Σ eq ¼ � 1
λ2

ξ;X PþPe
0

� �þ ε0
λ3

ðξ;XÞ2:

The interfacial conditions are

1ξU¼ 0; 1�ε0λ
�2ξ;Xþλ�1PU¼ 0;

1uU¼ 0; 1u;XU¼ 0; 1gu;XXþ fPU¼ 0;

1μðλ�λ�2Þþ ~Σ eq�ðgu;XXþ fPÞ;XU¼ 0;

8>><
>>:

where 1U¼ ðÞjX ¼ 0þ �ðÞjX ¼ 0� .
For this problem, we set the displacement on the interface uð0Þ to be zero to eliminate rigid body motion. Polypropylene

cellular film and polyvinylidene fluoride (PVDF) are used for the layers A and B, respectively—as in the preceding section.
The material properties of the two layers are given by:

Layer A: μa ¼ 0:95 MPa, f a ¼ 46:79 N m=C, ga ¼ 1:28� 10�8 N, εa ¼ 2:35ε0.
Layer B: μb ¼ 2 GPa, f b ¼ 179 N m=C, gb ¼ 5:42� 10�7 N, εb ¼ 9:5ε0.
The flexoelectric coefficient of PVDF is reported in Chu and Salem (2012). Since there is no report on the flexoelectricity

coefficient of polypropylene cellular film, in this work, we have assumed a reasonable value which is within the range of
known values for common polymer materials. Also, the value of g has to be estimated. The reader is referred to two works
(Maranganti and Sharma, 2007; Nikolov et al., 2007) that use atomistic and microscopic considerations to determine this
parameter that sets the nonlocal elastic length scale. We use a simpler route to predict an approximate value for the
polymers studied by us. As motivated by Maranganti and Sharma (2007), the characteristic nonlocal elastic length scale can
be approximated by the radius of gyration. Accordingly, we set

ffiffiffiffiffiffiffiffiffiffiffi
g=3μ

p
� Rg , where Rg is the radius of gyration of the

polymers studied.
Fig. 8 shows the size effect on the effective piezoelectricity for different stress levels. In this figure, once again, deff is

normalized by dBaTiO3 . Several observations may be made: (i) unlike the size-independent electret case studied in the
preceding section, scaling can be profitably used to engineer a high electromechanical coupling by exploiting the
flexoelectric effect, (ii) the resulting electromechanical coupling in soft materials is quite high—reaching close to 20 times
that of Barium Titanate!, and finally, (iii) unlike hard ceramics, the pronounced size-effect is evident at the micron scale (as
opposed to nanoscale). The latter has important ramifications in terms of experimental verification and exploitation for
practical applications.

5. The interaction of electrets and flexoelectricity

From the preceding sections, it is well apparent that electrets and flexoelectricity both may be used to dramatically
enhance electromechanical coupling in soft materials—in particular, this enhanced electromechanical coupling is not the
restrictive one-way coupling characteristic of the Maxwell stress effect or electrostriction but rather something that
manifests itself as macroscopic piezoelectricity. In this section, we consider the likelihood of a nonlinear interaction
between these effects. The statement of this boundary value problem is almost the same as the previous section except that
there is a jump of electric displacement at the interface—since we now embed an interfacial external charge between the
layers:

1�ε0λ
�2ξ;Xþλ�1PU¼ q0

where q0 is the charge density at the interface.
Calculations are done numerically as before. As shown in Fig. 9(a), flexoelectricity dominates completely at small sizes.

Only at very large sizes (where the flexoelectric response asymptotically goes to zero) does the electret effect show any
impact (Fig. 9(b)). It is found that when above 20 μm, the “no electret” model shows no piezoelectricity while the “electret”
model shows a constant piezoelectricity which is size-independent. We conclude, from our results that while both these
Fig. 8. Size-dependent effective piezoelectricity as a function of applied loading: t0
e
.



Fig. 9. Interaction between the flexoelectric and electret effects at (a) nanometer scale and (b) micrometer scale.
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effects are important in their own right, there is little interaction between them (at least in the one-dimensional problems
studied by us).
6. A simplified theory for biological membranes and illustrative examples

It is anticipated that the coupling between elasticity and electricity in biological membranes is important for many
biological functions. From a mechanistic viewpoint, we can rule out the piezoelectric effect in biological membranes by
symmetry. Therefore, the leading order coupling between strain and polarization has to be “flexoelectric”, i.e., the coupling
between strain gradient and polarization.

