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Development of soft electromechanical materials is critical for several tantalizing appli-
cations such as human-like robots, stretchable electronics, actuators, energy harvesting,
among others. Soft dielectrics can be easily deformed by an electric field through the so-
called electrostatic Maxwell stress. The highly nonlinear coupling between the mechani-
cal and electrical effects in soft dielectrics gives rise to a rich variety of instability and
bifurcation behavior. Depending upon the context, instabilities can either be detrimental,
or more intriguingly, exploited for enhanced multifunctional behavior. In this work, we
revisit the instability and bifurcation behavior of a finite block made of a soft dielectric
material that is simultaneously subjected to both mechanical and electrical stimuli. An
excellent literature already exists that has addressed the same topic. However, barring a
few exceptions, most works have focused on the consideration of homogeneous deforma-
tion and accordingly, relatively fewer insights are at hand regarding the compressive
stress state. In our work, we allow for fairly general and inhomogeneous deformation
modes and, in the case of a neo-Hookean material, present closed-form solutions to the
instability and bifurcation behavior of soft dielectrics. Our results, in the asymptotic limit
of large aspect ratio, agree well with Euler’s prediction for the buckling of a slender
block and, furthermore, in the limit of zero aspect ratio are the same as Biot’s critical
strain of surface instability of a compressed homogeneous half-space of a neo-Hookean
material. A key physical insight that emerges from our analysis is that soft dielectrics can
be used as actuators within an expanded range of electric field than hitherto believed.
[DOI: 10.1115/1.4035499]
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1 Introduction

Soft materials, such as polymers and many soft biological mate-
rials, play an important role in our daily life. They can be easily
deformed to large strain values due to intrinsically low elastic
stiffness. Meanwhile, surface instabilities like wrinkles [1,2] and
creases [3–5] are often observed under mechanical compression
or constrained swelling. Soft dielectrics, an important subclass of
soft materials, can achieve significantly large deformation when
they are subject to electrical stimuli. Soft dielectrics find applica-
tions in human-like robots [6,7], stretchable electronics [8], actua-
tors [9–11], energy harvesters [12–14], among others. Large
deformations of soft dielectrics are often accompanied by electro-
mechanical instabilities including pull-in instability [15–17],
wrinkling and the creasing [18], the electro-creasing to cratering
instability [19], electro-cavitation [20], among others.

Historically, instabilities are often thought to cause “failure”
and usually avoided. The pull-in instability, for example, is sup-
pressed [21–27] in order to enhance the actuation strain and the
electrical energy density of soft dielectrics. More recently,
research has increasingly also been directed at how electrome-
chanical instabilities of soft dielectrics can be harnessed for vari-
ous applications such as giant actuation strain, dynamic surface
patterning, and energy harvesting [28,29].

A commonly used actuator, for example, is a film of dielectric
elastomer coated with compliant electrodes on its surfaces. Upon
application of a voltage difference between the two electrodes, the
Maxwell stress from the electric field compresses the film in the
thickness direction, causes expansion in the plane, and creates a

large actuation strain. The thinning of the film increases the inten-
sity of the electric field in the material. When the film thickness
decreases to a certain threshold value, the film is unable to sustain
the Maxwell stress and the pull-in instability occurs. Exploitation
of soft dielectric films in applications requires a thorough under-
standing of large deformation mechanics and the electromechani-
cal instabilities induced by voltages and mechanical forces. To
this end, numerous theoretical analyses [10,16,22,30–33] have
been carried on this subject matter.

In a prior work [22], Zhao and Suo analyzed the electromechan-
ical stability of a film of dielectric elastomer subject to tensile
forces in its plane and a voltage difference across its thickness.
From the principle of minimum energy, they studied the stability
of the homogeneously2 deformed film by examining the positive
definiteness of the Hessian matrix. They showed that prestress can
significantly enhance the stability of the homogeneously deformed
film and markedly increase the actuation stretch. We remark that
Zhao and Suo [22] assumed a homogeneously deformed film
throughout their equilibrium state and stability analysis. Subse-
quently, this assumption of homogeneous deformation has been
widely used in other works [10,24,25,30,31,34,35].

The aforementioned assumption of a homogeneous deformation
imposes the restriction that the upper and bottom surfaces of the
dielectric thin film remain perfectly plane. Hence, nonhomogene-
ous deformation and the effects of the geometry of the dielectric
film, like the thickness or the aspect ratio, on the electromechani-
cal instability are excluded. In a recent work, Dorfmann and
Ogden [33] investigated the instability (buckling) of an infinite
plate of electroelastic material by analyzing its incremental elastic

1Corresponding author.
Manuscript received December 9, 2016; final manuscript received December 13,

2016; published online January 24, 2017. Editor: Yonggang Huang.

2The assumption of homogeneous deformation restricts their analysis essentially
to tensile loading to avoid buckling instability.
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deformation. In another work, Dorfmann and Ogden [36] studied
the surface instability of a half-space subject to both mechanical
compression and an electric field normal to its surface.

In this work, we present a complete linearized bifurcation anal-
ysis for electromechanical instability in a finite block of a soft
dielectric material subject to physically reasonable boundary con-
ditions,3 and compare it with the response of a thin film and half-
space. An elastic finite block is often used to study the mechanical
behavior of elastic materials at finite strain, such as the instability
[37] and post-buckling [38] of a mechanical compressed elastic
block, and the buckling of a compressible magnetoelastic block
[39]. Unlike a half-space [1,36] or an infinite long plate [33], a
finite block has measurable length quantities, such as the aspect
ratio, and allows for physically well-defined boundary conditions
on all its surfaces. Hence, the effect of the boundary conditions
due to finite dimensions on the electromechanical instability can
be addressed in the present work by analyzing a finite block. Com-
pared to the in-plane biaxial dead loads on the dielectric film, as
used in past works [22], we employ displacement-controlled
boundary conditions on the two sides of the finite block which
allows a facile consideration of both tension and compression.4

Based on the implicit function theorem [40,41], we present an
analysis of the onset of bifurcation from the trivial solution of a
finite block of dielectric elastomer subject to mechanical loads
(compression or extension) and a voltage across its thickness.
Although our analysis of electromechanical instability is applica-
ble to a general elastic dielectric elastomer, we present closed-
form expressions for the special case of ideal neo-Hookean
dielectrics.

The paper is organized as follows. In Sec. 2, we present the
general formulation for the electrostatic problem of a finite block
of a dielectric elastomer subject to electromechanical loads. The
linear bifurcation analysis is presented in Sec. 3, where the incre-
mental boundary-value problem is obtained by linearizing the
equations of equilibrium with respect to deformation and the
polarization. In Sec. 4, we obtain the solutions of the homogene-
ous deformation and the incremental boundary-value problem,
and discuss the onset of bifurcation from the trivial solution.
Finally, in Sec. 5, we compare our analytical results with Euler’s
predictions for the buckling of both mechanically and electrome-
chanically compressed slender block and discuss the pertinent
physical insights.

2 Formulation

2.1 Domain and Boundary Conditions. Consider a finite
block of an elastic dielectric (see Fig. 1). Assuming plane-strain

condition in the X3 direction, the dielectric block in the reference
configuration can be represented by

XR ¼ X 2 R2 : 0 " X1 " l1;#
l2

2
" X2 "

l2

2

! "
(1)

where X1 and X2 are the Cartesian coordinates, l1 is the length,
and l2 is the height of the dielectric block. The boundary @XR of
XR consists of four parts

Sl ¼ fX 2 XR : X1 ¼ 0g; Sr ¼ fX 2 XR : X1 ¼ l1g

Su ¼ X 2 XR : X2 ¼
l2

2

! "
; Sb ¼ X 2 XR : X2 ¼ #

l2
2

! "
(2)

The deformation of the block is expressed by a smooth function
x : XR ! R2, and the constraint of incompressibility requires a
unit Jacobian, such that

J ¼ det F ¼ 1 (3)

where F ¼ rx ¼ ð@x=@X1Þe1 þ ð@x=@X2Þe2 is the deformation
gradient in two dimensions, and ei, i¼ 1, 2, are the unit vectors in
the Xi directions.

A few comments regarding the boundary conditions are in
order. For a dielectric elastomer film, a voltage is usually applied
across the top and bottom surfaces and in-plane tensile dead loads
are introduced. Such kinds of boundary conditions [22] are used
for dielectric elastomers that work in uniaxial actuation mode,
such as in spring-roll actuators [10]. In this paper, we apply a
potential difference between the upper and lower surfaces, but
mimic the physical situation where the dielectric block is con-
trolled by a loading device that stretches or compresses the block
in the X1 direction. For example, the loading device can be made
of two well-lubricated, rigid plates (see Fig. 1) that are in contact
with the side surfaces Sl [ Sr with rollers. During the compres-
sion/tension process, there is no rotation of the two plates in order
to ensure that the compressive/tensile stresses on the rigid plates
are always along the X1 direction. The mechanical and electro-
static boundary conditions on the side surfaces Sl [ Sr are defined
by

x ' e1 ¼ kX1; ~D ' e1 ¼ 0 on Sl [ Sr (4)

where k > 0 is the prescribed stretch along the X1 direction and ~D
is the nominal electric displacement. Meanwhile, the mechanical
and electrostatic boundary conditions on the upper and lower
surfaces Su [ Sb are

~t
e ¼ 0; n ¼ nb on Su [ Sb (5)

where ~t
e

is the surface traction and n is the voltage. Here, the pre-
scribed voltages are nb ¼ V on the upper surface Su and nb ¼ 0
on the lower surface Sb (see Fig. 1).

