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Both quantitative and qualitative knowledge of strain and strain distributions in quantum dots are essential
for the determination and tailoring of their optoelectronic properties. Typically strain is estimated using clas-
sical elasticity and then coupled to a suitable band structure calculation approach. However, classical elasticity
is intrinsically size independent. This is in contradiction to the physical fact that at the size scale of a few
nanometers, the elastic relaxation is size dependent and a departure from classical mechanics is expected. First,
in the isotropic case, based on the physical mechanisms of nonlocal interactions, we herein derive (closed-
form) scaling formulas for strain in embedded lattice-mismatched spherical quantum dots. In addition to a size
dependency, we find marked differences in both spatial distribution of strain as well as in quantitative estimates
especially in cases of extremely small quantum dots. Fully recognizing that typical quantum dots are neither of
idealized spherical shape nor isotropic, we finally extend our results to cubic anisotropy and arbitrary shape. In
particular, an exceptionally simple expression is derived for the dilation in an arbitrary shaped quantum dot.
For the more general case (incorporating anisotropy), closed-form results are derived in the Fourier space while
numerical results are provided to illustrate the various physical insights. Apart from qualitative and quantitative
differences in strain states due to nonlocal effects, an aesthetic by-product for the technologically important
polyhedral shaped quantum dots is that strain singularities at corners and vertices (which plague the classical
elasticity formulation) are absent. Choosing GaAs as an example material, our results indicate that errors as

large as hundreds of meV may be incurred upon neglect of nonlocal effects in sub-10-nm quantum dots.

DOI: 10.1103/PhysRevB.72.195345

I. INTRODUCTION

Quantum dots (QDs) have been the focus of several ex-
perimental and theoretical researchers due to the promise of
improved optoelectronic properties and are considered cru-
cial building blocks for several nanoelectronic applications,
e.g., next generation lighting,'? lasers,>* quantum comput-
ing, information storage and quantum cryptography,’~’ bio-
logical labels,® sensors,” and many others.!%15 QDs are typi-
cally embedded in another semiconductor material with
differing lattice parameter. The ensuing elastic relaxation
within the QD is well known to impact its optoelectronic
properties. Several works, of varying sophistication (both
analytical and numerical), have focused on the calculation of
the strain state in buried quantum dots and the subsequent
impact on optoelectronic properties.'6-2

Strain has a direct effect on the band structure where con-
duction and valence bands are shifted and could be split
apart, e.g., Ref. 26. Dilatation (i.e., hydrostatic strain) in QDs
usually has the greatest effect although directional aniso-
tropic effects in the typically cubic semiconductor crystals
can be appreciable as well. In some material systems, the
lattice distortion in and around buried QDs may also induce
an electric field (e.g., GaN which is strongly piezoelectric).
Generally speaking, researchers have used the well-
established continuum elasticity theory (both numerically
and analytically) to estimate mechanical strains. Those then
are coupled to some suitable band structure calculation
method (such as the tight-binding or k-p approach) to esti-
mate the impact of strain on the optoelectronic properties.
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Classical continuum mechanics is, however, intrinsically size
independent. This is in contradiction to the physical fact that
at the size scale of a few nanometers, deformations and elas-
tic state are size dependent and a qualitative departure from
classical mechanics is expected. Various works (both experi-
mental and theoretical) have addressed this issue in a wide
range of contexts, e.g., nanoinclusions and nanowires,?’!
thin films,*?73> nanotubes,*® composites,?®37 and structural
elements such as beams and plates.’¥-4° In the particular con-
text of nanoinclusions and quantum dots, this size depen-
dency of mechanical strain at the nanoscale has been brought
to light in recent publications by one of the authors.?!-284!
The latter works presented the size-dependent elastic state of
QDs based on the involvement of surface and interfacial en-
ergies at the nanoscale. For example, errors in strain calcu-
lation as high as 12% were reported in the determination of
hydrostatic strain in a buried spherical QD (size range of 2
nm). To be more explicit, the dilatational strain in an isotro-
pic spherical lattice-mismatched embedded quantum dot*
that correctly incorporates the size effect due to interfacial
energies can be written as?!?8

3Ke" - 27)/R

Tr(e)=3—""T"T—7""7—.
4u+3K+2K°/R

(1)
Here & is the lattice mismatch and 7, is the surface or in-
terfacial tension. K and w are the bulk and shear modulus,
respectively. K is the surface elastic modulus. Note that for
large radius of QD (R— ) or zero surface energy, the result
reverts to the classical solution used by several authors.
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Equation (1) was derived analytically by solving the bound-
ary value problem of continuum elasticity suitably modified
to incorporate interface energies. Further details on surface-
energy-induced size effects and the subject of surface elas-
ticity is suppressed for the sake of brevity. The reader is
referred to several excellent works in the literature; see, for
example, the more physically oriented reviews by
Cammarata® and Ibach.*’ The work by Miller and Shenoy*’
presents a nice illustrative picture of surface elasticity in the
context of simple structural elements such as beams and
plates. A rigorous mathematical exposition can be found in
Gurtin and Murdoch* and more recently in Gurtin et al.¥
The recent review article by Muller and Saul*® is also very
informative.

In the present work, we are interested in exploring another
possible physical mechanism that may be responsible for in-
ducing size effects in strains of QDs, namely, long-range
nonlocal interactions. At small length scales (approaching a
few nanometers comparable to the discrete structure of mat-
ter) the implicit long-wavelength assumption of classical
elasticity breaks down. This breakdown is caused partially
by the fluctuations in the interatomic interactions at the
length scale of a few lattice spacings that are smoothed out at
coarser scales (where classical elasticity is reasonably appli-
cable). As one would expect, several phenomena at the level
of a few lattice spacings are inadequately captured by clas-
sical elasticity and researchers often see enriched continuum
theories like nonlocal elasticity as a replacement for atomis-
tic simulations (or alternatively a bridge between atomistic
and conventional continuum mechanics). For example, the
ubiquitous singularities ahead of crack tips and dislocation
cores (as predicted by classical mechanics) are indeed a
breakdown of traditional elasticity at short wavelengths.*’
The obvious alternative method to compute strain is the use
of atomistic simulations. An alternative (coarse-grained) field
theoretic method is highly desirable (in the same vein as
previous works,!%18:1921-25) a]beit that does also account for
the scaling or size effects in strain likely to be prevalent at
these small length scales (over and beyond surface or inter-
facial energy effects already addressed in Refs. 21, 28, and
41). The latter is the main objective of the present work.
Postulating a form of strain gradient elasticity as a suitable
model for small-scale elastic phenomena (which accounts for
the long-range nonlocal interactions), we herein derive rela-
tions for the size-dependent strain in arbitrary shaped embed-
ded lattice-mismatched quantum dots. Material anisotropy is
also included.

