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Thermal fluctuations of vesicles and
nonlinear curvature elasticity—implications for
size-dependent renormalized bending rigidity and
vesicle size distribution

Fatemeh Ahmadpoora and Pradeep Sharma*b

Both closed and open biological membranes noticeably undulate at physiological temperatures.

These thermal fluctuations influence a broad range of biophysical phenomena, ranging from self-

assembly to adhesion. In particular, the experimentally measured thermal fluctuation spectra also

provide a facile route to the assessment of mechanical and certain other physical properties of

biological membranes. The theoretical assessment of thermal fluctuations, be it for closed vesicles or

the simpler case of flat open lipid bilayers, is predicated upon assuming that the elastic curvature

energy is a quadratic functional of the curvature tensor. However, a qualitatively correct description

of several phenomena such as binding–unbinding transition, vesicle-to-bicelle transition, appearance

of hats and saddles among others, appears to require consideration of constitutively nonlinear

elasticity that includes fourth order curvature contributions rather than just quadratic. In particular,

such nonlinear considerations are relevant in the context of large-curvature or small-sized vesicles.

In this work we discuss the statistical mechanics of closed membranes (vesicles) incorporating

both constitutive and geometrical nonlinearities. We derive results for the renormalized bending

rigidity of small vesicles and show that significant stiffening may occur for sub-20 nm vesicle sizes.

Our closed-form results may also be used to determine nonlinear curvature elasticity properties

from either experimentally measured fluctuation spectra or microscopic calculations such as

molecular dynamics. Finally, in the context of our results on thermal fluctuations of vesicles and

nonlinear curvature elasticity, we reexamine the problem of determining the size distribution of

vesicles and obtain results that reconcile well with experimental observations. However, our results

are somewhat paradoxical. Specifically, the molecular dynamics predictions for the thermo-

mechanical behavior of small vesicles of prior studies appear to be inconsistent with the nonlinear

elastic properties that we estimate by fitting to the experimentally determined vesicle size-distribution

trends and data.

1 Introduction

Biological membranes are ubiquitous in life, and form the
envelope through which cells and organelles interact with
their surroundings.1 Lipid bilayers, which primarily consist of
self-assembled phospholipid molecules, often form closed
vesicles.2 Usually just a few nanometers thick, the membranes
serve as the gatekeepers for the cells and vesicles and aid in the
transport of chemicals, facilitate mechanical and electrical

signaling, transduction and adhesion. The vesicles, depending
on the specific membrane composition and the surrounding
environment, can exhibit a diversity of morphologies and
of course serve as multi-purpose carriers that are capable of
facilitating communication among cells, transporting functional
genetic information as well as management of cellular waste. Aside
from fundamental biological studies, lipid-based vesicles are often
also created artificially in the laboratory for applications in drug
design and delivery.

Although membranes are microscopically quite complex,
their mechanical behavior is reasonably well-described by the
phenomenological theory of elasticity and just a few continuum
parameters such as the bending moduli and surface tension.
Specifically, the oft-used Canham–Helfrich’s theoretical frame-
work parametrizes the energy cost of the deformation of a
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tension-less membrane patch by the following quadratic
form:† 3–7

Fb ¼
ð

S

1

2
kb H �Hoð Þ2 þ �k K � Koð Þ (1)

Here kb and �k are the bending moduli that, respectively,
parametrize the energy change due to changes in the mean
(H) and Gaussian (K) curvatures. The corresponding sponta-
neous curvatures are denoted by Ho and Ko.‡ The elastic energy
scale is set by the bending modulus and surface tension. Their
typical values are such that membranes are usually hard to
stretch but bend (curve) quite easily.8,9 Typical bending
modulus of most lipid-bilayers is between 5 and 25kBT—small
enough compared to the thermal energy scale that membranes
undulate or fluctuate noticeably at physiological temperatures.8–12

The study of these experimentally observed and widely studied
thermal fluctuations has been one of the cornerstones of bio-
physical research on membranes.10–14 Statistical mechanics of
open (nearly) flat membranes is well-developed and, to a compara-
tively lesser degree of exhaustiveness, several reports also exist that
describe the thermal fluctuations of closed vesicles.15–19 The
reason for the interest in thermal fluctuations of membranes
is simple; aside from fundamental scientific curiosity, the fluctua-
tions have been found to be responsible for the so-called entropic
(steric) repulsive force between membranes20–23 and strongly
influence phenomena such as self-assembly, adhesion, binding–
unbinding transitions, membrane fusion and many others.24–27 In
particular, the experimentally measured fluctuation spectra or
calculated via microscopic methods such as molecular dynamics
have provided a facile route to estimate mechanical and other
related properties of membranes.28–31 For instance, in the case of
large, nearly flat membranes, the following result for the fluctua-
tions of the out of plane displacement field h, can be easily derived
based on the linearized version of the quadratic Hamiltonian
described in eqn (1): hh2i p kBT/kb.32 This basic result has been
extended to numerous other physically relevant contexts providing
an avenue to extract useful information e.g. the incorporation
of electromechanical coupling, tilt of lipids, presence of
proteins or inclusions, proximity to substrates or other vesicles
among others.33–40

For very large cells and/or vesicles, assuming that the membrane
is nearly flat is a reasonable assumption and considerably
simplifies the statistical mechanics analysis. However, this
assumption is certainly in error for even moderately sized
vesicles and may conceal some interesting physical effects

due to the presence of finite curvature. For instance Morse
and Milner16 showed that the free-energy of a single vesicle
increases logarithmically with vesicle size, if finite-size contri-
butions are incorporated, as opposed to a logarithmic decrease
predicted for a nearly-flat membrane. Accordingly, several
studies have paid attention to the more difficult problem of
understanding the fluctuation behavior of closed membranes.15–19

In particular, one motivating factor has been the experimentally
observed size-distribution of vesicles.41 A collection of a fixed
number of vesicles with different sizes can freely exchange amphi-
philic molecules until a thermodynamic equilibrium state is
reached. Typically, the experimentally observed size distribution
of an ensemble of vesicles at equilibrium is Gaussian in nature,
with a rather large cut-off radius of about 10–20 nm. Theoretical
models that purport to explain vesicle size-distribution trends do
so based on contributions from the elastic bending energy and the
chemical potential of the amphiphilic molecules that is required to
create a vesicle. However, such models—which are predicated on
the quadratic Helfrich Hamiltonian described in (1)—appear to be
unable to completely explain all features of the experimentally
observed vesicle size-distribution.