2.2 Equations of Electrostatics of a Deformable Media. In
the deformed domain X, the true electric field is denoted by e, the
true electric displacement by d, and the polarization by p. In the
absence of free charges, currents, and magnetic fields, the Max-
well equations reduce to

curl e ¼ 0; div d ¼ 0; d ¼ !0eþ p in X (6)

where !0 is the vacuum permittivity. The curl, the divergence, and
the gradient operators in the current configuration are denoted by
“curl,” “div,” and “grad,” respectively. In contrast, the corre-
sponding operators in the reference configuration are denoted by
“Curl,” “Div,” and “r.” The equality, curl e ¼ 0 in Eq. (6),

Fig. 1 Schematic diagram of a deformed block of dielectric
elastomer. The block is compressed/extended between two
well-lubricated, rigid plates by means of a controlled displace-
ment, in terms of the stretch k in the X1 direction, through the
left and right plates. A voltage V is applied across the two com-
pliant electrodes that are bonded on the upper and bottom
surfaces of the block.

3By “physically reasonable,” we imply conditions that are easily realizable in an
experimental setup.

4We explicitly allow for inhomogeneous deformation modes to study buckling
under compression.
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indicates that there exists a scalar potential (voltage) n such that
e ¼ #grad n.

To represent e, d, and p in the undeformed domain XR, we use
the composition maps [42]

E ¼ e ( x; D ¼ d ( x; P ¼ p ( x (7)

In the undeformed domain XR, the nominal electric field is
denoted by ~E, the nominal electric displacement by ~D, and the
nominal polarization by ~P. We define the relations of the true
fields in Eq. (7) and the nominal fields in XR as [42,43]

~E ¼ FTE; ~D ¼ JF#1D; ~P ¼ JP (8)

where FT and F#1 are the transpose and the inverse of the defor-
mation gradient F, respectively, and J ¼ det F is the Jacobian.
Maxwell’s equations (Eq. (6)) in XR are

Curl ~E ¼ 0; Div ~D ¼ 0; ~D ¼ F#1ð!0JF#T ~E þ ~PÞ (9)

where ~E ¼ #rn.
Combining Eq. (8), an alternative form of Eq. (9) in XR can be

written as

FTE ¼ #rn; Div ~D ¼ 0; F ~D ¼ !0JEþ ~P (10)

2.3 Free Energy of the System. Electromechanics of
deformable dielectrics can be formulated in a variety of ways cf.
Refs. [36,42,43] for just a few examples. In this paper, we follow
the energy formulation of continuum magneto-electro-elasticity as
described by Liu [42]. The notion of invoking a minimum energy
principle with Maxwell’s equations as a constraint has roots in an
earlier work on micromagnetism [44] and ferroelectrics [45].

Subject to both mechanical and electrical loads, the total free
energy (see, for example, Refs. [42,46]) of the system in Fig. 1 is
given by

F ½x; ~P* ¼ U½x; ~P* þ Eelect½x; ~P* (11)

Here, U½x; ~P* is the internal energy

U½x; ~P* ¼
ð

XR

WðF; ~PÞ (12)

where F ¼ rx and WðF; ~PÞ is the internal energy density. The
electric energy, Eelect½x; ~P*, in Eq. (11) is

Eelect x; ~P
$ %

¼ !0

2

ð

XR

JjEj2 þ
ð

Su[Sb

n~D ' N (13)

where J ¼ detrx is the Jacobian and N is the unit normal to the
surfaces Su [ Sb. The relations among E, ~D, and ~P in Eq. (13) are
given by Eq. (10). Note that the mechanical work done by the
loading device on the side surfaces Sl [ Sr is not included into
the total free energy due to the nominal displacement-controlled
boundary condition (Eq. (4)1).

2.4 First Variation of the Free Energy. When the aforemen-
tioned electromechanical system is in equilibrium at a deforma-
tion x and a polarization ~P, the first variation of the energy
functional F ½x; ~P* must vanish (subject to the constraint imposed
by Maxwell’s equations). Since there exist two functions x :
XR ! X and ~P : XR ! R2 in F ½x; ~P*, the vanishing of the first
variation requires that both the first variations with respect to x
and ~P must be zero (see Appendix A for details).

2.4.1 Variation of Polarization. The first variation of F ½x; ~P*
in Eq. (11) with respect to the polarization ~P gives

@W

@~P
# E ¼ 0 in XR (14)

where E ¼ #F#Trn. The detailed derivation of Eq. (14) is given
in Appendix A1.

2.4.2 Variation of Deformation. Vanishing of the first varia-
tion of F ½x; ~P* in Eq. (11) with respect to the deformation x yields
the Euler–Lagrange equation (see Appendix A2 for details)

Div
@W
@F
þ ~R # qF#T

& '
¼ 0 in XR (15)

and the natural boundary conditions

@W
@F
þ ~R # qF#T

& '
e1 ¼ se1 on Sl [ Sr (16)

@W
@F
þ ~R # qF#T

& '
e2 ¼ 0 on Su [ Sb (17)

where q is the hydrostatic pressure required by the incompressibil-
ity constraint (Eq. (3)), s is the normal stress on the side surfaces
Sl [ Sr , and ~R is the so-called Piola–Maxwell stress defined by

~R ¼ E+ ~D # !0J

2
jEj2F#T (18)

Equations (10), (14)–(17), along with the constraint of incom-
pressibility (Eq. (3)) and the boundary conditions (Eqs. (4) and
(5)), form a boundary-value problem, whose solution includes all
the possible equilibrium solutions for a finite block of soft dielec-
tric subject to mechanical and electrical loads. The aforemen-
tioned boundary-value problem can be compactly summarized as:

Div T ¼ 0;
@W

@~P
# E ¼ 0; det F ¼ 1

FTE ¼ #rn; Div ~D ¼ 0
F ~D ¼ !0JEþ ~P

9
>>=

>>;
in XR (19)

x1 ¼ kX1; ~D ' e1 ¼ 0; Te1 ¼ se1 on Sl [ Sr (20)

n ¼ nb; Te2 ¼ 0 on Su [ Sb (21)

where the total nominal stress T is

T ¼ @W
@F
þ ~R # qF#T (22)

3 Onset of Electromechanical Buckling

Of interest here is the condition for the onset of buckling of the
dielectric block. Mathematically, buckling is governed by the
onset of bifurcation in the trivial solution to the boundary-value
problem (Eqs. (19)–(21)). Based on the implicit function theorem
[40,41], the equilibrium equations have a nontrivial solution bifur-
cating from its trivial solution only if the linearized equations of
equilibrium possess a nonzero solution. It is obvious that the onset
of bifurcation depends on the applied mechanical and electrical
loads. The linearized equations describe the response of the
dielectric block, in a state of equilibrium, to infinitesimal incre-
ments of the deformation and the polarization.

3.1 Linearization With Respect to Both the Deformation
and the Polarization. Let x, and ~P

,
be the infinitesimal incre-

ments of the deformation x and the polarization ~P, respectively.
Other increments depend on x, and ~P

,
at ðx; ~PÞ. We denote other

linearized increments (omitting higher terms) by taking advantage
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of the superscripts. For example, the total linearized increment of
a general field H is denoted by H, (see Appendix B for details).
H, is usually the sum of two increments H

†

and H‡, which
denote, respectively, the increments related to the deformation
and the polarization. Since the deformation gradient F and the
Jacobian J are independent of the polarization, we have the linear-
ized increments

F, ¼ rx,; J, ¼ JF#T 'rx,;

ðFTÞ, ¼ ðrx,ÞT ; ðF#TÞ, ¼ #F#Tðrx,ÞTF#T
(23)

In contrast, the total linearized increments of the electric field
E, the nominal electric displacement ~D, and the Piola–Maxwell
stress ~R consist of two parts:

E, ¼ E
† þ E‡; ~D

, ¼ ~D
†

þ ~D
‡
; ~R

, ¼ ~R
†

þ ~R
‡

(24)

Combining Eq. (24) and ~R in Eq. (18), we have the relation
between the linearized increments (see Appendix B2)

~R
, ¼ E, + ~D þ E+ ~D

,

# !0

2
2J E ' E,ð ÞF#T þ jEj2 J F#Tð Þ, þ J,F#T

$ %n o
(25)

Similarly, the linearization of the boundary-value problem
(Eqs. (19)–(21)) can be written as

Div T, ¼ 0;
@2W

@~P@F
F,½ * þ @

2W

@~P
2

~P
, # E, ¼ 0

F#T ' F, ¼ 0; FTð Þ,Eþ FTE, ¼ #rn,

Div ~D
, ¼ 0; F ~D

, þ F, ~D ¼ !0JE, þ !0J,Eþ ~P
,

9
>>=

>>;
in XR

(26)

x, ' e1 ¼ 0; ~D
, ' e1 ¼ 0; T,e1 ¼ s,e1 on Sl [ Sr (27)

n, ¼ 0; T,e2 ¼ 0 on Su [ Sb (28)

where T, is the linearized increment of the total nominal stress T
in Eq. (22), given by

T, ¼ @
2W
@F2

F,½ * þ @2W

@F@~P
~P
, þ ~R

, # q,F#T þ qF#T FTð Þ,F#T

(29)

We remark that the linearized boundary-value problem (Eqs.
(26)–(28)) considers the total increments including both the incre-
mental deformation and the incremental polarization. The condi-
tion of the nonzero solution of ðx,; ~P

,Þ in Eqs. (26)–(28)
determines the onset of the electrical buckling—and more pre-
cisely the onset of bifurcation from the solution ðx; ~PÞ —of a
finite block of dielectric elastomer subject to electromechanical
loads.