The flexoelectric theory concerning thin membranes has been developed in Mohammadi et al. (2014); a formal
derivation of the theory is presented in Liu. In this formulation, we consider a thin membrane occupying
U � ð�h=2;h=2Þ �R3, with U �R2 being an open bounded domain in xy-plane and h being the thickness of the membrane.
Since the thickness hb1, the thin membrane may be idealized as a two-dimensional body; the thermodynamic state is then
described by the out-of-plane displacement w : U-R and the out-of-plane polarization P : U-R. For thin membranes,
we also anticipate that bending is the predominant mode of deformation, and hence use the linearized curvature tensor
(or strain gradient) of the membrane ξ¼ �∇∇w to describe the deformed state of the membrane.

To model the flexoelectric effect, we postulate that the total internal/stored energy of an isotropic membrane is given by

U½w; P� ¼
Z
U
Wð∇∇w; PÞ; ð39Þ

where W : R2�2
sym � R-R is the total internal energy density function and given by a quadratic function

W ∇∇w; Pð Þ ¼ κb
2
ðΔwÞ2þκgdet ∇∇wð Þþ fPΔwþ1

2
azP

2: ð40Þ

Here, we notice that the elastic part, ðκb=2ÞðΔwÞ2þκgdetð∇∇wÞ, of the membrane energy coincides with the linearized
Helfrich–Canham model (Helfrich, 1973) of biological membranes that are widely used by bio-physicists (which is in turn
identical to the Kirchhoff-Love plate theory (Love, 1944)), the term fPΔw gives rise to the coupling between polarization and
curvature (flexoelectric effects), and the last term 1

2 azP
2 arises from the dielectric property of the membrane. The constants

κb; κg , f ; az are material properties of the flexoelectric membrane and may in general depend on in-plane positions.
Moreover, the stability of the membrane requires that (Mohammadi et al., 2014):

κb40; �2κboκgo0; a40 and κbþ
κg
2

4
f 2

a
: ð41Þ

The boundary of the flexoelectric membrane is clamped: w;∇wj∂U ¼ 0. Then under the application of an external electric
field Ez : U-R and a mechanical body force bz : U-R, the total free energy of the membrane is given by

F½w; P� ¼
Z
U
Wð∇∇w; PÞ�

Z
U
½PEzþwbz�; ð42Þ

where the first integral is the internal energy of the flexoelectric membrane, and the second one is the potential energy
arising from the interaction between the membrane and the external electric field and mechanical loading device.

In the equilibrium state, by the principle of minimum free energy the pair of ðw; PÞ shall minimize the total free
energy (42):

min
ðw;PÞAS

F½w; P� ð43Þ



Q. Deng et al. / J. Mech. Phys. Solids 62 (2014) 209–227222
where the admissible space for (w, P) is given by

S≔ ðw; PÞ :
Z
U
j∇∇wj2oþ1;

Z
U
jPj2oþ1; w;∇wj∂U ¼ 0

� �
: ð44Þ

By standard variational calculations (Mohammadi et al., 2014), it can be shown that a minimizer ðw; PÞ of the minimization
problem (43) necessarily satisfies the following Euler–Lagrange equations and boundary conditions:

∇∇ � ðL∇∇wÞþΔðfPÞ�bz ¼ 0 on U;

fΔwþaP�Ez ¼ 0 on U;
w¼ 0; ∇w¼ 0 on ∂U:

8><
>: ð45Þ

Using (45)2 we eliminate P in (45)1, 4,5, and obtain

M≔ ~L∇∇w; ~L≔L� f 2

a
I 	 I on U;

∇∇ � Mþ f
a
EzI

� �
�bz ¼ 0 on U;

w¼ 0; ∇w¼ 0 on ∂U:

8>>>>><
>>>>>:

ð46Þ
6.1. Bending of flexoelectric membranes in an electric field

Consider a flexoelectric membrane. In the absence of applied body force bz¼0, the membrane can nevertheless be bent
by an external electric field since the term γEzI in (46)1 serves as a “source” term for the boundary value problem (46) of w. It
is of interest to investigate the effects of the external field on w. For simplicity, assume that the membrane is homogeneous
and isotropic, and hence the boundary value problem (46) can be rewritten as

Δ½kbΔwþγEz� ¼ 0 on U; ð47Þ

where kb ¼ 2μbþλb� f 2=a. For appropriate boundary conditions as specified in (40)3,4, it is standard to solve (47) for w. As
examples, below we present a few explicit solutions, assuming infinite membrane on R2 and natural boundary conditions at
the infinity:

j∇∇wðxÞj-0 as jxj-þ1: ð48Þ

We remark that w is only determined within an arbitrary linear function of (x,y) by the above conditions. Also, appropriate
decay conditions on the source term Ez are required for (48). These simple solutions may be used for measuring the material
properties in (40) and as the benchmarks of numerical schemes.
6.2. Ez ¼ EzðxÞ