Our work is motivated by the following observations and
questions:
� How does the bending modulus get renormalized for

high-curvature or small-sized vesicles? Ostensibly, for small
vesicles, nonlinear curvature elasticity properties should play
a significant role; do they indeed do so?
� In analogy with what has been done in the case of quadratic

Helfrich–Canham Hamiltonian, it would also be desirable to have
closed-form expressions for the thermal fluctuation spectra of
nonlinear curvature elasticity to readily extract nonlinear elastic
properties via experiments or molecular dynamics.
� The experimentally observed size-distributions of vesicles

appear to be at odds with all theoretically derived distributions.
Helfrich speculated and (qualitatively) proposed that nonlinear
curvature elasticity may play a role in the correct prediction of
vesicle size-distribution. However, a derivation of vesicle size
distribution that includes thermal fluctuations within a non-
linear curvature elasticity framework is still missing in the
literature.
� Development of the statistical mechanics of closed mem-

branes, incorporating fourth order nonlinear curvature elasticity,
may be useful to understand various biophysical phenomena for
small vesicles e.g. adhesion, modification of repulsive forces, and
binding–unbinding among others.

To address the aforementioned issues, in the present
work, we develop the statistical mechanics of closed spherical
vesicles that are described by fourth order constitutively
nonlinear curvature elasticity and may be suitable for the
study of small-sized vesicles. The outline of the paper is as
follows: nonlinear fourth order curvature elasticity is described
in Section 2 along with several aspects of the problem setup.
The statistical mechanics of closed vesicles is developed
in Section 3, where we present the results for the renormaliza-
tion of the bending modulus of small vesicles followed by,
in Section 4, the implications of our work for the assessment

† This specific form is not quite the same as that originally presented by Canham
or Helfrich. Several researchers have motivated the Helfrich–Canham Hamiltonian
from fundamental grounds i.e. both as a derivation from three-dimensional solid or
liquid crystal elasticity or statistical mechanics.5–7 The specific form in eqn (1) is taken
from Maleki and Fried6 and as motivated by them, inclusion of spontaneous
Gaussian curvature is important in certain situations.
‡ We emphasize a point which is sometimes glossed over but quite clearly
highlighted by Maleki and Fried.6 Ho can be ascribed to two contributions,
geometric or constitutive. While the former corresponds to asymmetries between
the bilayer leaflets, the latter denotes the stable equilibrium state of a membrane,
which is zero for a flat membrane and can be nonzero for spherical vesicles.
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of size-distribution of vesicles. Our results appear to be para-
doxical in light of some past computation of nonlinear elasticity
properties. This, along with other issues, are discussed in
Section 5 where we also conclude the work.

2 Nonlinear curvature elasticity and
problem setup

Consider a closed vesicle described by an enclosing surface S.

The elastic energy density may be represented by c = �c(H,K). As
has been discussed elsewhere,6 treatment of the vesicle surface
as an isotropic fluid membrane and the foundational principles
of continuum mechanics restrict the dependence of c solely
to (H,K). Assuming conservation of area and volume, in the
absence of external forces, the total potential energy of the
vesicle can be written as:

E ¼
ð

S

ðcþ sÞdSþ
ð
V

pdV (2)

where s and p are the surface tension and osmotic pressure,
respectively. The conventional vesicle equations, as usually
found in the literature, are obtained by assuming a quadratic
form for c i.e. eqn (1). The equilibrium equations, derivable by
means of variational calculus, however, can proceed without
the actual specification of c and has been carried out by a
number of authors.11,42–46 We quote below the result in the
form presented by Biria et al.47

�cH 2H2 � K
� �

þ 1

2
DS

�cH þ 2�cKHK þ 2DS
�cKH
� �

� divS LrS
�cK

� �
� 2 rSHð Þ � rS

�cK

� �
� 2�cKDSH

� 2Hðcþ sÞ ¼ p

(3)

Here, the subscript H (and K) denote the derivative with
respect to H (and K). Furthermore, L is the curvature tensor and
rS, DS and divS correspond to the surface gradient, surface
Laplacian and surface divergence operators,§ respectively.47

Fourth order nonlinear curvature elasticity is obtained by
considering all the invariants of the curvature tensor L up to the
fourth order. Ignoring the spontaneous curvature, this leads to:

�cðH;KÞ ¼ 1

2
kbH2 þ kK þ 1

2
g1H

4 þ 1

2
g2H

2K þ 1

2
g3K

2 (4)

where gi are the fourth order moduli.

In linearized curvature elasticity (i.e. the quadratic Helfrich
theory), assuming that the vesicle is a sphere of radius R, the
Young–Laplace equation takes the form: R = 2s/p. In the non-
linear setting, however, due to the presence of higher order
moduli, this relation is modified. Assuming that sphere is the
stable state, eqn (3) results in:

� g1
R5
þ g3
R5
¼ p� 2s

R
(5)

which implies that for a certain range of pressure, there may be
more than one sphere solution, that might be either stable or
unstable depending on the values of gi. In this paper we will not
focus on the stability of different morphologies in the context
of nonlinear elasticity. It is assumed that the conditions (based
on the values of surface tension, pressure and the elastic
properties) ensure that a spherical vesicle is stable. For further
details on this topic, the reader is referred to ref. 48–50.

In what follows, we will assume that the topology of the
membrane does not change as it undergoes thermal fluctuations
and accordingly, the contribution of the Gaussian curvature to the
free energy may be neglected.¶

We rescale the fourth-order moduli to emphasize the fact
that nonlinear curvature elasticity introduces an intrinsic
length scale—in sharp contrast to the conventional Helfrich-
theory: gc = kblc

2 where lc is the critical length scale that
determines when the nonlinearity may be ignored, lcH { 1.
Typically, lc is assumed to be in the same order of magnitude
as the thickness of the membrane. However, as will be elabo-
rated in due course, there is uncertainty about the determina-
tion of this parameter and we eventually use experimental data
on vesicle size-distributions to estimate that, at least for the
materials system we investigated, its value is indeed of the
same order as the membrane thickness. We speculate that

§ Let n be the normal vector to the surface S. A surface projection tensor may be
defined as:

P = I � n # n,

where I is the identity tensor. The surface gradient, surface Laplacian and surface
divergence of a scalar field f and a vector field g can then be defined in terms of P
and their smooth extensions f e and ge as:47

rS f = Prf e, rSg = (rge)P,

divSg = P�rge, DS f = divS(rS f )

Finally, the curvature tensor takes the following form: L = �rSn.