3.2 Linearization With Respect to Only the Deformation.
A further simplification of Eqs. (26)–(28) may be made by consid-
ering the linearization with respect to only the deformation. That
is, we introduce an infinitesimal increment x, of the deformation
but a zero increment of the polarization when we linearize the
boundary-value problem (Eqs. (19)–(21)) at ðx; ~PÞ. This simplifi-
cation, of course, will yield a narrower solution space that is a
subspace of the solution space considering both the incremental
deformation and polarization; however, it significantly simplifies
the analysis and also provides important results for electrome-
chanical buckling. Therefore, by letting ~P

, ¼ 0 the total incre-
ments (with superscript “*”) in Eqs. (24) and (25) reduce to the
increments (with superscript “

†
”) with respect to the deformation,

the linearized boundary-value problem (Eqs. (26)–(28)) can be
reduced to

Div T
† ¼ 0;

@2W

@~P@F
F,½ * # E

† ¼ 0

F#T ' F, ¼ 0; FTð Þ,Eþ FTE
† ¼ #rn

†

Div ~D
†

¼ 0; F ~D
†

þ F, ~D ¼ !0JE
† þ !0J,E

9
>>>=

>>>;
in XR (30)

x, ' e1 ¼ 0; ~D
†

' e1 ¼ 0; T
†

e1 ¼ s
†

e1 on Sl [ Sr (31)

n
†

jSu
Sb
¼ 0; T

†

e2 ¼ 0 on Su [ Sb (32)

where

T
† ¼ @

2W
@F2

F,½ * þ ~R
†

# q,F#T þ qF#T FTð Þ,F#T (33)

and

~R
†

¼ E
† + ~D þ E+ ~D

†

# !0

2
2J E ' E†
( )

F#T þ jEj2 J F#Tð Þ, þ J,F#T
$ %n o

(34)

We remark here that the total incremental boundary-value prob-
lem (Eqs. (26)–(28)) and the reduced incremental boundary-value
problem (Eqs. (30)–(32)) are valid for all incompressible elastic
soft dielectrics. In the following, we will adopt the neo-Hookean
constitutive law to generate specific results.

4 Neo-Hookean Dielectrics

In the following, we consider incompressible neo-Hookean
dielectrics, whose strain energy function [42,46] under the plane
strain assumption is given by

W F; ~P
( )

¼ l
2
jFj2 # 2
( )

þ j~Pj2

2J !# !0ð Þ
(35)

where l is the shear modulus, and ! and !0 are, respectively, the
permittivities of the dielectric elastomer and the vacuum. Note
that the second term on the right-hand side of Eq. (35) reflects the
usual linear dielectric behavior, that is, the permittivity ! of the
dielectric elastomer is independent of the deformation.

The derivatives of the strain energy function (Eq. (35)) are
given by

@W
@F
¼ lF# j~Pj2

2J !# !0ð Þ
F#T ;

@W

@~P
¼

~P

J !# !0ð Þ
@2W
@F2
¼ lI4 þ

j~Pj2

2J !# !0ð Þ
F#T + F#T # @F#T

@F

& '

@2W

@~P
2
¼ I2

J !# !0ð Þ
;

@2W

@F@~P
¼ # F#T + ~P

J !# !0ð Þ
;

@2W

@~P@F
¼ #

~P + F#T

J !# !0ð Þ

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

(36)

where I4 and I2 are, respectively, the fourth- and second-order
identity tensors in two dimensions.

4.1 Homogeneous Deformation. Substituting Eq. (36) into
the boundary-value problem (Eqs. (19)–(21)), a trivial solution
that corresponds to homogeneous deformation is given by

x0ðXÞ ¼ kX1e1 þ k#1X2e2; ~P0ðXÞ ¼ #ð!# !0Þk ~E0e2 (37)

where ~E0 ¼ V=l2 and other corresponding quantities are
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F0ðXÞ ¼ rx0ðXÞ ¼ ke1 + e1 þ k#1e2 + e2

E0ðXÞ ¼ #k ~E0e2; ~D0ðXÞ ¼ #!k2 ~E0e2

"
(38)

The Piola–Maxwell stress tensor (Eq. (18)) is

~R0 :¼
# !0

2
k ~E

2

0 0

0 !# !0

2

& '
k3 ~E

2

0

2

664

3

775 (39)

the hydrostatic pressure (i.e., the Lagrange multiplier) is

q0 ¼ lk#2 þ !
2

k2 ~E
2

0 (40)

the total stress tensor (Eq. (22)) is

T0 :¼ lðk# k#3Þ # !k ~E
2

0 0
0 0

" #

(41)

and the compressive/tensile stress on Sl [ Sr is

s0 ¼ lðk# k#3Þ # !k ~E
2

0 (42)

Note that a negative/positive s0 in Eq. (42) represents the nomi-
nal compressive/tensile stress on the side surfaces Sl [ Sr in the
reference configuration. In contrast, the true compressive/tensile
stress in the current configuration is given by ks0.

Figure 2 shows how the electric field affects the mechanical
behavior of the homogeneous deformation of a finite block. The
dimensionless compressive/tensive stress s0=l and electric field
~E0

ffiffiffiffiffiffiffi
!=l

p
are used. In the absence of the electric field (i.e.,

~E0

ffiffiffiffiffiffiffi
!=l

p
¼ 0) in Fig. 2(a) (or in Eq. (42)), for example, a pre-

scribed stretch k > 1 corresponds to a tensile stress s0 > 0, while
a stretch k < 1 corresponds to a compressive stress s0 < 0 on the
side surfaces Sl [ Sr of the block.

The electric field in Eq. (42) will decrease the nominal stress s0

on the side surfaces. This is because the Maxwell stress in Eq.
(39) will make the block decrease its height l2 (due to a positive
component of the Maxwell stress in the X2 direction) and increase
its length l1 (due to a negative component of the Maxwell stress in
the X1 direction). However, the two lubricated rigid plates exert
an additional compressive stress on the side surfaces to hinder the
extension of the block. Therefore, at a prescribed stretch k in
Fig. 2(a), the electric field ~E0

ffiffiffiffiffiffiffi
!=l

p
can decrease the nominal

stress vector s0=l (or the true stress vector ks0=l). For example,
at a prescribed stretch k > 1, the increase of the electric field
~E0

ffiffiffiffiffiffiffi
!=l

p
can cause the nominal stress s0=l in Fig. 2(a) (or the

true stress ks0=l in Fig. 2(b)) decrease from positive (tensile
stress) to negative (compressive stress). If we were to ignore elec-
trical breakdown, the continually increasing compressive stress
will eventually force the block to buckle.

To further illustrate the effects of the electric field on deforma-
tion, we consider two special cases: a prescribed stretch k¼ 1 and
a zero nominal stress s0 ¼ 0.

In the first case, the block is undeformed prior to electrome-
chanical buckling. This is because of the constraint of incompres-
sibility and the plane strain assumption in our model, leading to
the stretch ratios k1 ¼ k ¼ 1; k2 ¼ k#1 ¼ 1, and k3 ¼ 1.
Although the block is undeformed under the electric field, it is no
longer a stress-free state. The nominal compressive stress s0 in
Eq. (42) is s0 ¼ #! ~E

2

0, which is a quadratic function of the nomi-
nal electric field (see Fig. 3(a)). Under zero electric field, the
block is stress-free, corresponding to the origin
ð ~E0

ffiffiffiffiffiffiffi
!=l

p
; s0=lÞ ¼ ð0; 0Þ. It is clear from Fig. 3(a) that the parab-

ola opens downward and the axis of symmetry is ~E0

ffiffiffiffiffiffiffi
!=l

p
¼ 0. In

this case, the electric field always induces a compressive state in
the block. With a continuously increasing electric field, the block

eventually will buckle. Note that only electromechanical buckling
is considered in this paper for the constrained deformation—other
instabilities including the electrical breakdown, the electro-
creasing to cratering instabilities, and the electrocavitation insta-
bility [14,18–20] are beyond the scope of this paper.

In the second case, the homogeneously deformed block is
stress-free. With s0 ¼ 0 in Eq. (42), the relation between the
stretch and the electric field becomes k ¼ ð1# ! ~E

2

0=lÞ
#1=4 (see

Fig. 3(b)). Without considering the electrical breakdown and the
pull-in instability [22], the stretch k, mathematically, can increase
from one to infinity as the dimensionless electric field ~E0

ffiffiffiffiffiffiffi
!=l

p

increases from zero to one.
In the following, we will analyze electromechanical buckling

by studying the solution of the incremental boundary-value
problem (Eqs. (30)–(32)) at the homogeneous solution
(Eqs. (37)–(42)).