The paper is organized as follows. In Sec. II, we present
an idealized isotropic formulation and in particular discuss
the rather illustrative example of a buried spherical quantum
dot. This example is important as closed-form expressions
can be derived and facilitate discussion of some of the fea-
tures due to nonlocal effects. In Sec. III, nonlocal interac-
tions are compared with interfacial energy effect and we also
discuss, briefly, the combination of both. Arbitrary quantum
dot shapes with arbitrary material anisotropy are considered
in Sec. IV. We present numerical results for various shapes
(but with isotropic material properties) in Sec. V while the
discussion of anisotropic effects is the subject of Sec. VI.
Given the scope of the present work and length of the paper,
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detailed coupled strain-band structure calculations are not
presented though in Sec. VII, we provide the reader with a
rough feel for the significance of our results for electronic
band calculations. We finally conclude with a summary in
Sec. VIIL

II. IDEALIZED ISOTROPIC FORMULATION WITH
APPLICATION TO SPHERICAL QUANTUM DOTS

Assume a deeply buried arbitrary shaped quantum dot de-
noted by (). The interface of the quantum dot and the host
matrix is S. Eventually in this section, to make analytical
progress, we shall consider a spherical shaped quantum dot
of radius R.

Consider for the moment a classical isotropic elastic ma-
terial. The strain energy function is quadratic in strains:

W(x) = ue;e;; + %Asik' (2)
Here, £ is the strain tensor related to u (displacement
vector) as sym(Vu), u and \ are the elastic Lamé constants
and [-]; and d; will be used interchangeably to indicate dif-
ferentiation with respect to spatial variable x;. Repeated in-
dices indicate summation and Cartesian tensors are em-
ployed throughout. Note that the antisymmetric part of the
deformation gradient, i.e., @ (=asym Vu) is absent from Eq.
(2) since the quadratic term in @ is not rotationally
invariant—a necessary requirement for the energy function
in Eq. (2). For small quantum dot sizes, additional gradient
terms [absent in Eq. (2)] may also contribute and are consid-
ered to  phenomenologically  represent  nonlocal
interactions.*”*® The latter is achieved by suitably adding
higher-order terms containing gradients of strain and
rotation.*” The general form of the elastic energy involving
first gradients of strain and rotation is

W(x) = W(du,, dyu;, 9,9y, d;0pu;) (3)
In the isotropic case, the energy density, that is invariant

to SO(3) and the T(3) groups, then takes the form*
7 A
W(x) = E[(aiuj)z + i du;] + 5(@”1)2

21+ N

12
+ Tl’zﬂiﬂlul&ﬁju}- + MT((‘)IZMl U — &laﬂll&l&]u]) .

(4)

Two new coupling constants (in addition to the Lamé pa-
rameters) now appear namely, I’ and /. Both have units of
length. For band structure calculations in quantum dots, di-
latation is the most important and in the isotropic case (as it
turns out), the last term in Eq. (4) plays no role [see Eq. (29)]
and hence we set /=0. Further, using a variational argument
(by appealing to the Euler-Lagrange equations) the govern-
ing field equation can be derived as well as the response

quantities (i.e., “stresses”). The balance laws that emerge
are8:50

cl
o-ij: G-ij+5ij(9k7k’ (Sa)
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O-ji,j:O' (Sb)

Here o' is the classical elastic stress which characterizes
resistance of a deformable body to strain. Through incorpo-
ration of nonlocal effects via strain gradient terms, a new
“stress” measure emerges, 7, that physically signifies a resis-
tance to strain gradients.

The extended or modified elastic energy form in Eq. (4)

yields the following constitutive relations:*®
‘Tf} =24t j+ Nojuy, (6a)
7= (2u+ N)1"0uy,. (6b)

We now tackle the embedded quantum dot problem in this
modified nonlocal elasticity formalism. There is a mismatch
strain between the embedded quantum dot and the surround-
ing host material. The lattice mismatch strain tensor in the
quantum dot (relative to zero reference strain in the host
material) is given by the following relation:

m_ 2(agd — ahost) S.=e"s (7)

Y (aqd + ahost) Y v

Here a is the lattice parameter. Noting that the mismatch
strain is only nonzero within the quantum dot, we can write
the modified elastic law as follows:

0'” = 2,(11(1/!1’] - 8;1]1H) + )\51‘.]'(141‘1 - 8;’;1‘1)

+ 0,2+ NIV (uy, - &l H). (8)
Here H is the step function defined as
HO) 1, xeQ,
Y= 0, x& Q.

Using Eqgs. (5) and (6), we obtain a single equation in terms
of the displacement vector:

- ;= (p+ N3y + 2+ MU V20,0

= 3K5ik(9k[8mH(X)]- (9)

Here, 3K=3\+2u. The underlined portion of Eq. (9) in-
dicates the extra terms absent in size-independent classical
elasticity. Clearly, the derivatives of the mismatch strain
e"H(x) defined over the inclusion volume are & functions
across the QD-matrix interface: £”&(S). The displacement
vector can be obtained using the Green’s function [of Eq.