¶ In the conventional (linear) model, according to the Gauss–Bonnet theorem,
the integration of the Gaussian curvature over the surface is invariant under any
deformation and hence the contribution of the Gaussian curvature to the bending
energy may be ignored. This is, however, a global constraint on the topology of
the membrane, which is necessary but not sufficient. Strictly speaking, the
Gaussian curvature at any point on the surface depends only on the metric
tensor which is constrained by the intrinsic topology of the surface. To capture
the effect of such a strict local topological constraint, one need to fix the metric
tensor’s components, using local Lagrange multipliers in the total Hamiltonian.
This will guarantee that the Gaussian curvature will not change at any point on
the surface, and therefore all the contributions of the Gaussian curvature in the
free energy can be neglected. In this manner, the total bending energy density in
the nonlinear framework can be modified as below:

�c ¼ 1

2
kbH2 þ 1

2
gcH

4 þ k � g� g0
� �

(6)

where gc is the only fourth order constant. Also, g0 and g correspond to the metric
tensors of the undeformed and deformed surfaces respectively. Furthermore, l is
a set of Lagrange multipliers accounting for the constraints on the metric tensor
components. Imposing such local topological constraints, for the simplest
example of an unstretchable flat sheet, it has been shown that constraining the
metric tensor components results in a significant modification to the shape
equation.51,52 This notion is critical when the deformations may result in
topological changes. For our specific problem, since the fluctuations are con-
sidered to take place for a fixed (and stable) topology—and that is a stable sphere
will remain a sphere in the absence of external forces—implementing the
topological constraints is unimportant. Accordingly, in the remainder of the
work, the additional Lagrange multiplier term in eqn (6) is dropped.
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the physical origins of lc are rooted in force and entropic
interaction between adjacent lipid molecules when compelled to
take highly curved configurations whose size-scale is compared to
the thickness dimensions of the bilayer (and hence lipids). We
will focus on the fluctuations of a closed vesicle in the shape of a
perfect sphere—as has been done by nearly all studies that
precede us. The fluctuating spherical vesicle (Fig. 1) with a mean
radius of r0, surface defined as S :¼ r 2 R3 : jrj ¼ r0

� �
has a

membrane of thickness d. Consider a small but arbitrary pertur-
bation of the surface of the vesicle. The position of each point on
the perturbed surface of the sphere can be described as:

r̃ = r + eUn (7)

where we have assumed that the perturbation is only along the
normal direction as shown in Fig. 2. Here e 2 R is a small
number and Uðy;fÞ : S! R denotes the magnitude of the
normal perturbation. The mean curvature and the Jacobian of
the perturbed surface can be expressed as:

H̃ = H + dH

J̃ = 1 + dJ (8)

where H is the mean curvature of the undeformed surface. Up to
second order in e, the variations of H and J may be expanded as:45,53

dJ ¼ � 2HUeþ 1

2
rSUj j2 þ KU2

� �
e2 þO e2

� �

dH ¼ 2H2 � K
� �

U þ 1

2
DSU

� �
e

þ HUDSU �
1

2
rSU � HrSUð Þ þ 4H2 � 3K

� �
HU2

� �
e2

þO e2
� �

(9)

Neglecting the contribution of the Gaussian curvature, the
bending energy per unit area of the perturbed surface can be
written as:

�c½ ~H� ¼ 1

2
kb ~H2 þ 1

2
gc ~H4 (10)

Using eqn (8) and (9) and integrating the above expressions
over the surface of the membrane, we obtain:

Etot½U;H� ¼
ð

S

�c½ ~H� ~JdA0

¼
ð

S

E e0
� �
þ E e2

� �
þ E e4

� �
þO e4

� �� �
dA0

(11)

in which we have retained up to fourth order terms. The leading
terms in the expressions for E(ei) are as follows:

E e0
� �

¼ 1

2
kbH2 1þ ‘c2H2

� �

E e2
� �
¼ 1

8
kb DSUð Þ2 1þ 6H2‘c

2
� �

þ 1

4
kbUDSU 5H2 � 2K þ 3H2 7H2 � 4K

� �
‘c
2

� �
þ . . .

E e4
� �
¼ 1

32
kb‘c2 DSUð Þ4þ1 . . .

(12)

Specializing to the case of a perfect sphere of radius r0, the
equilibrium mean and Gaussian curvatures are H�1 = �r0 and
K�1 = r0

2. Moreover, we define the normalized mid-plane
displacement as: u = U/r0. For notational simplicity, we use
D :¼ DS r0 ¼ 1ð Þ as the surface laplacian operator on the unit
sphere. Assuming that y and f are polar and azimuthal
angles, we can write the area element as: dA0 = r0

2dO, where
dO = sin(y)dydf. Then, integrating the terms in (12) over the

Fig. 1 A schematic showing fluctuations of a spherical vesicle. Due to the
small bending stiffness of biological membranes, compared with the
thermal energy scale, such vesicles undergo considerable undulations at
physiological temperatures. Experimental measurement of the amplitude
of the fluctuations provides a facile route to the determination of the
bending stiffness of the vesicles.

Fig. 2 Displacement field fluctuations of the surface of a spherical
membrane. We have assumed that the fluctuations are normal to
the surface. The fluctuating mid-plane displacement is normalized as
u(y,f) = U(y,f)/r0.
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area of the sphere, we obtain:8

E0 ¼
ð

S

E e0
� �

dA0 ¼ 2pkb 1þ ‘c
2

r02

� �

E2 ¼
ð

S

E e2
� �

dA0

¼
ð

S

1

8
kb 1þ 6‘c

2

r02

� �
ðDuÞ2 þ 3

4
kb 1þ 5‘c

2

r02

� �
uDu

� 	
dO

E4 ¼
ð

S

Eðe4ÞdA0 ¼
ð

S

1

32r02
kb‘c2ðDuÞ4

� 	
dO

(13)

For notational simplicity, in what follows, we set k1 ¼
1

8
kb

1þ 6‘c
2=r0

2
� �

, k2 ¼
3

4
kb 1þ 5‘c

2=r0
2

� �
, and k3 ¼

1

32
kb‘c2=r02.

Evidently, E0 is the ground state energy, corresponding to the
equilibrium state. A small perturbation of the surface (7),
requires an additional elastic energy that can be expressed as:
Epert = E2 + E4. Up to the second order, the energy function
E2 within the linearized curvature elasticity framework has been
derived earlier by many authors. Here, we have generalized it
to include the effects of constitutive nonlinearities. In the
following section we will use the energy function (13) to study
the thermal fluctuations of the displacement field for a
spherical vesicle.

3 Thermal fluctuations in the context of
nonlinear elasticity and the renormalized
bending rigidity of small vesicles

There exists rich and extensive literature on thermal fluctuations of
membranes.54–58 In the context of lipid bilayers and biological
membranes, the vast majority of the studies use Helfrich’s classical
quadratic Hamiltonian (i.e. linearized curvature elasticity) as the
starting point. Specifically, constitutive nonlinearity—as detailed
in the preceding section, has hitherto not been accounted for.
Unfortunately, carrying out statistical mechanics of non-quadratic
Hamiltonians is a daunting task to say the least; and closed-form
solutions are frequently unobtainable. The equipartition theorem,
that is the essential result used by nearly all the analytical statistical
mechanics works on biological membranes, is not applicable.