4.2 Incremental Boundary-Value Problem. Let us first
address Eq. (30) in XR. The increments of the Jacobian J, and the
electric field E

†

in Eq. (30) must vanish due to the constraint of
incompressibility, F#T 'rx, ¼ 0, namely

J, ¼ JF#T 'rx, ¼ 0 (43)

E
† ¼ #

~P + F#T

J !# !0ð Þ
rx,½ * ¼ # F#T 'rx,ð Þ~P

J !# !0ð Þ
¼ 0 (44)

and the two relations, ðFTÞ,Eþ FTE
† ¼ #rn

†

and F ~D
†

þ
F, ~D ¼ !0JE

† þ !0J,E in Eq. (30), reduce to

Fig. 2 Behavior of a homogeneously deformed block of a neo-
Hookean dielectric under varying electric field: (a) nominal
stress vector versus stretch and (b) true stress vector versus
stretch
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rn
†

¼ #ðrx,ÞTE; ~D
†

¼ #F#1F, ~D (45)

Then, the incremental Piola-Maxwell stress (Eq. (34)) reduces to

~R
†

¼ E+ ~D
†

# !0JjEj2

2
F#Tð Þ, (46)

Note that Eqs. (43)–(46) hold for all kinematically admissible
deformations of incompressible neo-Hookean dielectrics, includ-
ing the homogeneous deformation. Moreover, the constraint

makes the divergence of ~D
†

in Eq. (45) vanish automatically in
the case of homogeneous deformation, such that

Div ~D
†

¼ #Div ðF#1
0 F, ~D0Þ ¼ #~D0 'rðF#T

0 ' F
,Þ ¼ 0 (47)

Based on Eqs. (43)–(47) and the homogeneous solution
(Eqs. (37)–(42)), the linearized boundary-value problem
(Eqs. (30)–(32)) reduces to

Div T
† ¼ 0; F#T

0 'rx, ¼ 0

ðrx,ÞTE0 ¼ #rn
†

; ~D
†

¼ #F#1
0 ðrx,Þ~D0

)

in XR (48)

x, ' e1 ¼ 0; ~D
†

' e1 ¼ 0; T
†

e1 ¼ s
†

e1 on Sl [ Sr (49)

n
†

jSu
Sb
¼ 0; T

†

e2 ¼ 0 on Su [ Sb (50)

where the incremental voltage n
†

and the incremental nominal
electric displacement ~D

†

are

n
†

¼ k ~E0x,2 þ n0; ~D
†

¼ !k ~E0ðx,1;2e1 þ k2x,2;2e2Þ (51)

and the incremental nominal stress T
†

is

T
†

:¼ l
T

†

11 T
†

12

T
†

21 T
†

22

2

64

3

75 (52)

with

T
†

11 ¼ ½1þ k#4 þ ð ~E0

ffiffiffiffiffiffiffi
!=l

p
Þ2*x,1;1 # k#1l#1q,

T
†

12 ¼ x,1;2 þ ½k
#2 þ k2ð ~E0

ffiffiffiffiffiffiffi
!=l

p
Þ2*x,2;1

T
†

21 ¼ x,2;1 þ k#2x,1;2; T
†

22 ¼ 2x,2;2 # kl#1q,

4.2.1 Governing Equation. From the constraint of incompres-
sibility, F#T

0 'rx, ¼ 0, in Eq. (48), we introduce a stream func-
tion /ðX1;X2Þ

x,1 ¼ k/;2ðX1;X2Þ; x,2 ¼ #k#1/;1ðX1;X2Þ (53)

where the subscript denotes the partial derivative. With Eqs. (52)
and (53), Div T

† ¼ 0 in Eq. (48) gives

k2ð/;112 þ /;222Þ # l#1q,;1 ¼ 0 (54a)

k#2ð/;111 þ /;122Þ þ l#1q,;2 ¼ 0 (54b)

Eliminating q, in Eq. (54) yields

/;1111 þ ðk4 þ 1Þ/;1122 þ k4/;2222 ¼ 0 (55)

4.2.2 Boundary Conditions on Sl [ Sr and on Su [ Sb. Sub-
stituting Eq. (53) into the boundary conditions on Sl [ Sr in Eq.
(49), we have

/;2 ¼ 0; /;22 ¼ 0; /;22 # /;11 ¼ 0 on Sl [ Sr (56)

where the first and the third equations come from the mechanical
boundary conditions (i.e., the controlled-nominal displacement

x, ' e1 ¼ 0 and the free shear stress T
†

e1 ¼ s
†
e1), while the second

equation corresponds to the electrostatic boundary condition (i.e.,

~D
†

' e1 ¼ 0 in Eq. (49)).
Similarly, substituting Eq. (53) into the electrostatic boundary

condition on Su [ Sb in Eq. (50), we have

/;1 X1;
l2
2

& '
¼ /;1 X1;#

l2
2

& '
(57)

Moreover, substituting Eq. (53) into the mechanical boundary
conditions on Su [ Sb in Eq. (50) yields

½k#4 þ ð ~E0

ffiffiffiffiffiffiffi
!=l

p
Þ2*/;11 # /;22 ¼ 0

2l/;12 þ k2q, ¼ 0

)
on Su [ Sb (58)

4.2.3 Solution of the Incremental Boundary-Value Problem.
Due to the boundary conditions on Sl [ Sr in Eq. (56), the solu-
tion of /ðX1;X2Þ in Eq. (55) admits the series form

/ðX1;X2Þ ¼
X1

m¼1

YmðX2ÞsinðkmX1Þ þ BX1 þ C; (59)

where km ¼ ðmp=l1Þ; m ¼ 1; 2; 3;…, B and C are constants. C
is physically irrelevant and may be chosen to be zero. B is related

Fig. 3 Behavior of a homogeneously deformed block of a neo-
Hookean dielectric: (a) nominal electric field versus nominal
stress vector at unit stretch k 5 1 and (b) nominal electric field
versus stretch at stress-free s0 5 0
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to rigid body motion of the deformed dielectric block. Substituting
Eq. (59) into Eq. (53), we have

x,1 ¼ k
X1

m¼1

Ym
0ðX2ÞsinðkmX1Þ (60a)

x,2 ¼ #k#1
X1

m¼1

kmYmðX2ÞcosðkmX1Þ þ B

( )
(60b)

where the prime denotes the derivative with respect to X2. Substi-
tuting Eq. (59) into Eq. (54) and performing the integration with
respect to X1, we obtain

q, ¼ #lk2
X1

m¼1

k#1
m ½Y

000
m ðX2Þ # k2

mY0mðX2Þ*cosðkmX1Þ (61)

Then the increment s
†

of the nominal stress in Eq. (49) is

s
† ¼ lk

X1

m¼1

½k#2
m Y000m ðX2Þ

(

þðk#4 þ ð ~E0

ffiffiffiffiffiffiffi
!=l

p
Þ2ÞY0mðX2Þ*km cosðkmX1Þ

o
(62)

Substituting Eq. (59) into the electrostatic boundary conditions on
Su [ Sb in Eq. (57) and using the orthogonality relation of Fourier
series yields

Ym
l2
2

& '
¼ Ym #

l2

2

& '
(63)

Moreover, substituting Eqs. (53), (59), and (61) into the mechani-
cal boundary conditions on Su [ Sb in Eq. (58) and using again
the orthogonality relation of Fourier series, we obtain

Y00mðX2Þ þ ½k#4 þ ð ~E0

ffiffiffiffiffiffiffi
!=l

p
Þ2*k2

mYmðX2Þ ¼ 0
Y000m ðX2Þ # ð1þ 2k#4Þk2

mY0mðX2Þ ¼ 0

"
on Su [ Sb

(64)

Finally, substituting Eq. (59) into the governing equation (55), we
find that YmðX2Þ yields the following fourth-order ordinary differ-
ential equation:

Yð4Þm ðX2Þ # k2
mð1þ k#4ÞY00mðX2Þ þ k4

mk#4YmðX2Þ ¼ 0 (65)

The general solution of YmðX2Þ in Eq. (65) is

YmðX2Þ ¼

C1m coshðkmk#2X2Þ þ C2m sinhðkmk#2X2Þ
þC3m coshðkmX2Þ þ C4m sinhðkmX2Þ for k 6¼ 1

ð !C1m þ !C2m X2ÞcoshðkmX2Þ
þð !C3m þ !C4m X2ÞsinhðkmX2Þ for k ¼ 1

8
>>><

>>>:

(66)

where Cim and !Cim ; i ¼ 1; 2; 3; 4, are constant coefficients.

4.3 Bifurcation at Varying Stretch k 6¼ 1. Substituting the
general solution to YmðX2Þ in Eq. (66) 1 for k 6¼ 1 into Eq. (64),
we obtain a system of four linear equations in four unknowns
Cim ; i ¼ 1; 2; 3; 4. The system of four equations can be rewritten
in a matrix form of MCm ¼ 0, where M is the 4- 4 coefficient
matrix and Cm ¼ ðC1m ;C2m ;C3m ;C4mÞ

T. The nonzero solution of
Cm requires a zero determinant of M, namely

det M ¼

M11 0 M13 0
0 M22 0 M24

0 M32 0 M34

M41 0 M43 0

++++++++

++++++++
¼ 0 (67)

which can be decomposed into a product of two 2- 2 determi-
nants, such that

M11 M13

M41 M43

++++ •
++++
M22 M24

M32 M34

++++

++++ ¼ 0 (68)

where

M11 ¼ 2k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

cosh
mpl2
2k2l1

M13 ¼ 1þ k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

cosh
mpl2

2l1

M22 ¼ 1þ k#4ð Þcosh
mpl2

2k2l1

; M24 ¼ 2k#2cosh
mpl2

2l1

M32 ¼ 2k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

sinh
mpl2

2k2l1

M34 ¼ 1þ k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

sinh
mpl2

2l1

M41 ¼ 1þ k#4ð Þsinh
mpl2

2k2l1
; M43 ¼ 2k#2sinh

mpl2

2l1

Equation (68) holds if either of the 2- 2 determinant vanishes,
indicating the possibility of two types of buckling.