(9)] as
ul(X) = 3K8m ]kJ Gl](X - X,)dSk(XI)
S

== 31<sm5,,mf Gydx—x)dv(x').  (10)
\%4

Here the Gauss theorem has been used to convert the
surface integral into a volume integral. Kleinert*® derived the
following expression for G:
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o 1

r 1 ’
+ 3. = +1=(1 =" 11
2u+N ”[2 S-em] an

where r=|x-x/|.
Mere substitution of Eq. (11) into Eq. (10) results in

3Ke™ 1 J;
© j dSk(X,){_ ik—‘Lkr?i(?-r
41 mr 21

5; 1 ,
+ —Jk—&,5]|:£ + 1,2_(1 - e_r/l ):|}
r

u(x) =

2+ N2
1 S S N
=3K8’"[— _¢,k5ik+_Lk¢,ijk_ ‘ (M"'l,zd),ijk
M 2 2u+A\ 2
_lle,ijk):|' (]2)

In the final expression on the right, the displacement field
has been cast in terms of certain potentials defined below:

w(x>=4L f ravix'), ¢(x)=— f Lavix,
mJ)q 4wl r

(13)
-

1 il
M(x,l'):—f dv(x').
4l 1

#(x) is the biharmonic potential, ¢(x) is the Newtonian har-
monic potential, while M(x,I’) is the Yukawa potential. The
first two potentials are well known in classical potential
theory and the inclusion literature; see, e.g., Mura®! and
Kellogg.>> The Yukawa potential is relatively less known and
occurs in the study of non-Newtonian gravitation.’> Recently,
it has been employed in the study of inclusions in micropolar
elasticity.**>
Finally, the dilatation can be expressed as

9Kl/28m
+
4u+3K

9Ke™

Tr(e) =- 1+ 3K¢,ii

(M =) - (14)

It is worth repeating that Eq. (14) is valid for isotropic
material properties but arbitrary shaped quantum dots. To
obtain explicit expression, we now specialize the derived ex-
pression in Eq. (14) to a spherical quantum dot.

For spherical shapes, the three potentials in Eq. (13)

areS3—55

1
- 5(1'4— 10R*? = 15RY), re Q,

R3 R2
—<5r + —) s
15 r

(r) = (15)

rel,
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1
- 8(r2—3R2), rel,

@(r) = R (16)
3 r¢ll,
= i+ Rt SR g
M= r -
k2<R cosh— —k sinh—) , re& Q.
k k) r
(17)

After some algebra and manipulations, we finally obtain
the following relation for the dilatation:

Tr(e)
9Ke™ » 1 sinh(r/l’
—8(1_(1/+R)6_R/1_,w> req.
3K+4u l r/l
| 9ken R Ryl
———|Rcosh— /' sinh— | -——, r¢ ).
3K +4u ! )l
(18)

Equation (18) is the major result of strain gradient elas-
ticity for spherical QD. In Fig. 1 we plot the normalized
dilations as a function of position and various quantum dot
sizes. The dilation is normalized as Tr(sij)*=Tr(s,»j)(2,LL
+\)/3Ke™. Figure 1 is plotted parametrically in terms of the
nonlocal coupling constant /’. The location r/R=1 indicates
the boundary of the spherical quantum dot. The size effect of
the nonlocal solution is manifest. We note that, unlike both
the classical and interfacial energy-based solutions, the dila-
tion incorporating nonlocal effects is inhomogeneous within
the inclusion. Asymptotically, the nonlocal results converge
to that of classical elasticity for large quantum dot size. Fur-
ther, note that while the classical results predict the well-
known zero dilatation outside the spherical quantum dot, in
the case of nonlocal results we observe a small nonzero di-
lation. Conforming to physical intuition, artificial jumps in
stresses are removed in nonlocal results and the strains vary
smoothly across the interface, or in other words the “con-
tinuum” sharp interface of the quantum dot/matrix acquires a
“diffuse boundary layer” to the order of the characteristic
length scale parameter.

To emphasize the size dependency of our solution we also
plot the dilatation as a function of size (for a fixed position,
i.e., r=0) in Fig. 2. We observe that while for large quantum
dot size, roughly R>7!', the nonlocal or strain gradient so-
lution is indistinguishable from the classical one, the dilata-
tion decreases significantly below this threshold and exhibits
a marked departure from the classical solution.

In the preceding derivations and the remainder of the
present work (in accord with several other researchers) we
assume identical elastic constants for the quantum dot and
the barrier material, which begets the question whether this
kind of treatment is justified. This assumption of course is
not a necessary requirement for our central concept or our
approach. Clearly, for the ellipsoidal shape quantum dots
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FIG. 1. (Color online) Strain dilatation (normalized by classical

elasticity result) is plotted as a function of position and size.

embedded in an unbounded matrix, Eshelby’s equivalent
inclusion method> provides an easy recipe to account for
modulus mismatch (of course only in the classical elastic
context where the strain state is uniform for the ellipsoidal
shape). More generally, as in the modified field theory used
by us, this is not so easy. So are we justified in using the
same elastic constants for both the materials? Faux et al.>’
argue that the Keyes scaling relationship>®*° for III-IV semi-
conductors suggests that it is appropriate to choose the elas-
tic constants of the barrier material for all materials in the
system because all materials have the same lattice spacing
before misfit strain relaxation takes place (see Ref. 57, p.
3758, Sec. D) and for materials in this group of the Periodic
Table, the elastic constants are proportional to the nearest-
neighbor lattice distance. As an illustration, the elastic con-
stants for a strained InAs QD in a GaAs matrix will be closer
to the GaAs values than those for unstrained InAs. In the
present authors’ opinion, this issue requires further investiga-
tion. In any case, if necessary, the modulus mismatch can be
accounted for as a perturbation on our solution (see, for ex-
ample, Andreev et al.%° for a general procedure to do so).
Quite obviously the numerical values of the characteristic
length scales determine the strength of the nonlocal or dis-
persive behavior of the crystal. Eringen®! in his book pro-
vides an elementary discussion of this length scale. Of
course this parameter is different for different materials.
Generally the rough magnitude of this length scale is around
the lattice parameter. Realistic values can only be obtained
using detailed atomistic simulations. However, a crude one-
dimensional Born-Karman-type chain model (presented by
Eringen, Ref. 61, pp. 100-101) indicates this parameter to be
exactly equal to the lattice parameter (a). Further, Eringen
also indicates (p. 107) that matching nonlocal theories to
experimental phonon dispersion curves yields L=0.39a (un-
fortunately he does not specify which material other than
indicating that it is of fcc structure). Altan and Aifantis®
suggest a similar number. A better way to resolve this
matter is through detailed lattice level models.
DiVincenzo®precisely appears to have done so. In fact he
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FIG. 2. (Color online) Dilatational strain as a function of size
for fixed position (r=0). The results are normalized with respect to
the classical elasticity solution.