Several methods have been introduced in the literature for
treating non-quadratic Hamiltonians. Perhaps, the most straight-
forward approach is the perturbation expansion59 wherein the
non-quadratic part of the Hamiltonian is considered to be a small
perturbation compared to the quadratic part for which an exact
solution is known. If the perturbation term is small enough, and
under certain conditions, a rapid convergence of the free energy
expansion may be achieved. Nevertheless, for low temperatures,
divergent contributions may appear from second order corrections.59

Improved results may be obtained by the so-called variational
perturbation theory (VPT) which has been successfully employed to
remove divergencies in several canonical problems of quantum
and statistical physics.59–64 This method is based on the so-called
principle of minimum sensitivity65 and involves the use of a trial
quadratic Hamiltonian with a variational coupling parameter. The
requirement that an infinite perturbation expansion series should
not depend on the variational parameter, the variational coupling
parameter is ‘‘optimized’’ so that a truncated series solution depends
minimally on it. The convergence of this method has been shown to
be excellent when compared to all-numerical calculations and fairly
reasonable closed-form analytical solutions may be obtained with
just first or second order expansions in many cases.** 59,60,66

Renormalization group67 (RG) is also another approach to treat the
divergencies in perturbation expansions. This method is based on
scaling techniques and some universal properties of materials near
critical phenomena. In most of the cases, RG involves numerical
calculations to estimate the free energy, and is often unable to
produce analytical expressions for the correlation functions.

In what follows, we employ the variational perturbation
approach and retain terms only up to the first order. Higher
order corrections are cumbersome to incorporate but may be
included if required. Our choice of the approach is dictated
by our desire to obtain closed-form yet reasonably accurate
solutions. The perturbed energy function, introduced in (13) is
split in two parts; quadratic (E2) and a non-quadratic (E4) part
that is not tractable via the equipartition theorem. We express

8 In spherical coordinates, using er; ey; ef
� �

as the basis vectors, the perturbed
surface of the sphere is r̃ = r0(1 + u(y,f))er and the area element and normal vector
of the perturbed surface are:

~JdA0 ¼ @y~r� @f~r


 

 dydf

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @u

@y

� �2

þ 1

siny
@u

@f

� �2
s

r0
2siny dydf

n ¼ @y~r� @f~r

@y~r� @f~r


 



Also the mean curvature is:

~H ¼ �1
2
divSn

The surface operators are defined as:

r: ¼ @

@y
ey þ

1

siny
@

@f
ef

D: ¼ 1

siny
@

@y
siny

@

@y

� �
þ 1

sin2 y

@2

@f2

The area element and the mean curvature can then be expressed as:

~JdA0 ¼ r0
2 1þ 2uþ u2 þ 1

2
ru


 

2þ . . .

� �
sin y dydf

~H ¼ � 1

r0
1� u� 1

2
Duþ u2 þ uDu� 1

2
ru


 

2þ . . .

� � ** This approach, if only a first-order expansion is used, is also known more
popularly as the Gibbs–Bogoliubov variational method, which is frequently used
in several classes of quantum and classical statistical mechanics problems.67–72
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the original Hamiltonian in the following modified form:

HðlÞ ¼ H0 þ lHI (14)

where l is a control parameter, such that 0 r lr 1. We remark
that H is exactly the original non-quadratic Hamiltonian when
l = 1. Also, H0 is a trial Hamiltonian, that is analytically soluble
and HI is the correction term. Using the concept of the
canonical ensemble, the partition function is:

ZðlÞ ¼
ð
exp �bHðlÞð ÞD½u� (15)

where b ¼ 1

kBT
and D½u� represents the functional integration

measure.60 The Helmholtz free energy can be obtained as:

FðlÞ ¼ �1
b
logZðlÞ (16)

Differentiating the above free-energy, with respect to l, we obtain:

@FðlÞ
@l

¼
Ð

HI exp �b H0 þ lHIð Þð ÞD½u�Ð
exp �b H0 þ lHIð Þð ÞD½u� ¼ hHI i (17)

The second derivative of the free-energy, with respect to l yields:

@2FðlÞ
@l2

¼ �b HI
2

� 
� HIh i2

� �
¼ �b HI � HIh ið Þ2

D E
(18)

which is always a negative value;
@2FðlÞ
@l2

� 0. This implies that the

free energy is a concave function for all values of l, and thus,
the function F(l) is always below the tangent to F(l) at l = 0. Using
the Taylor expansion around l = 0 we can write:

FðlÞ � F0 þ
@F

@l

� �
l¼0

lþ 1

2!

@2F

@l2

� �











l¼0

l2 þ . . . (19)

We may now set l = 1 to retrieve the free-energy corresponding to
the original Hamiltonian. Also we can write the correction term in
terms of the trial Hamiltonian H0 and the exact Hamiltonian H as:
HI ¼ H�H0. The infinite Taylor series in the righthand side of
eqn (19) should match the exact free energy—regardless of the
choice of the trial Hamiltonian H0. In practice, however, the series
is truncated up to a finite order M to obtain an estimate of the free
energy. Let FM be the truncated series (19) up to the M-th order. Then
using cumulant averages we can write the explicit form for FM as:

FM ¼ F0 �
1

b

XM
k¼1

ð�bÞk
k!

H�H0½ �k
D Ec

Ho

(20)

where h�iH0
denotes the phase average with respect to H0 and the

superscript c corresponds to cumulant averages.††59 Unlike the

infinite series expansion in eqn (19), the truncated series FM does
depend on the choice of the trial Hamiltonian H0. Accordingly, in
order to obtain an optimized estimate, we need to minimize the
sensitivity of the truncated series to the trial Hamiltonian. Suppose
now that the trial Hamiltonian H0 in Fourier space is defined as:

H0 ¼
X
q2KN

uðqÞGðqÞuðqÞ� (21)

with q representing the modes of fluctuations, u(q) being the
fluctuating field in mode q and G(q) is an unknown trial function
that defines the form of interactions between the degrees of freedom.
Then, to obtain the optimal form of G(q), we must set:60

@FM

@GðqÞ :¼ 0: (22)

In a rather good approximation, the result for the truncated series
of the variational free energy from this method will converge i.e.
FM E FM+1 and the series (20) achieves its minimal sensitivity to the
trial function. We remark that restricting calculations to first order in
the truncated series (20) yields just the well-known Bogoliubov
theorem12 for the upper bound of the exact free energy:

F � F0 þ H�H0h iH0
(23)

In what follows, we will use this approach up to first order to
obtain a closed form solution for the free energy of the system.