For the first type, the vanishing of the left 2- 2 determinant in
Eq. (68) admits nonzero C1m and C3m but zero C2m and C4m , leav-
ing two hyperbolic cosine functions of X2 2 ½#l2=2; l2=2* in
YmðX2Þ in Eq. (66)1 and making it become an even function of X2.
This type of electrical buckling, of course, satisfies the electro-
static boundary conditions, Eq. (63), since YmðX2Þ is an even func-
tion. Moreover, the even function, YmðX2Þ in Eq. (66)1, makes the
perturbed displacement x,1ðX1;X2Þ in Eq. (60) become an odd
function of X2 and x,2ðX1;X2Þ become an even function of X2, such
as x,1ðX1;X2Þ ¼ #x,1ðX1;#X2Þ and x,2ðX1;X2Þ ¼ x,2ðX1;#X2Þ. It is
assumed that the constant B in Eq. (60) for the coordinates is
appropriately chosen to make x,2ð0; 0Þ ¼ 0. Then, the buckling
modes of the first type are antisymmetric with respect to the X1

axis. This type of buckling is called an antisymmetric buckling
about the X1 axis. For instance, Figs. 4(a) and 5(a) are antisym-
metric bifurcation modes with m¼ 1 and m¼ 2, respectively.

For the second type, the right 2- 2 determinant in Eq. (68) van-
ishes and then YmðX2Þ in Eq. (66)1 has nonzero C2m and C4m but
zero C1m and C3m . Thus, YmðX2Þ only contains two hyperbolic sine
functions of X2 (i.e., YmðX2Þ becomes an odd function of X2). The

Fig. 4 Schematic diagrams of the buckling patterns for anti-
symmetric and symmetric bifurcation modes with m 5 1: (a)
antisymmetric and (b) symmetric
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perturbed displacement x,1ðX1;X2Þ in Eq. (60) is an even function
of X2, such that x,1ðX1;X2Þ ¼ x,1ðX1;#X2Þ, while the perturbed
displacement x,2ðX1;X2Þ in Eq. (60) has the property

x,2ðX1;X2Þ þ x,2ðX1;#X2Þ ¼ #2k#1B. If the constant B in Eq. (60)
is chosen to be zero for an appropriate fixity condition of coordi-
nates, the perturbed displacement x,2ðX1;X2Þ in Eq. (60) becomes
an odd function of X2, such as x,2ðX1;X2Þ ¼ #x,2ðX1;#X2Þ. This
type of electrical buckling satisfies the mechanical boundary con-
ditions (Eq. (64)), however, it does not satisfy the electrostatic
boundary conditions (Eq. (63)) since YmðX2Þ is an odd function
now. For the mechanical compression, the buckling modes of the
second type are symmetric with respect to the X1 axis. This type
of buckling is called a symmetric buckling about the X1 axis. The
symmetric bifurcation modes with m¼ 1 and m¼ 2 are shown,
respectively, in Figs. 4(b) and 5(b).

The critical conditions for the two types of buckling can be
explicitly written as

Type (i): Antisymmetric

1þ k#4ð Þ 1þ k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

tanh
mpl2
2k2l1

# 2k#2 2k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

tanh
mpl2
2l1
¼ 0 (69)

Type (ii): Symmetric

1þ k#4ð Þ 1þ k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

tanh
mpl2

2l1

# 2k#2 2k#4 þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

tanh
mpl2
2k2l1

¼ 0 (70)

4.4 Bifurcation at Fixed Stretch k 5 1. Similarly, substitut-
ing the general solution to YmðX2Þ in Eq. (66) 2 for k¼ 1 into Eq.
(64), we obtain a system of four linear equations in four unknowns
!Cim ; i ¼ 1; 2; 3; 4. The system of four equations can be written in
a matrix form as !M !Cm ¼ 0, where !M is the 4- 4 coefficient
matrix and !Cm ¼ ð !C1m ; !C2m ; !C3m ; !C4mÞ

T. A nonzero solution of
!Cm requires det !M ¼ 0, which, similar to Eq. (68), can be reduced
to a product of two 2- 2 determinants, such that

!M11
!M14

!M41
!M44

++++

++++ •
!M22

!M23
!M32

!M33

++++

++++ ¼ 0 (71)

where

!M11 ¼ 2þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

cosh
mpl2
2l1

!M14 ¼
2l1

mp
cosh

mpl2

2l1
þ l2

2
2þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

sinh
mpl2

2l1

!M22 ¼
l2

2
sinh

mpl2

2l1
; !M23 ¼ cosh

mpl2
2l1

!M32 ¼
2l1

mp
sinh

mpl2
2l1
þ l2

2
2þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

cosh
mpl2

2l1

!M33 ¼ 2þ ~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

sinh
mpl2

2l1

!M41 ¼ sinh
mpl2
2l1

; !M44 ¼
l2

2
cosh

mpl2
2l1

Similar to the analysis of Eq. (68), the left 2- 2 determinant in
Eq. (71) might correspond to the type of an antisymmetric buck-
ling, while the right one might corresponds to the type of a sym-
metric buckling. However, the right 2- 2 determinant in Eq. (71)
is always nonzero, indicating the nonexistence of the type of sym-
metric buckling at k¼ 1 regardless of how large the electric field
is. While both symmetric and antisymmetric buckling satisfy all
the mechanical boundary conditions for purely mechanical com-
pression, only antisymmetric buckling satisfies both the mechani-
cal and electrostatic boundary conditions for the combined
electromechanical loading. The critical condition for the antisym-
metric buckling of a dielectric block under electric field at k¼ 1
in plane strain comes from the vanishing of the left 2- 2 determi-
nant in Eq. (71), and yields

1þ 1

2
~E0

ffiffiffiffiffiffiffi
!=l

p, -2
. /

mpl2

l1
# sinh

mpl2

l1
¼ 0 (72)

5 Discussion and Conclusions

5.1 Comparison With Euler’s Prediction for the
Mechanical Compression. The buckling of Euler’s column stud-
ied by Leonhard Euler in 1757 is one of the classical problems in
engineering. The formula derived by Euler gives the critical load
at which a long, slender, ideal column is in a state of unstable
equilibrium (i.e., even an infinitesimal lateral force will make the
column buckle).

Considering the conditions of end support of the column,
Euler’s formula can be expressed as

F ¼ p2EeIe

Kl1ð Þ2
(73)

where F is the critical force, Ee is the plane strain elastic Young’s
modulus, Ie is the area moment of inertia of the cross section, l1 is
the length of the column, and K is column effective length factor
that depends on the conditions of end support. For example, the
factor K is 0.5 for both fixed ends while it is 1 for both pinned
ends.

The effective Young’s modulus under plane strain is Ee ¼ 4l
in Eq. (73) for incompressible neo-Hookean materials with shear
modulus l, and the area moment of inertia is Ie ¼ l3

2=12 for a
block with height l2 and unit width. Thus, the critical nominal
stress sc from Eq. (73) is

sc ¼
F

l2 - 1
¼ lp2

3 Kl1=l2ð Þ2
(74)

In contrast to Euler’s formula for slender structures, our buck-
ling analysis is valid for a finite compressed elastic block with any

Fig. 5 Schematic diagrams of the buckling patterns for anti-
symmetric and symmetric bifurcation modes with m 5 2: (a)
antisymmetric and (b) symmetric
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aspect ratio l1=l2. In the absence of an electric field, Eq. (69) gives
the critical stretch kc for the buckling of an incompressible neo-
Hookean block subject to a purely mechanical compression. With
the relation between the stretch and the nominal stress in Eq. (42),
we can obtain the critical nominal stress that corresponds to the
critical stretch kc. We remark here that Eq. (69) determines the
critical stretch of antisymmetric buckling and Eq. (42) is used to
transform the critical stretch into the critical nominal stress for the
purpose of a direct comparison with Euler’s prediction (Eq. (74)).
Note that only the results of the antisymmetric buckling are used
to compare with Euler’s prediction (Eq. (74)) since the antisym-
metric buckling always occurs prior to symmetric buckling. More-
over, only antisymmetric buckling satisfies all the mechanical and
electrostatic boundary conditions, while the symmetric buckling
satisfies only the mechanical boundary conditions. The detailed
discussion of the difference between antisymmetric and symmet-
ric buckling is given in Secs. 5.3 and 5.4.

Figure 6(b) shows the critical nominal stress for the antisym-
metric buckling mode m¼ 2 in Eq. (69) of a finite block, whose
buckling pattern is shown schematically in Fig. 5(a). The buckling
pattern and the boundary condition on the left and the right surfa-
ces in Fig. 5(a) are very similar to that of the buckling of Euler’s
column with fixed-fixed ends. Compared with Euler’s prediction,
the two predicted critical loads of buckling agree well with each
other only at a sufficiently large aspect ratio (i.e., l1=l2 > 5). The
obvious discrepancy at small aspect ratios is because Euler’s anal-
ysis is only valid for a slender column.

5.2 Comparison of Euler’s Prediction for Electroelastic
Buckling at a Fixed Stretch k 5 1. Compared with the mechani-
cal compressive stress, the electrostatic Maxwell stress can also
make the dielectric block buckle in our model. The special case of
a prescribed stretch k¼ 1 under an electric field in our model cor-
responds to zero strain but nonzero stress in the homogeneous
solution. The magnitude of the compressive stress in Eq. (42) at
k¼ 1 is

js0j ¼ ! ~E
2

0 (75)

From Euler’s prediction (Eq. (74)), when js0j in Eq. (75)
increases to the critical value sc in Eq. (74), the dielectric block
begins to buckle and the critical nominal electric field for the elec-
tromechanical buckling is given by

~Ec ¼
p

Kl1=l2ð Þ

ffiffiffiffiffi
l
3!

r
(76)

where the factor K¼ 0.5 is for both fixed ends, while K¼ 1 is for
both pinned ends of the Euler column.