addresses dispersivity (nonlocality) in the semiconductor
material GaAs (an important quantum dot material). To un-
derstand this issue further, a discussion of a key concept is in
order. If one uses classical elasticity, one obtains as disper-
sion relation®

pw’ = ck?. (19)

Here o is the frequency, k is the magnitude of the wave
vector, while p is the material density. Obviously c is related
to the classical elastic modulus. Thus there is a linear relation
between wave vector and frequency in classical elasticity,
i.e., there is no dispersion and hence no nonlocal effects.
When dispersion or nonlocal effects are incorporated, this
relation gets modified:

pw? = ck® + fk*. (20)

The material parameter f is the higher-order elastic pa-
rameter characterizing the strength of dispersion effects.
Now the square root of the ratio f/c provides a measure of
this length scale. Again, we refer the reader to Eringen’s
book®! for a discussion on how one can evaluate this length
scale through phonon dispersion curves (pp. 98-99). Using
the work by DiVincenzo® (p. 5462), we can evaluate this
length scale for GaAs to obtain ~0.82 nm.

III. COMPARISON WITH INTERFACIAL ENERGY
EFFECT AND COMBINATION OF BOTH EFFECTS

We now proceed to draw a comparison between surface
energy effects [embodied in Eq. (1)] and nonlocal results.
Unfortunately, while the nonlocal results can be adequately
normalized (i.e., independent of mismatch strain), the surface
and interfacial results cannot and are highly material depen-
dent (both on the actual values of interfacial energy param-
eters as well elastic moduli). We provide some general esti-
mates here. As mentioned in the previous section, the
nonlocal coupling constant /" roughly corresponds to the lat-
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FIG. 3. (Color online) Deviation ratio is defined as

[Tr(sij)classical_Tr(Sij)surface/nonlocal]/Tr(sij)classical- The mismatch
strain is 0.067 nm (typical for the InAs/GaAs system). Internal
length scale is 0.82 nm. Interfacial tension is 1 J/m?. Material prop-
erties are based on isotropic data in Table I.

tice parameter of the quantum dot which is around ~0.4 nm
for most materials. At least in one instance (for the case of
GaAs), based on the work of DiVincenzo,”® we can estimate
it to be ~0.82 nm. The interfacial tension (for coherent sys-
tems) is roughly to the order of ~1 J/m?.® Since (unlike
both the classical- and surface-energy-based results) the non-
local solution is nonuniform, we compare results at the quan-
tum dot center (r=0). A comparison is depicted in Fig. 3.
Due to the exponential decay in the nonlocal solution (with
respect to size), the nonlocal effects decay far more rapidly
than the interfacial effects but are likely to dominate for very
small sizes only. This is highly material dependent and de-
pends crucially on the relative magnitude of the interfacial
tension and the nonlocal coupling constant. Most results will
be presented for GaAs (which has a rather high ') and thus
nonlocal effects are seen to be appreciable.

At least for the simple spherical shape, the combination of
nonlocal effects and interfacial energy effect is relatively
simple (mainly due to an elegant result of Eshelby°). Inter-
facial tension is a residual effect and is (like the lattice mis-
match strain) a nonelastic contribution. For example, con-
sider for the moment that nonlocal effects are absent. For the
spherical shape then, the actual elastic state of the quantum
dot can be obtained by assuming that the lattice mismatch
strain) a non-elastic contribution. For example, consider for
the moment that nonlocal effects are absent. For the spherical
shape then, the actual elastic state of the quantum dot can be
obtained by assuming that the lattice mismatch strain instead
of being the nominal &™ is actually " —27,/3KR. Using this,
one can trivially recover the expression in Eq. (1). Now to
incorporate nonlocal interactions, one simply substitutes the
“effective” lattice mismatch strain &”-27,/3KR in Egs.
(7)-(14) to obtain the following result for the combined
nonlocal-interfacial effect:
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9K(e" - 27,/3KR)

(1 —(I"+R)e™
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l,lsinh(r/l’))’ req.

3K +4u [T
@) =) g (em 27,/3KR) R R\1e @)
- e
(Rcosh——l’sinh—)——, ré& Q.
3K +4u 1T U

Due to the linearity of our system of equations, one is
hardly surprised by the simplicity of this result. The com-
bined effect is plotted in Fig. 4 and compared with the case
when nonlocal or interfacial effects alone are considered for
various values of the mismatch strain.

The normalized trace of the strain at the center of the QD
is plotted in Fig. 5 with mismatch strain of 0.067 (which
corresponds to the InAs/GaAs system). Since for this mate-
rial system, nonlocal interaction effects dominate, the surface
energy terms do not contribute significantly. This conclusion
may of course alter for different material property combina-
tions.

IV. ARBITRARY SHAPE AND ANISOTROPY: GENERAL
FORMULATION

In the previous section we considered the idealized
spherical shape. The reader is referred to Refs. 14 and 65-69
which report evidence of a wide variety of shapes, including
pyramidal, truncated pyramidal, lens shaped, hemispherical,
multifaceted domes, etc., for the widely studied
In,Ga,_,As/InAs quantum dot system.

For some cases, the assumption of elastic isotropy may be
justified or alternatively the uncertainty in other material and
configurational parameters (e.g., lattice parameters, dimen-
sions, etc.) may far exceed the error due to neglect of the

0.9 |
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FIG. 4. (Color online) Strain dilation of a spherical QD based on
combination of nonlocal and surface effects. Normalized strain is
defined as Tr(e;)(3K+4u)/9Ke™. The materials properties are
based on the isotropic case in Table I. The QD is chosen with radius
as R=41" and the internal length scale is chosen as /’=0.82 nm.

anisotropic effects. In general most semiconductor com-
pounds are cubically anisotropic. Against the isotropic value
of 1, the anisotropy coefficient [defined as (C;;—C5)/2Cu4]
for most III-IV semiconductors is around 0.5.

To ensure a broader applicability of our work, we extend
our nonlocal analysis of embedded quantum dots to incorpo-
rate arbitrary shape and anisotropy. In particular, we shall
emphasize cubic anisotropy. We first, however, discuss arbi-
trary shape in the isotropic limit.