As can be appreciated, the original Hamiltonian may be split
into a trial and a correction term in an infinite number of ways.
The next step involves choosing the optimal trial quadratic
Hamiltonian. To achieve this, we start with the Fourier decom-
position of the perturbation field on the sphere. To this end we
expand the displacement in terms of spherical harmonics. Let
N be the total number of degrees of freedom and

KN :¼ fðl;mÞjðl;mÞ 2 Z� Z; l 	 2; lðl þ 1ÞoN;�lomo lg:

Then we can expand the normalized perturbation field in
terms of spherical harmonics as below:

uðy;fÞ ¼
X

ðl;mÞ2KN

ul;mYl;m (24)

where Ylm‡‡ are spherical harmonics73 with eigenvalues:

r2Yl,m = �ql,m
2Yl,m = �l(l + 1)Yl,m (25)

†† The cumulant averages of a function X with respect to H0 up to the third order
is defined as:

hXicH0
¼ hXiH0

X2
� c

H0
¼ X2
� 

H0
�hXiH0

2

X3
� c

H0
¼ X3
� 

H0
�3 X2
� 

H0
hXiH0

þ 2hXiH0

3

‡‡ We have excluded the modes corresponding to l = 0 and l = 1, since these
modes represent the area change and the rigid body motion of the vesicle and
hence do not contribute to the total energy. We also recall the two important
properties of the spherical harmonics, which will be used later in our calcula-
tions. They are orthonormal:ð

S

YlmYl0m0
�dO ¼ dll0 dmm0

and separable:

Ylm ¼ Pm
l ðyÞeimf

where Pm
l (y) is the Legendre polynomial corresponding to the mode (l,m). In what

follows, for the eigenvalues of the spherical harmonics, we use the notation
q = ql,m wherein q2 = ql,m

2 = l(l + 1).

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2016 Soft Matter, 2016, 12, 2523--2536 | 2529

and ul;�m ¼ ul;m
� are the Fourier transformation of u(y,f):

ul;m ¼
ð

S

uðy;fÞYlm
�dO (26)

We select the general form for the quadratic trial Hamiltonian
H0 in Fourier space as defined in eqn (21). The goal now is to
match the exact free-energy as closely as possible by finding an
optimal match for the form of the propagator G(q). To this end
we set:12,60

@

@GðqÞ F0 þ H�H0h iH0

� �
:¼ 0 (27)

The partition function and the free energy corresponding to the
trial quadratic Hamiltonian H0 in eqn (21) is obtained as:

Z0 ¼
ð
e�bH0½u�D½u�;

F0 ¼ aF þ
kBT

2

X
q2KN

logðGðqÞÞ
(28)

where aF is a constant independent of the propagator G(q).
Calculating F0 from (28) and substituting it into the L.H.S. of
eqn (23), we obtain the variational free energy Fvar as:

Fvar ¼ F0 þ hH�H0iH0

¼ aF þ
kBT

2

X
q2KN

logðGðqÞÞ

þ
X
q2KN

k1q4 � k2q2
� �

uðqÞ2
� 

H0

þ 4pk3 r2u
� �4D E

H0

(29)

The mean square value of the perturbation field in each mode of
the fluctuation can be obtained using the equipartition theorem:74

uðqÞ2
� 

H0
¼ kBT

2GðqÞ (30)

Also the last term in (29), which is a higher order correlation
function, may be calculated by invoking Wick’s theorem:74

r2u
� �4D E

H0

¼ 3 r2u
� �2D E

H0

2 (31)

Minimization of the variational free energy in (29) with
respect to the unknown propagator G(q) provides an upper
bound for the exact free energy. Then, solving eqn (27) gives us
the following form for G(q):

G(q) = ((k1 + 24pZk3)q2 � k2)q2 (32)

where,

Z ¼ r2u
� �2D E

H0

¼ 1

4p

X
q2KN

q4 uðqÞ2
� 

H0
(33)

which should be calculated by integrating over all undulation
modes. For brevity we rewrite eqn (32) as:

GðqÞ ¼ 1

8
c1q

4 � c2q
2

� �
(34)

where c1 and c2 are the corresponding coefficients of q4 and q2

in (32), respectively. The unknown value of Z in the expression
for c1 should be calculated from the implicit equations of (30),
(32) and (33):

Z ¼ 1

4p

X
q2KN

q4huðqÞ2iH0

¼ kBT

4p

X
q2KN

q4

2GðqÞ

¼ kBT

pc1

X
q2KN

1þ c2

c1q2
þ . . .

� �
(35)

where, to further simplify our calculations, we have dropped

the term
1

q2
since it is negligible compared to one—q2

c 1.

To compute the summation we replace it with an integral:

X
q2KN

:¼
X
l

ð2l þ 1Þ 

ð
ð2l þ 1Þdl (36)

where lmax can be easily obtained from the total number of
modes (degrees of freedom):

N ¼
X
l

ð2l þ 1Þ ¼ 4pr02

A0
(37)

in which A0 is the area associated with each degree of freedom,
and is typically of the same order of magnitude as d2 with d is
the thickness of the membrane. Substituting the solution of
eqn (35) for Z into the expression for G(q) in eqn (34) gives us
the following form for the coefficients c1 and c2:

c1 ¼
1

2
kb 1þ 6‘c

2

r02
þ w

� �

c2 ¼ 6kb 1þ 5‘c
2

r02

� � (38)

where,

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12‘c

2

r02
þ 36‘c

4

r04
þ 24‘c

2N

bkbr02

s
(39)

Note that the q4 contribution in (32) is equivalent to the
bending rigidity (c1) of a vesicle studied in the context of
linearized curvature elasticity, and according to (38), can be
significantly larger than the bare modulus kb. We also note that
there is a curvature-dependent suppression of thermal fluctuations
in the nonlinear context and accordingly larger vesicles experience
stronger fluctuations, compared to smaller vesicles. On the other
hand, the q2 term in eqn (34) has softening effects that arise from
geometric nonlinearities. In the remainder of this section, we aim
to study the softening effects of the thermal fluctuations on the
bending rigidity. This topic has been well appreciated since
the early and pioneering work by Helfrich.56,75–77 Considering
geometric nonlinearity and using first order approximations,
Helfrich75 explained that the renormalized bending rigidity in
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linearized curvature elasticity (for nearly flat membranes) can be
written as:§§

keff ¼ kb þ
a
2p

kBT logN (40)

wherein a is a universal constant and N is the number of molecules
in the system. Assuming weak rippling in nearly flat membranes,
he predicted a = �1. Peliti and Leibler56 also reexamined this
problem and obtained a as �3. Later on, Kleinert77 rigorously
discussed the origins of these discrepancies and highlighted the
care needed in choosing the integration measures in path integrals
as well as some algebraic errors in expanding the energy formula-
tion in terms of the fluctuation field. He confirmed that a = �3. In
the following, we will revisit this problem to study the coupled
effects of geometric and constitutive nonlinearities. We note in
passing that, in a somewhat controversial and later work,76 Helfrich
argued for the use of curvature as the proper integration measure
and obtained a = +1. This result is however widely disputed.