In contrast to the approximation (Eq. (76)) from Euler’s for-
mula, our analytical prediction of the critical nominal electric field
from Eq. (72) is obtained as

~Ec ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1

mpl2
sinh

mpl2

l1
# 1

& '
2l
!

s

(77)

where the modes m¼ 1 and m¼ 2 are related to two different
boundary conditions corresponding K¼ 1 and K¼ 0.5 in Eq. (76).

In Fig. 7, we plot the variation of the dimensionless critical
electric field ~Ec

ffiffiffiffiffiffiffi
!=l

p
with respect to the aspect ratio l1=l2 from

both Euler’s approximation (Eq. (76)) and our analytical predic-
tion (Eq. (77)). The critical electric field decreases monotonously
with the increase of the aspect ratio l1=l2. This trend agrees with
intuition that a more slender block (i.e., a larger aspect ratio l1=l2)
is more likely to become unstable under external stimuli such as
an electric field. In the limiting case l1=l2 !1, the critical elec-
tric field approaches zero and an exceedingly small electric field
can make the block buckle.

5.3 Buckling of a Mechanically Compressed Block. In con-
trast to the critical force for Euler’s column, the critical stretch (or
strain) is often used to define the critical conditions for the buck-
ling of finite blocks or surface instability of soft materials
[1,33,36–38,]. In Biot’s half-space problem [1], the critical stretch
for surface instability of a homogeneous neo-Hookean half-space
under plane strain compression is 0.544 at which all the wave-
lengths become unstable. Later, Levinson [37] studied the stability
of a compressed block in the current configuration. Recently,
Dorfmann and Ogden [36] studied the surface instability of the
homogeneous deformation of a half-space subject to both mechan-
ical and electrical loads by solving the incremental boundary-
value problem.

In our work, the neo-Hookean block is compressed under plane
strain by changing the stretch k. The critical condition of the
buckling is determined by either Eq. (69) for antisymmetric buck-
ling or Eq. (70) for symmetric buckling in the absence of electric
fields. The critical stretch kc for the mechanical buckling of the
compressed block with different aspect ratios l1=l2 is plotted in
Fig. 8. The critical stretches for antisymmetric/symmetric buck-
ling with different modes m ¼ 1; 2; 3; 5 are plotted in solid/
dashed lines. In particular, the critical stretches for all modes
approach 0.544 when the aspect ratio l1=l2 decreases to zero
(i.e., l2=l1 increases to infinity). The critical stretch kc ¼ 0:544 of
this limiting case (l2=l1 !1) coincides with Biot’s prediction
[1] since the limiting case (l2=l1 !1) of block is that of a half-
space.

Fig. 6 For the buckling of a neo-Hookean block under a purely
mechanical compression, the critical nominal stress versus the
aspect ratio: (a) antisymmetric buckling (Eq. (69)) with m 5 1
versus Euler’s formula (Eq. (74)) with pinned-pinned ends
(K 5 1) and (b) antisymmetric buckling (Eq. (69)) with m 5 2 ver-
sus Euler’s formula (Eq. (74)) with fixed-fixed ends (K 5 0.5)
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Figure 8 also shows that the critical stretch for antisymmetric
buckling is always larger than that of symmetric buckling. This
means that the antisymmetric buckling in a compressed block
occurs prior to symmetric buckling. Indeed, symmetric buckling
cannot occur unless the passive constraints [37] are considered to
be acting until k < 0:544. Therefore, only the antisymmetric

buckling is compared with Euler’s prediction in the preceding
discussion.

5.4 Buckling of an Electromechanically Compressed
Block. In Secs. 5.1, 5.2, and 5.3, we have shown that either the
mechanical compression in Figs. 6 and 8 or the electric field in
Fig. 7 can make the dielectric block buckle. An obvious extension
to these notions is that the combined electromechanical loading
ought to make buckling of the block yet easier. For purely
mechanical loading, the block in our problem can only buckle
under compression (k < 1) rather than extension (k > 1). Since
the electric field can make the block buckle at k¼ 1 in Fig. 7, the
block may also become buckle in extension (i.e., k > 1) under an
electric field.

Using Eqs. (69) and (70), we plot Fig. 9 the critical stretch kc as
a function of the aspect ratio l1=l2 for the buckling mode m¼ 2
under different electric fields ~E0

ffiffiffiffiffiffiffi
!=l

p
. The solid lines denote

antisymmetric buckling, while the dashed lines represent symmet-
ric buckling. Note that antisymmetric buckling satisfies all the
boundary conditions, while the symmetric buckling satisfies all
the boundary conditions other than the electrostatic boundary con-
ditions of the perturbed voltage on the upper and lower surfaces.
Furthermore, the critical stretches for the antisymmetric buckling
(solid lines) rather than the symmetric buckling (dashed lines) in
Fig. 9 are very sensitive to the electric fields. When the aspect
ratio l1=l2 is larger than five, for example, the differences of the
critical stretches for the symmetric buckling between the mechan-
ical compression and the electromechanical loading are negligi-
ble. On the other hand, since the occurrence of the symmetric
buckling is always later than the onset of antisymmetric buckling,
in practice only the effects of the electric fields on antisymmetric
buckling are of interest.

Compared with the critical stretch for buckling of a mechani-
cally compressed block, the critical stretch that accounts for the
electric field is shifted upward for a small aspect ratio l1=l2. For
example, the critical stretch for the buckling of a mechanically
compressed block in the limiting case l1=l2 ! 0 is 0.544 while it
increases to 0.628 at an electric field ~E0

ffiffiffiffiffiffiffi
!=l

p
¼ 2 in Fig. 9.

It is clear from Fig. 9 that the electric field can cause the block
to buckle more easily in a compressed state (k < 1). Moreover,
the electric field can make the block buckle even if the block is in
extension (k > 1).

We know that both mechanical compression and the electric
field can make the block buckle. For antisymmetric buckling with
mode m¼ 2, the variation of the critical stretch kc with respect to
the critical electric field ~Ec

ffiffiffiffiffiffiffi
!=l

p
is plotted in Fig. 10. It is obvious

that a slender block (i.e., with high aspect ratio l1=l2) is more

Fig. 7 For the electromechanical buckling of a neo-Hookean
block at k 5 1, the critical nominal electric field versus the
aspect ratio: (a) Euler’s formula with pinned-pinned ends K 5 1
in Eq. (76) versus analytical prediction with mode m 5 1 in Eq.
(77) and (b) Euler’s formula with fixed-fixed ends K 5 0.5 in Eq.
(76) versus analytical prediction with mode m 5 2 in Eq. (77).

Fig. 8 In the absence of an electric field, the critical stretch kc

versus the aspect ratio l1=l2 of a neo-Hookean block with differ-
ent buckling modes m 5 1;2; 3; 5. The antisymmetric buckling
(Eq. (69)) is plotted in solid lines, while the symmetric buckling
(Eq. (70)) is represented by dashed lines.

Fig. 9 The critical stretch kc versus the aspect ratio l1=l2 for
the antisymmetric buckling (solid line) and the symmetric buck-
ling (dashed line) of a neo-Hookean block with buckling mode
m 5 2 under different electric fields
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likely to buckle when it is subject to a combined loading. For
example, at a zero electric field (i.e., ~E0

ffiffiffiffiffiffiffi
!=l

p
¼ 0), the critical

stretch is slightly less than one in the case of a large aspect ratio
l1=l2 ¼ 10, while it approaches 0.544 at an aspect ratio l1=l2 ¼ 1.
For each aspect ratio l1=l2 in Fig. 10, the critical stretch kc

increases monotonically with the increase of ~Ec

ffiffiffiffiffiffiffi
!=l

p
. It clearly

shows how the electric field makes the block buckle in an
extended state (i.e., kc > 1). We finally remark that for actual
applications, electric breakdown should also be considered and
the comparison of the critical electric fields between the electric
breakdown and the electrical buckling is needed for a safe design
of electrical devices.

In summary, for a mechanical compression without electric
field, the block mathematically exhibits two types of buckling
modes, i.e., antisymmetric and the symmetric buckling, however,
the antisymmetric buckling will always precede the other. Our
results, in the asymptotic limit of large aspect ratio, agree well
with Euler’s prediction for the buckling of a slender block and,
furthermore, at a zero aspect ratio are the same as Biot’s critical
strain of surface instability of a compressed homogeneous half-
space of a neo-Hookean material. For the case where electric fields
are included, aside from similar interesting asymptotic connection
to Euler’s formula, we find that the electric field can cause the
block to buckle more easily in a compressed state, and the electric
field can even cause the block to buckle in a state of tension.
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Appendix A: First Variation of the Energy Functional

The infinitesimal variations of the deformation x ¼ xðXÞ and
the polarization ~P ¼ ~PðXÞ are denoted, respectively, by dx and
d~P, such that

dx ¼ g1xd; d~P ¼ g2
~Pp (A1)

where g1; g2 2 R and maxfjg1j; jg2jg. 1, and xd and ~Pp are two
smooth variations.