As derived in previous section, in the strain gradient or
nonlocal formalism, the strain tensor can be written as

1
Ejp=- Efﬂ [Giju(r) + Gy () JPHaV(x"). (22)

Here P’ is related to the mismatch strain through the elastic
m

moduli: P;=C;,e}). The effect of shape emerges in form of
the integration domain of the integral in Eq. (20). To separate
the shape effect in Eq. (22), we follow Andreev et al.®° who
performed a similar analysis in the classical elasticity con-
text.

The Fourier transform of Eq. (22) yields

.1 - A e
€= E(qIQkGij +q,9:Gy) Piix(q). (23)

Here q is the wave vector and the following Fourier trans-
form pair are employed in the present work:

T T T T T T T T
1
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FIG. 5. (Color online) Strain dilation at center of QD with mis-
match strain equal to 0.067. Material properties are based on Table
I. Internal length scale is /'=0.82 nm.
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Pq
mm=]egwwmm,

u(q) = f d’x ey (x). (24)

x(q) is the so-called characteristic shape function. It is
exactly the Fourier transformation of the Heaviside function
for different shapes:

x(q.a,b,c)
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x(q) = J e XV (x). (25)
Q

For many common QD shapes, Andreev et al.®* have pro-
vided analytical expressions for x(q). Essentially, the
“shape” information is wholly contained in the characteristic
shape factor ¥(q) while the remaining expression [in Egq.
(23)] contains solely non-shape-dependent physics. For the
orthogonal polyhedral shape for which Andreev et al.®® did
not provide an expression, we have derived the following
result:

_ Liabe™*%3q,g5(aq, = bgy) + iace™q,q5(cqs — agy) + ibce“I1q5q3(bg, = cq3) + (bgy = cq3)(aq, — bgy)(cqs — aq)]

419293(bg, = cq3)(aq, = bq,)(cqs — aqy)

where a, b, ¢ are intercepts of the orthogonal polyhedral on
the x, y, z coordinates.

Once again, Kleinert’s Green’s function* in Fourier space
is

A 1

Gi=——— 5.
4] ﬂq2(1+12q2) i
+@ﬂ(. . ! )
¢\ p(1+Pq%)  Qu+N(1+17%¢))

(27)

Substituting Eq. (27) in Eq. (23) leads to an analytical
expression for the Fourier strain field of a QD for an arbi-
trary shape:

519k + 6919
8. =P"y e VoY, St 7 e e 14
Szk(q) le(q)|: 2 2(1 lz 2)

. qiq,qkq;(_ . 1 )
q \ u(+Pq)  Qu+N1+17g)) ]
(28)
Noting that the lattice mismatch strain tensor is hydro-

static, i.e., P?;=Pm5,-j=C,<jk,sm6k,=3Ksm, the strain tensor

adopts a particularly simple form:

1
Cu+N(1+17q%)

~ mar 44
unlq)=P x(q)—z"<
q
As I" approaches 0, Eq. (29) approaches the classical so-
lution obtained by Andreev et al.%* If one is only interested in
strain dilation, we obtain

) . (29

(30)

A _ pma 1
”””‘me%@u+mu+rﬁa)

(26)

Numerical results for various shapes are presented in the
next section. The reverse Fourier transformation of Eq. (30)
immediately yields the nonlocal solution of the strain dila-
tion of the QD as

n

Tr(s,-j) = m

M(x,l"). (31)

Thus the dilatation of any shape is reduced to the evalu-
ation of the Yukawa potential. This result is rather interest-
ing. We note here that the dilation in the classical elasticity
context is shape independent and thus rather simple to evalu-
ate. The nonlocal results (while also simple by all means)
show a dependence on shape.

We now focus on anisotropic effects. Common QD mate-
rials are cubically anisotropic and are characterized by three
independent elastic moduli Cy;;;, C}212, and Cj5,, instead of
two independent moduli for isotropic materials. Insofar as
strain gradient constants are concerned, six are required in-
stead of two that emerge in the isotropic case.

Using DiVincenzo® and discarding the dynamic parts, the
elastically anisotropic Lagrangian that incorporates gradient
effects is

I |
-L= 5 Cijratti jurs + Dijrami jUicim + Fjjrimntti Uk imn

2
+ Ftmnti ji 1 mn + AijktmnWi jUk U+ (32)

wglere Cjji is the classical stiffness matrix. D;jyyp,, F iljklmn,
Fiimn- fmd Ajjktmn are strain grad’ient elastic te.nsors. As be-
fore, using the variational formalism, we obtain the follow-

ing Navier-like equations:
Cijxitiicji + dijiamUic jim + fijkimntic jimn + bi =0 (33)

where d;ji, and fijx, are related to higher-order anisotropic
strain gradient components through
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—=>

contour for this surface

dijklm = Dijklm’ (34)
_ ol 2
fijk]mn = Fijklmn - Fijklmn :
b; in Eq. (33) is the body force which can be related to the
mismatch strain. In Fourier space, Eq. (33) is rewritten as

A

Cijni9 itk + idyjiimd 1919 mbk = fijtimnd j919mntix = b;.
(35)
The equivalent body force due to the lattice mismatch

strain is (see Sec. II for the corresponding one in the isotro-
pic case):

bi=~iqiPiR(a). (36)
Finally the displacement field for the anisotropic material is
Dy =—iq,P;X(q) (37)

where D; is

Dy = Cijiuq491+ id;jim@i91Gm = fijimnd919mn-  (38)

The final strain tensor in Fourier space is

This completes our formulation and numerical results for
anisotropic effects are presented in Sec. VI.

V. ARBITRARY SHAPE: NUMERICAL RESULTS

In order to separate the shape effects from anisotropy, first
we present results for the isotropic case for various shapes.
The derived equations are numerically solved using spectral
methods (see, for example, Ref. 70). Equation (31) can be
rewritten explicitly as

Pm

Tr(s.)) =
r(ey) A (2p+ N2

e—r/l/
f dv(x'). (40)
o T

For numerical calculations, a periodic distribution
(nxd,nyd,nzd) of quantum dots is used. Each unit cell
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FIG. 6. (Color online) Strain
gradient results for dilation strain
of cuboidal quantum dot. Dilation
strain is normalized as Tr(e;;)(2u
+\)/P™ Light area represents
high dilation. Internal length scale
is I'’=0.82 nm.