Consider now a spherical vesicle (described by linearized
elasticity) with a bending rigidity of c1 and radius r0. The

bending energy can be computed to be:
Ð1
2
c1

1

r02
dA0 ¼ 2pc1.

Also, at finite temperature, the free energy of the vesicle can
be obtained using eqn (28) and (34):

F0 ¼ � kBT logZ0

¼ aF þ
kBT

2

X
q2KN

logGðqÞ

¼ aF þ
kBT

2

X
q2KN

log c1q
4 � c2

c1q2
þ . . .

� � (41)

The above expression shows that contribution of geometric
nonlinearity produces additional terms in the Taylor expansion
of the free-energy. The ‘‘additional free energy’’ can be inter-
preted as the change in apparent bending stiffness:

DF ¼ 1

2
kBT

X
q2KN

c2

c1q2
þ c2

2

2c12q4
þ . . .

� �

:¼ 2p c1 � keffð Þ

(42)

Thus, the effective bending stiffness can be calculated up to
first order as:

keff ¼ c1 �
c2

4pc1
kBT

X
q2KN

1

q2
(43)

The summation is calculated using integration over all
possible modes:

X
q2KN

1

q2
¼
ð
2l þ 1

lðl þ 1Þdl ¼ logN (44)

Substituting the above integral into eqn (43), we obtain the
effective bending rigidity as:

keff ¼
1

2
kb 1þ 6‘c

2

r02
þ w

� �
� a0

4p
kBT logN (45)

where w has been previously defined in (39) and a0 is:

a0 ¼ c2

c1
¼

12þ 60‘c
2

r02

1þ 6‘c
2

r02
þ w

(46)

Note that in the limit of lc - 0 the above expression reduces
to that of a conventional linearized curvature elasticity model.77

For quantitative comparisons, we have calculated the bending
stiffness, for a range of vesicle sizes with different values of lc.
The results are shown in Fig. 3 where we compare four different
cases. The horizontal axis is the normalized radius of the
vesicle r0/d where we set d = 5 nm. Solid blue, green and red
lines correspond to lc = 2 nm, lc = 3 nm and lc = 4 nm,
respectively. The dashed line corresponds to the case of lc = 0
which reduces to the Helfrich quadratic model.75 As can be
readily observed, for small vesicles that have high curvatures,
the effect of nonlinearity becomes quite significant. Even for a
small value of lc = 3 nm—less than the typical thickness of the
membrane—the apparent bending rigidity becomes signifi-
cantly stiffer for sub-20 nm vesicles. Also, the effect of non-
linearity does not vanish in the limit of the flat membrane,
when H - 0. The corresponding limits of the normalized
effective bending rigidity keff/kb for the cases of lc = 2 nm,
lc = 3 nm and lc = 4 nm are found to be 1.42, 1.76 and 2.13,
respectively.

Fig. 3 Renormalized bending modulus for different values of lc. Solid red,
green and blue correspond to lc = 4 nm, lc = 3 nm and lc = 2 nm,
respectively. The dashed line is obtained from the Helfrich linear model in
which lc = 0. The data have been calculated with kb = 20kBT and d = 5 nm.

§§ We highlight that in many studies on this topic, the bending energy density is
assumed to have the form of

1

2
kb
0
1=R1 þ 1=R2ð Þ2 in which R1 and R2 are the

principle curvature radiuses. In this form, the mean curvature is considered to be:
H0 = 1/R1 + 1/R2, while in the present work, we consider half of this value as the
mean curvature—H = (1/R1 + 1/R2)/2. Accordingly, the bending energy of a sphere,
based on our assumption is obtained as: 2pkb, while in some reports, the bending
energy is assumed to be 8pkb

0. Therefore, the change in the bending modulus in

some of the references we have cited is:
a
8p

kBT logN. A comparison between these

two forms shows that any variation in kb, used in our model, is four times larger
than those in other reports.56,75–77
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4 Size distribution of vesicles

Vesicles can be artificially made across a broad range of
diameters. However, if an ensemble of vesicles are allowed to
freely exchange molecules—artificial or nature-made—the size
of the vesicles will change for some period, until they become
thermodynamically stable. At this state, it is very unlikely to
find vesicles beyond certain sizes, i.e. there is discernible
maximum and minimum size-limit for the radius of the
vesicles. Depending on the experimental methods used for
the preparation of vesicles, these size limits may slightly vary
in the beginning, but eventually the experimentally observed
size distributions appear to become independent of the method
of preparation and are determined by macroscopic mechanical
and entropic properties of the vesicles.78 Several experimental
efforts have been dedicated to this subject.78–80 The most
common method to determine the size distribution of vesicles
is via dynamic light scattering (DLS) measurements. Another
well-known method is to use cryo-TEM images81–83 and obtain
the size distribution histogram using statistical analysis. In a
recent work Xu et al.41 have used a combination of these two
approaches and obtained the size distribution for a set of lauric
acid vesicles. They confirmed that the size of the vesicles is
distributed within a finite range with a remarkably large cut-off
radius of about 20 nm. In this section, using the results derived
in the preceding sections, we aim to study the qualitative effects
of mechanical properties and their corresponding entropic
effects on the size distributions of small unilamellar vesicles.

In the following we assume that the vesicles can exchange
amphiphilic molecules, while the total number of the vesicles
remains fixed. Also the spontaneous curvature is considered to
be zero, and that there is always non-zero amount of energy
cost for any non-zero curvature. Given that N is the number of
amphiphilic molecules in a vesicle, the size distribution of the
vesicles, w(N), is determined by the total free energy F and the
Boltzmann factor:

w(N) p exp(�F/kBT) (47)

We first briefly review the predictions for eqn (47) made by
conventional approaches before discussing the results unique
to this work.