The deformation x ¼ xðXÞ and the polarization ~P ¼ ~PðXÞ may
not appear directly in the energy functional including the defor-
mation gradient F ¼ rx, the Jacobian J ¼ detrx, the voltage n,

and the nominal electric displacement ~D, among others. Thus, we
perform their first variations implicitly and only keep the first-
order terms of g1 and g2, such that

F! Fþ g1Fd; J ! J þ g1Jd; n! nþ g1nd þ g2np;

~D ! ~D þ g1
~Dd þ g2

~Dp; E! Eþ g1Ed þ g2Ep

(A2)

where the subscripts “d” and “p” denote, respectively, the varia-
tions related to the deformation and the polarization. For example,
Fd and Jd in Eq. (A2) are

Fd ¼
d

dg1

r xþ g1xdð Þ
+++
g1¼0
¼ rxd;

Jd ¼
d

dg1

det Fþ g1Fdð Þ
+++
g1¼0
¼ JF#T 'rxd

(A3)

Substituting Eq. (A2) into the Maxwell equation (Eq. (10)) and
taking partial derivatives with respect to g1 and g2 at g1 ¼ g2 ¼ 0,
respectively, we have

Div ~Dd ¼ Div ~Dp ¼ 0 in XR (A4)

and the relations

FTEd þ ðFTÞdE ¼ #rnd; FTEp ¼ #rnp;

F ~Dd þ Fd
~D ¼ !0JEd þ !0JdE; F ~Dp ¼ !0JEp þ ~Pp (A5)

With Eqs. (A1) and (A2), the variations of Eqs. (4) and (5) are

xd ' e1 ¼ 0; ~Dd ' e1 ¼ ~Dp ' e1 ¼ 0 on Sl [ Sr (A6)

nd ¼ np ¼ 0 on Su [ Sb (A7)

A.1 First Variation With Respect to the Polarization

The first variation of the energy functional (Eq. (11)) with respect
to the polarization ~P is

d

dg2

F x; ~P þ g2
~Pp

h i+++
g2¼0

¼ d

dg2

U x; ~P þ g2
~Pp

h i+++
g2¼0
þ d

dg2

Eelect x; ~P þ g2
~Pp

h i+++
g2¼0

¼
ð

XR

@W

@~P
' ~Pp þ !0

ð

XR

JE ' Ep

þ
ð

Su[Sb

np
~D ' Nþ n~Dp ' N

, -
(A8)

With Eqs. (A4)–(A7) and the divergence theorem, Eq. (A8)
becomes

d

dg2

F x; ~P þ g2
~Pp

h i+++
g2¼0

¼
ð

XR

@W

@~P
' ~Pp þ !0JE ' Ep

& '
þ
ð

@XR

n~Dp ' N

¼
ð

XR

@W

@~P
' ~Pp þ !0JE ' Ep

& '
þ
ð

XR

nDiv ~Dp þ ~Dp 'rn
, -

¼
ð

XR

@W

@~P
' ~Pp þ !0JE ' Ep

& '
#
ð

XR

E ' F ~Dp

¼
ð

XR

@W

@~P
' ~Pp þ E ' !0JEp # F ~Dp

, -& '

¼
ð

XR

@W

@~P
# E

& '
' ~Pp (A9)

Fig. 10 The critical stretch kc versus the critical nominal elec-
tric field for the antisymmetric buckling of a neo-Hookean block
with mode m 5 2 under different aspect ratios l1=l2
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Based on the basic lemma of calculus of variations, vanishing of
Eq. (A9) gives Eq. (14).

A.2 First Variation With Respect to the Deformation

We introduce a Lagrange multiplier function q : XR ! R2 to
address the variation of a constrained problem such that the deforma-
tion x is subject to the constraint of incompressibility
J ¼ detrx ¼ 1. The modified energy functional of Eq. (11), includ-
ing the Lagrangian multiplier q to enforce incompressibility, is

F̂ x; ~P
$ %

¼
ð

XR

W rx; ~P
( )

þ !0

2
JjEj2 # q J # 1ð Þ

& '

þ
ð

Su[Sb

n~D ' N (A10)

The first variation of Eq. (A10) with respect to the deformation x is

d

dg1

F̂ xþ g1xd; ~P
$ %+++

g1¼0

¼
ð

XR

@W
@F
'rxd þ

!0

2
JdjEj2 þ !0JE ' Ed # qJd

& '

þ
ð

Su[Sb

nd
~D ' Nþ n~Dd ' N

( )
(A11)

With Eqs. (A3)–(A7) and the divergence theorem, Eq. (A11) becomes

d

dg1

F̂ xþ g1xd; ~P
$ %+++

g1¼0

¼
ð

XR

@W
@F
'rxd þ

!0

2
JdjEj2 þ !0JE ' Ed # qJd

& '

þ
ð

@XR

n~Dd ' N

¼
ð

XR

@W
@F
'rxd þ

!0

2
JdjEj2 þ !0JE ' Ed # qJd

& '

þ
ð

XR

n Div ~Dd þ ~Dd 'rn
( )

¼
ð

XR

@W
@F
'rxd þ

!0

2
JdjEj2 # qJd þ E ' !0JEd # F ~Dd

( )& '

¼
ð

XR

@W
@F
'rxd þ

!0

2
JdjEj2 # qJd þ E ' Fd

~D # !0JdE
( )& '

¼
ð

XR

@W
@F
þ E+ ~D # !0J

2
jEj2F#T # qJF#T

& '
'rxd

¼
ð

XR

@W
@F
þ ~R # qJF#T

& '
'rxd

¼
ð

@XR

xd '
@W
@F
þ ~R # qJF#T

& '
N

#
ð

XR

xd ' Div
@W
@F
þ ~R # qJF#T

& '
(A12)

where ~R is the Piola–Maxwell stress defined by Eq. (18). Similar der-
ivations of the Piola–Maxwell stress can also be found in the work
[42,46] and many other references. With the boundary condition of
xd in Eq. (A6), the vanishing of Eq. (A12) gives Eqs. (15)–(17).

Appendix B: Linearized Analysis

Suppose that a deformation x and a polarization ~P have infini-
tesimal increments x, and ~P

,
; jjx,jj; jj~P,jj. 1. For a general

field Hðx; ~PÞ that is (Fr"echet-) differentiable at ðx; ~PÞ, we have
the expansion in the neighborhood of ðx; ~PÞ, such that

H xþ x,; ~P þ ~P
,( )
¼ H x; ~P

( )
þ @H
@x
' x, þ @H

@~P
' ~P,

þo jjx,jj; jj~P,jj
, -

(B1)

We define

H, ¼ H
† þH‡ (B2)

where

H
† ¼ @H

@x
' x,; H‡ ¼ @H

@~P
' ~P, (B3)

Here, H, denotes the total linearized increment, and H
†

and H‡

denote the linearized increments with respect to the deformation
and the polarization.

With Eqs. (B1)–(B3) and the chain-rule, the linearized incre-
ments of the deformation gradient F ¼ rx and the Jacobian J ¼
det F ¼ detrx are

F, ¼ rx,; F#Tð Þ, ¼ #F#T rx,ð ÞTF#T ;

J, ¼ @J

@F
' F, ¼ JF#T 'rx,

(B4)

Similarly, the linearized increments of other fields at ðx; ~PÞ can be
written implicitly as

q
s
n
!
E
~D
~R

0

BBBBBBBB@

1

CCCCCCCCA

Linearization
############!

q, ¼ q
†

s, ¼ s
† þ s‡

n, ¼ n
†

þ n‡

!
E, ¼ E

† þ E‡

~D
, ¼ ~D

†

þ ~D
‡

~R
, ¼ ~R

†

þ ~R
‡

0

BBBBBBBBB@

1

CCCCCCCCCA

(B5)

We remark that the linearized increments of the deformation
gradient F, the Jacobian J and the Lagrange multiplier q only
depend on the increment x, at ðx; ~PÞ.

B.1 Linearized Relation

Consider the linearization of the Maxwell equation (Eq. (10)1)
as an example. Substituting the sum of the fields and their linear-
ized increments defined in Eqs. (B4) and (B5) into Eq. (10)1, and
ignoring the higher order terms, we obtain

FTE! ½FT þ ðFTÞ,*ðEþ E,Þ! FTEþ FTE, þ ðFTÞ,E (B6a)

#rn! #rðnþ n,Þ ¼ #rn#rn, (B6b)

then we have

FTE, þ ðFTÞ,E ¼ #rn, (B7)

Other linearized relations can also be obtained in a similar manner.

B.2 Linearized Piola–Maxwell Stress

Substituting the sum of the fields and their linearized incre-
ments defined in Eqs. (B4) and (B5) into the Piola–Maxwell stress
(Eq. (18)), and ignoring higher order terms, such that

! Eþ E,ð Þ + ~D þ ~D
,( )

# !0 J þ J,ð Þ
2

jEþ E,j2 F#T þ F#Tð Þ,
$ %

! E+ ~D # !0J

2
jEj2F#T þ E+ ~D

, þ E, + ~D
( )

# !0

2
2J E ' E,ð ÞF#T þ jEj2 J F#Tð Þ, þ J,F#T

$ %n o

¼ ~R þ ~R
,

(B8)
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then we have the linearized increment of the Piola–Maxwell stress
~R
,

in Eq. (25).

References
[1] Biot, M., 1963, “Surface Instability of Rubber in Compression,” Appl. Sci.

Res., 12(2), pp. 168–182.
[2] Yang, S., Khare, K., and Lin, P.-C., 2010, “Harnessing Surface Wrinkle Pat-

terns in Soft Matter,” Adv. Funct. Mater., 20(16), pp. 2550–2564.
[3] Gent, A., and Cho, I., 1999, “Surface Instabilities in Compressed or Bent Rub-

ber Blocks,” Rubber Chem. Technol., 72(2), pp. 253–262.
[4] Hong, W., Zhao, X., and Suo, Z., 2009, “Formation of Creases on the Surfaces

of Elastomers and Gels,” Appl. Phys. Lett., 95(11), p. 111901.
[5] Hohlfeld, E., and Mahadevan, L., 2011, “Unfolding the Sulcus,” Phys. Rev.