Since Ez is independent of y, by symmetry we seek a solution of form w¼w(x) to (47), i.e.,

d2

dx2
kb

d2

dx2
w xð ÞþγEz xð Þ

" #
¼ 0 8xAR:

The general solution to the above equation is given by

w xð Þ ¼ �
ZZ

γ

kb
Ez xð ÞþC0þC1x; ð49Þ

where C0;C1 are the integration constants and shall be determined by boundary conditions. In particular, if the external field
is generated by an infinite line charge of line density q along ey direction and above the membrane with distance z0, then

Ez xð Þ ¼ � qz0
2πε0

ðz20þx2Þ�1;

where ε0 is the permittivity of vacuum. By (49) we have

w xð Þ ¼ qγ
2πε0kb

x arctan
x
z0

� �
� z0

2
log x2þz20
� �� �

:

Fig. 10 shows that the line charge q can cause the deformation of a flexoelectric membrane. In the figure, x is normalized
by the distance between the charge and the membrane z0, w(x) is normalized by the term w0 ¼ qγ=ε0kbz0. We expect this
and related results to have important implications for the study of lipid bilayers by ions in the surrounding electrolytes.
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Fig. 10. Deflection of a flexoelectric membrane near a line charge.
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6.3. Ez ¼ EzðrÞ

Since Ez is only a function of r¼ ðx2þy2Þ1=2, by symmetry we seek a solution w¼w (r) to (47):

d
r dr

r
d
dr

kb
d

r dr
r
d
dr

w rð ÞþγEz rð Þ
� �

¼ 0 8r40:

Neglecting immaterial integration constants, by (48) we have

d
r dr

r
d
dr

w rð Þ ¼ � γ

kb
Ez rð Þ: ð50Þ

Upon specifying the functional form Ez(r), we can integrate the above equation explicitly for w(r). In particular, if the
external field is generated by a point charge Q above the membrane at z¼ z0, then

Ez rð Þ ¼ � qz0
4πε0

ðz20þr2Þ�3=2:

By (50) we have

w rð Þ ¼ � qγ
4πε0kb

log rð Þ� log z20þz0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þz20

q� �� �
:

6.4. Ez ¼ EzχΩ1

Here Ω1 �R2 is a regular domain; χΩ1
, equal to one on Ω1 and zero otherwise, is the characteristic function of Ω1. By (48),

a solution to (46) necessarily satisfies

Δw¼ � γ

kb
EzχΩ1

on R2: ð51Þ

If Ez is constant and Ω1 is an ellipse, it is well-known that a solution to the above equation is necessarily a quadratic function
restricted to Ω1 (Kellogg, 1954). In other words,

∇∇w¼ � γ

kb
EzQ on Ω1; ð52Þ

where the matrix QAR2�2
sym is given by elliptic integrals (Liu et al., 2006; Liu, 2013b):

Q ¼ 1
2π

Z
S1

k̂ 	 k̂detðAÞ
jAk̂j2

dk̂;

where AAR2�2
sym is such that Ω1 ¼Ax : xAB2, B2 �R2 is a unit circle, and S1 ¼ xAR2 : jxj ¼ 1 is the perimeter of the unit

circle.
Physically, Eq. (52) means that the bending curvature tensor is constant restricted to Ω1. This is a remarkable property of

ellipses and can be used to solve inhomogeneous problems. The exterior solution to (51) is also explicitly given in Kellogg
(1954).

7. Concluding comments

By judiciously using symmetry and heterogeneous materials, two simple mechanisms permit the engineering of a rather
large electromechanical coupling in soft materials: electrets and flexoelectricity. Most importantly, the emergent
macroscopic electromechanical coupling is reminiscent of piezoelectricity, i.e., the mechanical and electrical fields are
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coupled even at the linear order; reversal of stimuli reverses the response and there is a true two-way coupling. While the
electret mechanism is size-independent, flexoelectricity (as fully anticipated from past work) leads to a size-dependent
response. What is surprising however is that, in soft materials, the impact of flexoelectricity is quite a bit stronger than even
the highly flexoelectric crystalline ferroelectrics, and moreover, the effect is relevant even when the feature sizes are the
order of microns. As shown in Section 4, a simple bilayer structure consisting of some rather typical polymers was shown to
exhibit a piezoelectric response 20 times that of the well-known ferroelectric, Barium Titanate, at high enough stress.
Although electrets have been experimentally exploited, albeit with little regard to their large-deformation behavior, soft
flexoelectric composites of the type described in this work are yet to be made. Our linearized analytical expression (at least
for electrets, (37)) clearly indicates that the reason for the large response in soft materials: the apparent piezoelectricity is
inversely proportional to the difference in the stiffnesses of the constituents. Therefore, material heterogeneity is essential
and soft materials will always result in a larger response. This can be carried even further by imaging a “foam composite”:
polymer consisting of voids. Although we did not analyze this configuration rigorously, use of our derived simple linear
expression (which can be used for back-of-the-envelope calculation) indicates that we could potentially achieve upwards of
10 times Barium Titanate piezoelectricity (in the electret case) and many folds that for the flexoelectric case.