(d,d,d) is uniformly meshed into a 128 X 128 X 128 grid. d
is chosen large enough (25 nm) to render interaction effects
between the quantum dots negligible.

A. Cuboidal quantum dot

The sample quantum dot is chosen with edge line lengths
a;=5 nm, a,=7 nm, and a;=5 nm. The dilation contour plot
is given for 1/4 of the cuboidal QD in Fig. 6 which indicates
that the nonlocal dilation solution decays smoothly across
the boundary of the QD. In contrast, as is well known the
classical solution for dilation is a constant inside the QD,
while zero outside.

The spatial distribution of the strain dilation in the cuboi-
dal quantum dot is shown in Fig. 7. The contrast between
strain  gradient elasticity and classical elasticity

o—o Classical(100)/{010)
QD1 (100)_

— QD1 (010) ] -

.- QD2 (100)°

....... QD2 (01 o)s:

U]

tr(e, )(2p+a)/P’

1 1 1

08 1 12

x10°

FIG. 7. (Color online) Normalized strain dilation is plotted for
two directions on the crossing plane z=0. The subscript “sg” indi-
cates strain gradient while “cl” indicates classical. Vertical dotted
lines mark the boundary of QD at two directions (x and y). QD1’s
size is a;=5 nm, a,=7 nm, and az=5 nm. QD2’s size is a;=7 nm,
a,=9 nm, and a3=7 nm.
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FIG. 8. (Color online) Strain components &, and £33 of cuboi-
dal QD with @;=5 nm, a,=7 nm, and a;=5 nm. Vertical dotted line
is the boundary of the QD. The plot is along (010).

solutions®7!-72 is manifest. Unlike the classical result (where
dilation is uniform for all shapes), the strain gradient results
show sensitivity with respect to direction even for this iso-
tropic case (and indeed we have chosen a sample cuboidal
QD, which is not symmetric, to precisely illustrate this).

The individual strain components are exhibited in Fig. 8.
Classical results are also provided for comparison. Since in
our example two edges of the QD are of the same length, &,
is identical to e55. The difference between the classical result
and strain gradient result for £, and &35 is not too large, but
appreciable for &,,, especially near the boundary of the QD.
As in earlier examples, the discontinuity at the boundary of
QD is removed by strain gradient elasticity. In Fig. 8, some
ripples near the point of discontinuity can be observed. This
is the so-called Gibbs phenomenon common in use of the
spectral method and caused by numerical truncation in the
Fourier domain. This effect only occurs when a function is
not smooth and continuous.”> Hence, it does not appear in
the strain gradient results.

002 T

N e Classical

!
Strain gradient 7

5ygl2uta)P™

06 o 1 12
r(111)(m) x10°

FIG. 9. (Color online) Strain components &3 along (111) direc-

tion of cuboidal QD with edge length equal to 5 nm.
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FIG. 10. (Color online) Dilation strain for finite cylindrical
QD1, with diameter D=5 nm and height 2=8 nm, and QD2, with
D=7 nm and A=10 nm.

Finally we point out that our nonlocal formulation is ca-
pable of removing the “pesky” singularities at the corners
and edges of the realistic shaped QDs (Fig. 9). It is well
known that sharp edged and cornered inclusions or quantum
dots exhibit weak logarithmic singularities at these junctions.
As illustration we show a specific example for a cubic QD
with edges a;=a,=a3=5 nm. We plot the strain &5 along the
(111) direction, which passes one corner of the cube. As
expected from classical elasticity result,'® &5 diverges at the
corner while our nonlocal solution behaves in a more physi-
cally reasonable manner. Generally researchers who employ
classical elasticity to compute the strain state in polyhedral
quantum dots typically truncate their computation around a
small region surrounding this divergence. Our results render
such a procedure redundant.

B. Finite-length cylindrical quantum dot

The strain gradient solution for an infinite-length cylindri-
cal quantum dot is much simpler, since the integral in Eq.

05 . — . . . . . T

0.49

0.3 N I

0.2

o
o

i

& (2u+A)P™
o

-0.1
-0.2
-0.3
-0.4
05 I (I I | I I 1 I
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
y (m) x10°

FIG. 11. (Color online) Strain components for finite cylinder
QD with D=5 nm and #=8 nm. [e33 (cl) overlaps with e33 (sg).]
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FIG. 12. (Color online) Size sensitivity to height of cylindrical
QD. [A=8 nm (cl) overlaps with /=8 nm (sg).]

(14) has a closed-form expression. The complete solution for
the strain field of an infinite cylindrical quantum dot is pro-
vided in the Appendix. In this section, a finite-length cylin-
drical QD is analyzed (which is common in template-grown
quantum dots).

The spatial variation of the dilation is depicted in Fig. 10
for two different sized quantum dots.

The individual components of strain are provided in Fig.
11. Our solution exhibits considerable deviation from the
classical result for €, and &,,. However, the strain gradient
result for e;3 is nearly the same as the classical result. Con-
forming to intuition, £33 is sensitive to the height of the cyl-
inder especially in the scale of a few nanometers. e3; for
different h are plotted in Fig. 12, which illustrates that the
nonlocal results for £33 begin to deviate from the classical
result as the height of the QD is decreased until it is compa-
rable to its diameter (aspect ratio of ~1). The magnitude of
€33 decreases with increase in height and eventually drops to
zero for a QD of infinite height (i.e., a quantum wire). This is
consistent with the solution of an infinite circularly cylindri-
cal quantum wire presented in the Appendix. This result is
entirely expected as for larger and larger “h,” the out-of-
plane strain is expected to be more homogeneous and thus
impervious to strain gradient elasticity.

X

FIG. 13. Schematic figure of orthogonal polyhedral QD.
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FIG. 14. (Color online) Strain dilation along y axis.

C. Polyhedral quantum dots

We conclude this section with a discussion of nonlocal
effects in general polyhedral shape which is fairly common
for self-assembled quantum dots. As shown in Ref. 74 all
polyhedral shapes can always be subdivided into one special
polyhedral shape with orthogonal axes as indicated in Fig.
13.

The dilation of strain is plotted along (010) which is also
one of the edges of the QD. Figure 14 show the dilation for
two different sized QDs while the individual strain compo-
nents are shown in Fig. 15.