Lett., 106(10), p. 105702.
[6] Lu, N., and Kim, D.-H., 2014, “Flexible and Stretchable Electronics Paving the

Way for Soft Robotics,” Soft Rob., 1(1), pp. 53–62.
[7] Shian, S., Bertoldi, K., and Clarke, D. R., 2015, “Dielectric Elastomer Based

‘Grippers’ for Soft Robotics,” Adv. Mater., 27(43), pp. 6814–6819.
[8] Rogers, J. A., Someya, T., and Huang, Y., 2010, “Materials and Mechanics for

Stretchable Electronics,” Science, 327(5973), pp. 1603–1607.
[9] Shankar, R., Ghosh, T. K., and Spontak, R. J., 2007, “Dielectric Elastomers as

Next-Generation Polymeric Actuators,” Soft Matter, 3(9), pp. 1116–1129.
[10] Moscardo, M., Zhao, X., Suo, Z., and Lapusta, Y., 2008, “On Designing Dielec-

tric Elastomer Actuators,” J. Appl. Phys., 104(9), p. 093503.
[11] Keplinger, C., Kaltenbrunner, M., Arnold, N., and Bauer, S., 2010, “R€ontgen’s

Electrode-Free Elastomer Actuators Without Electromechanical Pull-in Insta-
bility,” Proc. Natl. Acad. Sci., 107(10), pp. 4505–4510.

[12] Koh, S. J. A., Zhao, X., and Suo, Z., 2009, “Maximal Energy That Can Be Con-
verted by a Dielectric Elastomer Generator,” Appl. Phys. Lett., 94(26), p. 262902.

[13] Bauer, S., Bauer-Gogonea, S., Graz, I., Kaltenbrunner, M., Keplinger, C., and
Schw€odiauer, R., 2014, “25th Anniversary Article: A Soft Future: From Robots
and Sensor Skin to Energy Harvesters,” Adv. Mater., 26(1), pp. 149–162.

[14] Zhao, X., and Wang, Q., 2014, “Harnessing Large Deformation and Instabilities
of Soft Dielectrics: Theory, Experiment, and Application,” Appl. Phys. Rev.,
1(2), p. 021304.

[15] Stark, K., and Garton, C., 1955, “Electric Strength of Irradiated Polythene,”
Nature, 176(4495), pp. 1225–1226.

[16] Plante, J.-S., and Dubowsky, S., 2006, “Large-Scale Failure Modes of Dielec-
tric Elastomer Actuators,” Int. J. Solids Struct., 43(25), pp. 7727–7751.

[17] Zhao, X., and Suo, Z., 2009, “Electromechanical Instability in Semicrystalline
Polymers,” Appl. Phys. Lett., 95(3), p. 031904.

[18] Wang, Q., and Zhao, X., 2013, “Creasing-Wrinkling Transition in Elastomer
Films Under Electric Fields,” Phys. Rev. E, 88(4), p. 042403.

[19] Wang, Q., Zhang, L., and Zhao, X., 2011, “Creasing to Cratering Instability in
Polymers Under Ultrahigh Electric Fields,” Phys. Rev. Lett., 106(11),
p. 118301.

[20] Wang, Q., Suo, Z., and Zhao, X., 2012, “Bursting Drops in Solid Dielectrics
Caused by High Voltages,” Nat. Commun., 3, p. 1157.

[21] Ha, S. M., Yuan, W., Pei, Q., Pelrine, R., and Stanford, S., 2006,
“Interpenetrating Polymer Networks for High-Performance Electroelastomer
Artificial Muscles,” Adv. Mater., 18(7), pp. 887–891.

[22] Zhao, X., and Suo, Z., 2007, “Method to Analyze Electromechanical Stability
of Dielectric Elastomers,” Appl. Phys. Lett., 91(6), p. 061921.

[23] Kofod, G., 2008, “The Static Actuation of Dielectric Elastomer Actuators: How
Does Pre-Stretch Improve Actuation?,” J. Phys. D: Appl. Phys., 41(21),
p. 215405.

[24] Li, B., Zhou, J., and Chen, H., 2011, “Electromechanical Stability in Charge-
Controlled Dielectric Elastomer Actuation,” Appl. Phys. Lett., 99(24),
p. 244101.

[25] Akbari, S., Rosset, S., and Shea, H. R., 2013, “Improved Electromechanical
Behavior in Castable Dielectric Elastomer Actuators,” Appl. Phys. Lett.,
102(7), p. 071906.

[26] Niu, X., Stoyanov, H., Hu, W., Leo, R., Brochu, P., and Pei, Q., 2013,
“Synthesizing a New Dielectric Elastomer Exhibiting Large Actuation Strain
and Suppressed Electromechanical Instability Without Prestretching,” J. Polym.
Sci. Part B: Polym. Phys., 51(3), pp. 197–206.

[27] Jiang, L., Betts, A., Kennedy, D., and Jerrams, S., 2016, “Eliminating Electro-
mechanical Instability in Dielectric Elastomers by Employing Pre-Stretch,”
J. Phys. D: Appl. Phys., 49(26), p. 265401.

[28] Keplinger, C., Li, T., Baumgartner, R., Suo, Z., and Bauer, S., 2012,
“Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant
Voltage-Triggered Deformation,” Soft Matter, 8(2), pp. 285–288.

[29] Shivapooja, P., Wang, Q., Orihuela, B., Rittschof, D., L"opez, G. P., and Zhao,
X., 2013, “Bioinspired Surfaces With Dynamic Topography for Active Control
of Biofouling,” Adv. Mater., 25(10), pp. 1430–1434.

[30] D"ıaz-Calleja, R., Riande, E., and Sanchis, M., 2008, “On Electromechanical
Stability of Dielectric Elastomers,” Appl. Phys. Lett., 93(10), p. 101902.

[31] Xu, B.-X., Mueller, R., Klassen, M., and Gross, D., 2010, “On Electromechani-
cal Stability Analysis of Dielectric Elastomer Actuators,” Appl. Phys. Lett.,
97(16), p. 162908.

[32] Bertoldi, K., and Gei, M., 2011, “Instabilities in Multilayered Soft Dielectrics,”
J. Mech. Phys. Solids, 59(1), pp. 18–42.

[33] Dorfmann, L., and Ogden, R. W., 2014, “Instabilities of an Electroelastic
Plate,” Int. J. Eng. Sci., 77, pp. 79–101.

[34] Leng, J., Liu, L., Liu, Y., Yu, K., and Sun, S., 2009, “Electromechanical Stabil-
ity of Dielectric Elastomer,” Appl. Phys. Lett., 94(21), p. 211901.

[35] Suo, Z., 2010, “Theory of Dielectric Elastomers,” Acta Mech. Solida Sin.,
23(6), pp. 549–578.

[36] Dorfmann, A., and Ogden, R., 2010, “Nonlinear Electroelastostatics: Incremen-
tal Equations and Stability,” Int. J. Eng. Sci., 48(1), pp. 1–14.

[37] Levinson, M., 1968, “Stability of a Compressed Neo-Hookean Rectangular Par-
allelepiped,” J. Mech. Phys. Solids, 16(6), pp. 403–408.

[38] Triantafyllidis, N., Scherzinger, W., and Huang, H.-J., 2007, “Post-Bifurcation
Equilibria in the Plane-Strain Test of a Hyperelastic Rectangular Block,” Int. J.
Solids Struct., 44(11), pp. 3700–3719.

[39] Kankanala, S., and Triantafyllidis, N., 2008, “Magnetoelastic Buckling of a
Rectangular Block in Plane Strain,” J. Mech. Phys. Solids, 56(4),
pp. 1147–1169.

[40] Golubitsky, M., and Schaeffer, D. G., 1985, Singularities and Groups in Bifur-
cation Theory, Vol. 1, Springer, Berlin.

[41] Chen, Y.-C., 2001, “Singularity Theory and Nonlinear Bifurcation Analysis,”
Nonlinear Elasticity: Theory and Applications, Y. B. Fu and R. W. Ogden, eds.,
Cambridge University Press, Cambridge. UK.

[42] Liu, L., 2014, “An Energy Formulation of Continuum Magneto-
Electro-Elasticity With Applications,” J. Mech. Phys. Solids, 63, pp. 451–480.

[43] Suo, Z., Zhao, X., and Greene, W. H., 2008, “A Nonlinear Field Theory of
Deformable Dielectrics,” J. Mech. Phys. Solids, 56(2), pp. 467–486.

[44] James, R. D., and Kinderlehrer, D., 1990, “Frustration in Ferromagnetic Materi-
als,” Continuum Mech. Thermodyn., 2(3), pp. 215–239.

[45] Shu, Y. C., and Bhattacharya, K., 2001, “Domain Patterns and Macroscopic
Behaviour of Ferroelectric Materials,” Philos. Mag. Part B, 81(12),
pp. 2021–2054.

[46] Deng, Q., Liu, L., and Sharma, P., 2014, “Flexoelectricity in Soft Materials and
Biological Membranes,” J. Mech. Phys. Solids, 62, pp. 209–227.

Journal of Applied Mechanics MARCH 2017, Vol. 84 / 031008-13

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/journals/jamcav/935918/ on 05/23/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use