As has been well-studied by Suo and co-workers, e.g. Suo (2010), stability analysis is an important element of
electromechanical response in soft materials. To our knowledge, no work has appeared so far in that direction pertaining to
either electrets or flexoelectric materials. The latter, due to the presence of higher order terms requires some care and we
expect this to be an interesting avenue for future research.

In regards to biological membranes, we have shown that in an otherwise electromechanically inert membrane,
deformation can ensue due to a non-uniform applied field. For example, a simple point charge or ion can locally bend
the membrane. We hope that some of the developments outlined in the present work will pave the way for studying the
ramifications of charge-membrane interaction on hearing mechanism, ion transport and others—such an application is
beyond the scope of the present work.
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Appendix A. Derivation of Piola–Maxwell stress

The Piola–Maxwell stress (17) is the conjugate quantity of variation of deformation gradient for the electric energy. It
turns out that the derivation of the expression of Maxwell stress in reference configuration is more transparent in a general
three dimensional setting than the one dimensional setting in Section 2. This simply arises from the fact that direct tensor
notations are much shorter than scalar notation.

To include the model in Section 2 as a special case, we consider a body ΩR �R3 in the reference configuration. Let ΓD;ΓN

be a subdivision of the boundary ∂ΩR with the electrostatic potential ξ¼ ξb on ΓR and surface charge density ρsurf ¼ 0 on ΓN .
Further, the body Ω contains an external polarization Pe

0 : ΩR-R3, an intrinsic polarization P : ΩR-R3, and an external
charge density ρe0 : ΩR-R3. Let χ : ΩR-Ω be the deformation carrying every material point in the reference configuration to
a spatial point in the current configuration Ω. As usual, a material point in the reference (current) configuration is denoted
by Lagrangian coordinate X¼ ðX;Y ; ZÞ (Eulerian coordinate x¼ ðx; y; zÞ). The operators Grad;Div;Curl and grad;div; curl are
taken with respect to Lagrangian coordinate X and Eulerian coordinate x, respectively. Denote by F¼Grad χ the deformation
gradient, C¼ FTF the Cauchy–Green strain tensor and J ¼ det F the Jacobian. From the classic continuum mechanics, for any
vector field v : ∂Ω-R3 we haveZ

∂Ω
v � n ds¼

Z
∂ΩR

V � JF�TN dS; ðA:1Þ

where V¼ vðχ ðXÞÞ, and n (resp. N) is the unit outward normal on the boundary of the body in the current (resp. reference)
configuration.

By the Maxwell equation, we know that the electrostatic potential necessarily satisfies (cf., (4))

div d¼ ρe; d¼ �ε0 grad ξþpþpe in Ω;

ξ¼ ξb on ΓD′; ð�ε0 grad ξþpþpeÞ � n¼ 0 on Γ′
N ;

(
ðA:2Þ

where ðΓ′
D;Γ

′
NÞ ¼ χ ðΓD;ΓNÞ is the image of the boundaries, and (cf., (5))

p;pe; ρe
� �¼ 1

J
P;Pe

0; ρ
e
0

� �
:
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In the reference configuration, by (A.1) the above equation can be rewritten as

Div ~D ¼ ρe0;
~D≔�ε0JC

�1 Grad ξþF�1ðPþPeÞ in ΩR;

ξ¼ ξb on ΓD; N � ~D ¼ 0 on ΓR:

(
ðA:3Þ

Upon solving the boundary value problem (A.2) or (A.3), we identity the electric energy as (cf., (8))

Eelect χ ;P½ � ¼ ε0
2

Z
Ω
jgrad ξj2þ

Z
ΓD ′

ξbd � n¼ ε0
2

Z
ΩR

JjF�T Grad ξj2þ
Z
ΓD

ξb ~D � N: ðA:4Þ

We now consider variations of deformation and polarization:

χ-χ δ ¼ χþδχ 1; P-Pδ ¼ PþδP1: ðA:5Þ

Algebraic calculations show that (F1 ¼Grad χ 1)