VI. ANISOTROPY: NUMERICAL RESULTS

In this section we present some illustrative results ac-
counting for anisotropic effects. As is readily evident from
our general formulation in Sec. IV, in strain gradient or non-
local elasticity, accounting for anisotropic effects is some-
what complex. Referring to Sec. IV, the results in the present

0.1

b 2 DBl

& (2u+)/P™

i

041 I I I 1 1 L L L I
0 0.1 0.2 0.3 0.4 .6 0.7 0.8 0.9 1

05 0
y (m) x10°

FIG. 15. (Color online) Strain components along (010) of or-
thogonal polyhedron with a;=5 nm, a,=6 nm, a;=4 nm.
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TABLE 1. Elastic parameters for GaAs.

Classical Isotropic

Classical cubic strain Cubic strain

isotropic anisotropic® gradient gradient?
Ci111 (N/m?) (x10') 1.18 1.18 1.18 1.18
Ciyp (X101 0.245 0.56 0.245 0.56
Cia1p (X101 0.59 0.59 0.59 0.59
dip3 (N/m) 0 0 0 0
S (N) (x1079) 0 0 7.93 7.93
fiziz (X107%) 0 0 3.97 3.97
Fiizm (X107%) 0 0 0.99 0.99
fiazz (X107%) 0 0 0.66 0.66
Fiizss (X107%) 0 0 0.33 0.33
Fario (X107%) 0 0 1.983 1.983

2Parameters are taken from Ref. 63.

"Parameters are calculated based on isotropic average relationship in Ref. 63.

section are based on Egs. (36)—(39). To be more explicit
about our numerical results, Eq. (37) is written in matrix
form as

Dy Dy, Dy || i - iPiq,
Dy Dy Dos || ity | =|=iPypqs |X(q). (41)
D3 D3 Ds3 || i3 - iP5q3

Alternatively, the following form is useful for computation:

i Dy Dy, Dy - _iPrlnlql
iy |=| Dy Dy Dy —-iPy)qy |x(q).  (42)
i D3 D3y D3z | | -iP3q;

DiVincenzo® attempted to provide detailed strain gradi-
ent parameters for GaAs through atomistic simulations but
(as pointed out by himself) since atomistic potentials are
rarely calibrated to include nonlocal effects, those values are
highly suspect. He, however, does provide (based on experi-
mental results) isotropic averages of the higher order tensors
from which we can deduce the average length scale (see
Appendix, 0.82 nm).Thus we consider classical elastic con-
stants that are anisotropic but use an average length scale.
We hasten to point out that this is not the limitation of our
models but rather availability of the pertinent parameters.

To isolate the anisotropic effects, we choose shapes of
high symmetry for illustrative purposes (e.g., finite-length
cylinder and spherical shape). Some relevant material param-
eters are summarized in Table L.

We analyze two cases.

(a) Finite-length cylinder: sample QD is chosen with D
=4 nm and ~=6 nm. Strain components are depicted in Figs.
16(a)-16(c).

(b) Spherical QD: The sample QD is chosen with radius
equal to 2 nm. Figures 16(d)-16(f) plot three components of
strain &, €5,, and &35 along the radius of the QD.

As can be readily seen, the isotropic formulation overes-
timates the strain state. Interestingly, the difference between
isotropic strain gradient and anisotropic strain gradient is

generally less than the difference between the isotropic clas-
sical elastic and cubic classical elastic cases.

VII. A BRIEF NOTE ON IMPLICATIONS FOR
ELECTRONIC BAND STRUCTURE

A detailed study on how the modified size-dependent
strain state due to nonlocal interactions affects the band
structure is beyond the scope of the present work. A typical
procedure, used for zinc-blende semiconductors in several
references, is to employ the k-p framework. Most work es-
sentially uses the Bir-Pikus’> Hamiltonian or some modifica-
tion of it. The reader is referred to Bahder’® and Pollak” for
a good review on this subject in addition to the book by
Singh.?® Several other works can be consulted as well that
utilize this multiband k-p approach (e.g., Jiang and Singh,”®
Pryor,”® and Zunger®). Rather than use such an approach for
detailed electronic calculations in the present context, we
shall simply provide the reader with a rough feel for the
impact that inclusion of nonlocal interactions may have on
band structure. Most works that discuss linking of strain to
band structure calculations (including the aforementioned
references) use a Hamiltonian that omits strain gradient ef-
fects. Clearly, the latter is important in the context of our
work. Zhang®!' has remedied the conventional approach and
has derived a general Hamiltonian that perturbatively incor-
porates strain gradient terms also. However, the additional
gradient terms in his Hamiltonian (while obviously of crucial
importance in our case) are tedious to implement and as such
a more in-depth study of the use of the Zhang Hamiltonian is
relegated to a future study.

Careful calculation based on a multiband envelope func-
tion requires calculation of eight coupled Schrodinger’s
equations.” Merely for illustration, we present a simple
single-band calculation. There is no illusion in the authors’
mind regarding the accuracy of a single-band approach;
however, since a rigorous implementation in any case must
await the full development of Zhang’s Hamiltonian, a simple
approximation is used that will serve to highlight the relative
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FIG. 16. (Color online) Strain component of finite cylinder QD for different cases (a) &, (b) €5, (¢) £33. Strain components of sphere
QD for different cases (d) &y, (€) &, (f) &33. (In the classical isotropic case, €33 should be equal to £;; due to symmetry, which is indicated

here. However, it is different for the anisotropic case.)
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FIG. 17. Unstrained band profile for InAs/GaAs quantum dot
heterogeneous system. Figures are chosen from Ref. 82, while
ES* is set to 0 eV.

differences in implications for electronic structure calcula-
tions depending upon whether or not nonlocal effects are
incorporated.

We solve the standard effective mass equations

2
_ o ieyw=Ey, (43)
2m;

where m;; is the effective mass for the conduction or valence
band. V(s) is the potential due to the strain effect.