The bending energy of a sphere in linearized curvature
elasticity is always: 2pkb which is independent of the vesicle
size. This implies that regardless of the size of two vesicles, the
transfer of surfactant molecules from one vesicle to another
does not change the total bending energy. This results in a flat
distribution for the vesicles’ sizes (47). The total free energy for
the vesicle with N number of amphiphilic molecules and
chemical potential m can then be written as:

F = 2pkb + Nm (48)

Eqn (48) gives rise to an exponentially decaying distribution,
with zero size, being the most probable size—a rather glaring
problem. To further modify the result of eqn (47), Helfrich84

proposed to include the entropic effects in the elastic energy.
As discussed in the last section, in the conventional linear

framework, the thermal undulations lead to softening effects
on the effective bending modulus.75 The corresponding effec-
tive bending modulus is provided in eqn (40). To account for
the entropic effects, Helfrich84 substituted the bare value of
bending modulus kb by the renormalized bending stiffness keff:

wðNÞ / exp
�mN � 2pkeff

kBT

� �
(49)

The above expression has been extensively used to predict
the size distribution of the vesicles. In general, using the
expression for the effective bending rigidity (40), the following
size distribution is obtained:

w(N) p N�a exp(�mN/kBT) (50)

The major differences between prior theoretical studies on
this topic arise from the diversity in predicting the universal
constant a. Using a = �1 and normalizing the size distribution
to 1, Helfrich84 obtained the size distribution as:

wðNÞ ¼ 2
�N

� �2

N exp �2N�N

� �
(51)

where %N is the mean number of molecules per vesicle and is
determined by the chemical potential m. As well-evident, the
final distribution function described in eqn (51) is independent
of the mechanical properties of the vesicles. Furthermore, since
the vesicles cannot deform beyond a certain curvature and
there is always a cut-off radius for the size distribution of the
small vesicles, such a distribution is not compatible with
experimental observations. To resolve the inconsistency,
Helfrich84 suggested that fourth order curvature elasticity terms
should be incorporated in the bending energy formulation.
Using a rather crude approximation, he demonstrated that
accounting the fourth order term can alter the size distribution
to make smaller sizes less probable. He modified the prob-
ability density distribution in the following form:

w(N) p Ne�AN�B/N (52)

The above distribution although slightly shifts the mean
value of the diagram to a larger size, and suggests smaller
probability for smaller sizes is incapable of predicting the
correct value for the experimentally observed cut-off radius.

In a different work, Morse and Milner16 suggested that the free
energy, due to translational and rotational entropy,¶¶ increases
logarithmically with the size of the vesicle in the following form:

F(N) = F0 + akBT log N (53)

for which they evaluate a ¼ þ7
8

. Based on this, they obtained
the size distribution as:

w(N) p N�7/8e�mN (54)

Unfortunately, this predicted size-distribution renders smaller
vesicles more probable not less and is somewhat contradictory

¶¶ We note that in the present work for pure lipid membranes, we assume that
there is no entropic contributions from tilting or area change.
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to the experimental observation that there exists a minimal
vesicle size.

Finally, we note that Kleinert53 also revisited this problem.
Renormalizing the mean and Gaussian and spontaneous
curvature constants, and considering their effects together
within a harmonic approximation, he obtained the following
form for the size distribution:

w(N) p N7r2�6r+4/3e�AN (55)

in which he introduced the so called elastic fraction r A (0,1)
that essentially captures the combined entropic effects of
mean, Gaussian and spontaneous curvatures. It can be readily
seen that the exponent of N has a maximum of 7/3. Never-
theless for pure bending of the lipid membranes that do not
involve any tilt or area change, the maximum is found to be 4/3.
As a result, compared to (51) and (54) the distribution (55)
predicts a smaller probability for small sizes; however, this is
still far from the experimental observations.

We now turn to the use of the thermal fluctuation results we
have derived in the preceding section, in the context of fourth
order nonlinear elasticity, to derive the size-distribution.
Consider the following general form of the size distribution:

w(N) p Nzexp(�f (N)) (56)

wherein z and f (N) determine different forms of the distributions
and their dependences on N in various models. Prior models as
well as ours (to be described) may be described by appropriate
specification of z and f (N) (Table 1).

In our model, substituting eqn (45) into eqn (48), the total
free-energy for a given size of the vesicle can be written as:

F ¼ 2pkeff þ mN

¼ pkb 1þ 6‘c
2

r02
þ w

� �
� a0

2
kBT logN þ mN

(57)

where w and a0 are defined in (39) and (46) respectively. Using
eqn (49) we propose the following size-distribution:

w(N) p Na0/2exp(�f (N)) (58)

where

f ðNÞ ¼ 1

kBT
mN þ A1

N
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A3 þ

A4

N
þ A5

N2

r !
(59)

Here we have substituted r0
2 in (57) by NA0/4p where A0 is the

area per amphiphilic molecule. Other Ai are coefficients that
depend on kb and lc. Note that the exponent a0 in eqn (58) is
not a constant and varies with the radius of the vesicle. On the
other hand, in addition to the term 1/N, the contribution of the
term 1=

ffiffiffiffi
N
p

in the exponential function dramatically reduces
the probability for finding small vesicles. These two effects
together result in a notable shift in the size-distribution diagram
towards larger sizes when compared to other models.16,53,84

A comparison between the results of our model with experi-
mental data41 is made in Fig. 4, where we have plotted the
size distribution for three different cases. In this figure, the
horizontal axis is the normalized radius of the vesicle r0/d and
the vertical axis is the probability of finding vesicles with a
certain radius. The dotted blue curve corresponds to the size
distribution within linear curvature elasticity84 as presented in
eqn (51). The solid magenta is obtained from the present
nonlinear model, assuming lc = 3 nm and the dotted red line
corresponds to lc = 10 nm. Finally, we may estimate the
characteristic length lc to fit our results to those obtained from
the experiments. A comparison between our results and experi-
mental data41 in Fig. 4 shows that the corresponding character-
istic length for this type of composition is roughly about
lc = 3 nm. Even though this value is in the same order as the
thickness of the membrane, at finite temperature it can dra-
matically change the size distribution of the vesicles through
thermal fluctuations. Finally, the experimentally observed
cut-off radius is clearly evident in our model.