F�1
δ ¼ F�1�δF�1F1F

�1þoðδÞ; Jδ ¼ J½1þδ TrðF�1F1Þ�þoðδÞ;C�1
δ ¼ C�1�δðF�1F1C

�1þC�1FT1F
�T ÞþoðδÞ: ðA:6Þ

Further, by (A.3) we see that the electric potential ξδ satisfies

Div½�ε0JδC
�1
δ Grad ξδþF�1

δ ðPþδP1þPeÞ� ¼ ρe0 in ΩR;

ξδ�ξb ¼ 0 on ΓD; ~Dδ � N¼ 0 on ΓN :

(
ðA:7Þ

From the above equation, it is easy to see that the actual electric field and hence the electric energy depend on the
deformation. To find the change of electric field to the leading order, we assume that

ξδ ¼ ξþδξ1þoðδÞ; ~Dδ ¼ ~Dþδ ~D1þoðδÞ:

From the definition (A.3)1 and (A.6), we find that

~D1 ¼ �ε0JC
�1 Grad ξ1�ε0J TrðF�1F1ÞC�1 Grad ξþε0JðF�1F1C

�1þC�1FT1F
�T Þ Grad ξ�F�1F1F

�1PþF�1P1:

Inserting the above equation into (A.7) and keeping the terms of order δ, we obtain

Div ~D1 ¼ 0 in ΩR;

ξ1 ¼ 0 on ΓD; ~D1 � N¼ 0 on ΓN :

(

Multiplying the first of the above equations by ξ, by the divergence theorem we find thatZ
∂ΩR

ξ ~D1 � N�
Z
ΩR

Grad ξ � ~D1 ¼ 0: ðA:8Þ

That is,Z
ΩR

ε0J Grad ξ � C�1 Grad ξ1 ¼ �
Z
∂ΩR

ξ ~D1 �Nþ
Z
ΩR

Grad ξ

� ½�ε0J TrðF�1F1ÞC�1 Grad ξþε0JðF�1F1C
�1þC�1FT1F

�T Þ Grad ξ�F�1F1F
�1PþF�1P1�: ðA:9Þ

Therefore,

Eelect½χ δ;Pδ� ¼ Eelect½χ ;P�þδVar1þoðδÞ; ðA:10Þ

where, by (A.4) and (A.6), we have

Var1¼ ε0
2

Z
ΩR

J Tr F�1F1
� �

jF�T Grad ξj2� J Grad ξ � F�1F1C
�1þC�1FT1F

�T
� �

Grad ξþ2J Grad ξ � C�1 Grad ξ1
h i

þ
Z
ΓN

kξξ1þ
Z
ΓD

ξb ~D1 �N:

Inserting (A.9) into the above equation we find that ðE¼ �F�T Grad ξÞ

Var1¼
Z
ΩR

� ε0
2
J Tr F�1F1
� �

jEj2þ ε0
2
JE � F1F

�1þF�TFT1
� �

EþE � F1F�1P
h i

¼
Z
ΩR

F1 � � ε0
2
JjEj2F�T þE 	 ~D�E � P1

h i
�E � P1

n o
¼
Z
ΩR

F1 � ~ΣMW�E � P1
� �

; ðA:11Þ

where

~ΣMW ¼ � ε0
2
JjEj2F�T þE 	 ~D
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is the Piola–Maxwell stress. By (A.1), we recognize

rMW ¼ 1
J
~ΣMWFT ¼ �grad ξð Þ 	 �ε0 grad ξþpþpe� �� ε0

2
jgrad ξj2I ðA:12Þ

is the familiar expression of Maxwell stress in the current configuration (Jackson, 1999).
We now come back to our setting in Section 2. From (3) we find that the deformation gradient is given by

F¼
λ1 0 0
Yα′ λ2 0
Zβ′ 0 λ3

2
64

3
75:

Therefore, F�T must be an upper triangle matrix of form (n denotes possible non-zero components)

F�T ¼
λ�1
1 n n

0 λ�1
2 n

0 0 λ�1
3

2
64

3
75;

and for variations in (10),

F1 ¼
u1;X 0 0
Yα1;X α1 0
Zβ1;X 0 β1

2
64

3
75: ðA:13Þ

In Section 2 we have also assumed that the electric field, polarization and electric displacement are all in X-direction, and
hence the Maxwell stress (A.12) in the current configuration is a diagonal matrix. Therefore, the Piola–Maxwell stress
~ΣMW ¼ JrMWF�T is necessarily an upper triangle matrix, and hence the inner product F1 � ~ΣMW has only contributions from
diagonal components and is precisely given by (15)–(16).
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