In this simple approximation, for a conduction band, m;;
=m m&; (my is the electron mass) due to s symmetry the
strain potentlal becomes

V(e)= acTr(sij) (44)

where a, is conduction band deformation potential constant.
For the valence band we have
b
V(e) = a,Tr(g) - 5(811 + &5~ 2633) (45)
where a, and b are valence band deformation potential con-
stants. In this case the effective mass matrix is anisotropic,
which has nonzero components

— Xy — z
My yy == My, Mg == My,

We assess the impact of nonlocal corrections on a buried
spherical quantum dot (InAs/GaAs system). Again, the bar-
rier size is chosen large enough to preclude any boundary
effects (for ease of interpretation of results). The unstrained
potential profiles due to band edge offsets between the quan-
tum dot and the matrix are illustrated in Fig. 17.

The various parameters used the electronic calculations
are listed in Table II.

The relevant equations are solved using the finite-element

TABLE II. Parameters required for calculation.

Electron Hole
Effective mass m" my), ),
GaAs 0.0665 0.112 0.0377
InAs 0.023 0.035 0.0341
Deformation potential a, (eV) a, (eV) b (eV)
GaAs -7.17 1.16 -1.6
InAs -5.08 1 -1.8
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FIG. 18. (Color online) Band energy for different size QDs.

method via the commercial software FEMLAB. The conduc-
tion and valence band energies are computed for different
sizes and shown in Fig. 18. We have excluded sizes below 4
nm as we are skeptical about the validity of even an eight-
band model for such small sizes, let alone a single-band
model.

In the spirit of a relative comparison, we note two results
of interest in Fig. 18: (1) the valence band appears to be
relatively unaffected by nonlocal effects and for “large”
quantum dot size very quickly becomes indistinguishable
from results predicated on classical elasticity; (2) the conduc-
tion band, however, shows significant shifts and thus we can
accordingly expect shifts in band gaps and optical activity as
well. For a size 4 nm quantum dot, a discrepancy of
~100 meV is predicted which eventually reduces to about
25 meV for about a size of 10 nm. To illustrate the square of
the wave function distribution, we select a quantum dot of
size 5 nm and plot it along with the relevant energy levels in
Fig. 19.

It can be observed from Fig. 19 that carriers (hole or
electron) are confined in the quantum dot area for the ground

op Matrix
1. 52V
zZ
CcL
0. 96V~ ----- a
0. 87eV.
0.67eV—.. i
0. 6le¥ ===~
0. 530r—— b
0. 26eV—
0.16eV~,______
0. MeV— CB(excited)(a) CB(b) VB(c) VB(excited)(d)
0. 02eV——m—==ric].
0. 016 Classical —-

Strain Gradient ——

FIG. 19. Band energies and carrier density |¢{> for QD with
radius equal to 5 nm. The central areas (dark gray) indicate higher
numbers for the contour plot for carrier density. These results are
for a slice of the y-z plane.
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FIG. 20. (Color online) Dilation strain of a cylindrical quantum
wire.

and the first excited states. Apparently, nonlocal corrections
do not qualitatively change the wave function distribution
and only numerical values of the eigenenergies are shifted.
This conclusion, of course, is somewhat premature given the
simplistic nature of the band energy model employed. A
more detailed study on electronic structure calculations is
relegated to a future study.

VIII. SUMMARY AND CONCLUSIONS

To summarize, we have discussed the size dependency of
strain in lattice-mismatched embedded quantum dots based
on the mechanism of nonlocal interactions (included in the
form of higher-order strain gradients). Analytical results are
presented for spherical shaped quantum dots and cylindrical
quantum wires. Apart from the formal contributions, we note
in particular that the size effects due to nonlocal interactions

PHYSICAL REVIEW B 72, 195345 (2005)

can be rather appreciable for sub-10-nm sized structures. In
particular we presented results for GaAs for which an esti-
mate of the strain gradient parameter is available. Neverthe-
less, we emphasize here that the severity of the impact of
nonlocal results crucially depends upon the length scale pa-
rameter and the latter must be accurately found for the ma-
terial of interest.

Further, in the present work, various shapes were consid-
ered. Some illustrative results are shown for shapes such as a
finite cylindrical quantum dot, pyramidal, cuboidal, etc. In
particular, a rather simple result is obtained for the dilation.
Material anisotropy is also duly incorporated in our formu-
lation. We finally note that while detailed electronic band
structure calculations were not carried out, it is estimated
that errors in the hundreds of meV can be incurred in the
sub-10-nm size range if nonlocal effects are ignored. Quali-
tatively, our nonlocal solutions exhibit strain profiles that are
more physical than those obtained from classical elasticity
(i.e., discontinuities across interfaces are smoothed out and
singularities in the cases of corners in polyhedral shapes are
eliminated).
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APPENDIX: DISCUSSION OF STRAIN GRADIENT
SOLUTION OF INFINITE CYLINDRICAL
SHAPE INCLUSION (NANOWIRE)

IN AN ISOTROPIC MEDIUM

Apart from the spherical shape, an infinitely long circu-
larly cylindrical quantum wire is the other shape for which
closed-form analytical results are available. Yukawa potential
for this shape has already been evaluated by Cheng and He>
in a different context:

r r r r Ry r
krIl E KO E +kr10 ; Kl Z _kROKl 7 IO ; . VEQ,

M(x,k) = R .
o o )

The displacement field of this quantum wire is then

(2
2

1 w . Pk ijk Pi ($iw ., ,
l/li = - ;((l)’k - M,k)Pik + _IU/LO"ID—'j(_J_ + lz¢,ijk - le,ijk) - | B + l 2¢,ijk - l ZM,ijk .

For hydrostatic lattice mismatch strain, this is simplified to

1 1 ;
ui=P" - —(¢, =M, + _Vz(ﬁ
2 Moo\ 2

Further simplification yields

(A1)
re& .
A2
2u+n\ 2 (42)
1 .
+ﬂ¢ﬁﬂMJ—f———V<£LHQ¢rJQMQ}. (A3)
: )2+ N 2 : ~
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_ L M,- P A4
= n M) (A4)
The strain is

Sij 1]) m' (AS)

Finally the dilatation of the quantum wire is given as

P R R
{rh(") (L) Io( >K1<£)_—,0K1<—,0)10(1,>], re,
Qu+N) | I I "o\l I l [ l

T”(Sij) = (A6)

el el )]

where R, is the radius of the quantum wire (see Fig. 20).
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