5 Discussion and concluding remarks

One of the main results derived in this paper is a closed-form
expression for the spectra of the thermal fluctuations of
spherical vesicles duly incorporating nonlinear curvature elas-
ticity terms. In conjunction with our results, either molecular
dynamics simulations or experimental flicker spectroscopy may
now be used to extract nonlinear elasticity properties. The

Table 1 Comparison between the previous models of size distribution and the present work. In general, the distribution function can be expressed as:
w(N) p Nzexp(�f (N)). The second column in this table shows various values for the exponent z in different models. Also, various forms of the function
f (N) are shown in the third column. The symbols A and B are constants, representing the chemical potential and those associated with fourth order
moduli, respectively. Furthermore, Ai in the last row are constants, corresponding to coefficients of renormalized bending stiffness in the present model.
A comparison between the listed models shows that the Helfrich nonlinear model and the present model provide more realistic predictions of the cut-off
radius in the size distribution of vesicles. Unlike Helfrich’s nonlinear model, in the present work, the entropic effects of the constitutive nonlinearity, are
taken into account to further modify the predicted size distribution

Model z f (N) Cut-off radius (rc)

E = 2pkb + mN z = 0 AN rc = 0
Helfrich linear model: eqn (51) z = 1 AN rc = 0
Helfrich nonlinear model: eqn (52) z = 1 AN + B/N rc 4 0
Morse and Milner: eqn (54) z = �7/8 AN rc = 0
Kleinert: eqn (55) z = 4/3 AN rc = 0
Present model: eqn (58) z r 3 A0N þ A1=N þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ A3=N þ A4=N2

p
rc 4 0
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renormalized bending rigidity due to thermal fluctuations is
found to be size-dependent and a dramatic stiffening is
predicted to occur for small sub-20 nm vesicle sizes.

The conventional models (based on linear curvature elasticity)
that purport to describe vesicle size-distributions typically fail to
adequately capture a few qualitative aspects of the distribution for
small vesicle sizes. We have used our analytical expression for the
renormalized bending stiffness in the nonlinear framework, to
study the size distribution of vesicles. Although all the existing
models predict a Gaussian size distribution, the problem of the
cut-off radius—below which the vesicles are not likely to exist—is
inadequately predicted and as evident from our predictions,
the size-distribution is considerably more complex. A possible
explanation for the instability of vesicles with sizes below the
cut-off radius is the entropic repulsive forces between the amphi-
philic molecules.

In the following we summarize the key issues related to
fourth-order moduli as discussed in prior studies put in the
context of what we have found:
� The first one is regarding the magnitude and significance

of the fourth order modulus. Typically lc is assumed to be of
the order of the thickness of the membrane. Based on this
assertion, the higher order contributions of the bending energy
are usually ignored in studying the mechanical response of
the vesicles. Our results, however, demonstrate that thermal
fluctuations of small unilamellar vesicles are significantly
influenced by the higher order modulus even for small values
of lc. Furthermore, for nearly flat membranes, wherein the
curvature dependency vanishes, the nonlinearity can still
significantly suppress the undulations and hence increase the
apparent rigidity. For example, using lc = 2 nm which is less

than the thickness of the membrane, a correction of about 40%
is obtained in the apparent bending rigidity. In order to high-
light some of the discrepancies between our results with
the prior studies the reader is referred to a recent work
by Harmandaris and Deserno.85 Using molecular dynamics
simulations, these authors employed the well-known idea of
tether-pulling experiments86,87 to study the fourth order correc-
tion of the bending energy for cylindrical vesicles consisting of
pure DPPC lipid molecules. Their results indicate that the
quadratic energy function proposed by Helfrich is valid for a
wide range of curvature radii up to the thickness of the
membrane. The entropic effects are assumed to be intrinsically
embedded in the simulations. Nevertheless, we speculate that,
for tethered membranes, due to the high surface tension, the
undulations are significantly suppressed and hence the role of
entropic effects in the apparent bending stiffness were not
adequately taken into account. This can be explained by
recognizing the fact that the fluctuations of the out of plane
displacement field in the presence of surface tension vary as:
hh2i p 1/s. According to the relationship between the surface
tension and the radius of the vesicle R / 1=

ffiffiffi
s
p

, to reduce the
size of the vesicle to just a few times of the thickness of
the membrane, a relatively high tension field is required to
overcome the entropic effects. It has been observed in experi-
ments that if such a tension field is abruptly removed, the
vesicle will undergo an entropic instability.88

In a different work Li et al.,89 also using molecular dynamic
simulations, have computed the elastic properties of the
membrane, including fourth order moduli. Unlike the work
by Harmandaris and Deserno,85 these authors carried out the
their simulations for various volume fractions of hydrophilic
molecules. Interestingly, their results on free energy calculation
also demonstrate that the higher order contribution of bending
energy, is relatively small and the difference between their
results and those obtained within the Helfrich model is no more
than 10%. Also, they obtained values for the fourth order moduli
which surprisingly depend on the topology of the vesicles---ne-
gative values for spherical and positive values for cylindrical
vesicles. This is puzzling to us since the properties, in principle,
depend on the underlying material, not on the topological
structure. A possible explanation for observation of such contra-
dictory results in their analysis is that the contribution of the
intrinsic topology—spontaneous Gaussian and mean curvatur-
es—is not taken into account. Strictly speaking, a flat membrane
does not transform into spherical shape, unless an energy cost is
considered for fission or fusion. In this manner all the free
energy should not be referred to only bending energy. Hence, the
free energy of cylindrical and spherical shapes should be ana-
lyzed using the different reference states.
� The second issue regarding the fourth order modulus is

related to the sign of the modulus. In the present work, the
higher order modulus is assumed to be positive from the
outset. However, it has been argued that the fourth order
modulus is negative when dealing with different co-surfactants.90

Also it has been argued that a negative fourth order elastic
modulus is a possible explanation for the mechanism of lipid

Fig. 4 Size distribution of vesicles with different values of lc. In this figure,
the horizontal axis is the normalized radius of the vesicle x = r0/d and the
vertical axis is the probability of finding vesicles within a certain radius. The
dotted blue curve corresponds to the size distribution as predicted
by linear curvature elasticity.84 The solid magenta is obtained assuming
lc = 3 nm, which results in a shift in the size distribution, to larger sizes.
Also the dotted red line corresponds to lc = 10 nm which dramatically
changes the cut-off radius as well as the mean radius of the vesicles. Based
on the experimental data,41 shown in the purple color, we have estimated
the characteristic length for this kind of lauric acid vesicle to be about
lc = 3 nm. For our calculations, we have set kb = 20kBT and d = 5 nm.
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protein sorting.91 We note that, in the presence of different
compositions, various stable phases might be observed that
can be described in terms of different spontaneous mean and
Gaussian curvatures or alternatively different bending stiff-
nesses. We, however, believe that a change in the molecular
structure of the membrane results in both mechanical and
topological transformations. For pure lipid membranes, a
positive fourth order correction of bending energy is required
to explain the experimentally observed size distribution of
vesicles—as evident from Fig. 5 which clearly demonstrates
how unrealistic the size-distribution results will be if a negative
fourth order modulus is used.
� Finally, we note that, when the area-size of the membrane

becomes comparable with its thickness, the notion of high-q
cutoff necessary in the functional integration becomes dubious.
For the smallest size vesicles, we come dangerously close to that
limit. However, given the close agreement of our results with
experimentally observed vesicle size-distributions, we speculate
that our results are at least qualitatively reasonable.
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