
Journal of the Mechanics and Physics of Solids 130 (2019) 245–261 

Contents lists available at ScienceDirect 

Journal of the Mechanics and Physics of Solids 

journal homepage: www.elsevier.com/locate/jmps 

The collusion of flexoelectricity and Hopf bifurcation in the 

hearing mechanism 

Qian Deng 

a , Fatemeh Ahmadpoor b , William E. Brownell c , Pradeep Sharma 

b , d , ∗

a State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shaanxi, 

China 
b Department of Mechanical Engineering, University of Houston, Houston, TX, USA 
c Department of Otolaryngology-H & NS, Baylor College of Medicine, Houston, TX, USA 
d Department of Physics, University of Houston, TX, USA 

a r t i c l e i n f o 

Article history: 

Received 23 April 2019 

Revised 27 May 2019 

Accepted 30 May 2019 

Available online 11 June 2019 

a b s t r a c t 

How do the weak sound waves get amplified in a cochlea? This deceptively simple ques- 

tion has attracted a fair amount of attention and several creative mechanisms have been 

proposed that purport to understand how the inner ear’s hair cells actively collude to 

achieve the requisite sensitivity, frequency selectivity, range and nonlinear amplification. 

Some of the proposed mechanisms target the nature of the mechanoelectric transduction 

mechanism while others adopt a more dynamical systems approach and focus on the fact 

that stereocilia of the hair cells operate on the verge of an instability phenomenon—the 

so-called Hopf bifurcation. In this work, we propose a physics-based model to understand 

how flexoelectricity, a universal electromechanical coupling that exists in all dielectric sub- 

stances, facilitates the mechanics of the active motion of hair bundles. A key feature of our 

model is that we eschew a “black-box” approach, and all parameters are well-defined phys- 

ical quantities such as membrane bending modulus, geometrical characteristics and others. 

Furthermore, the model is derived from the well-accepted principles of mechanics and soft 

matter physics. While the role of flexoelectricity in the hearing mechanism has been noted 

before, we show for the first time that flexoelectricity is an essential ingredient in inducing 

the Hopf bifurcation state considered responsible for several highly nonlinear and pecu- 

liar features of the hearing mechanism. We find that the biomembranes’ bending modulus 

and the intracellular charge concentration (which for instance could represent K + or Ca 2+ ) 
are the two key control parameters that significantly impact the stability of the system 

and hence the hearing mechanism. Our work highlights the importance of flexoelectric- 

ity, confirms earlier assertions that the cochlea amplifies the acoustic stimuli through its 

exceptional electromechanical energy conversion property, and provides insights into how 

physical properties such as biomembranes’ bending modulus impact the performance of 

the hearing system. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

1. Introduction 

The hearing system is a soft machine extraordinaire that collects and processes airborne sound waves in a manner that

defies any man-made audio-processing device. Human ears, for instance, can distinguish one-thirtieth of the frequency dif-
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ference between two successive piano keys which are just a semi-tone apart, have an auditory range that spans three orders

of magnitude (20 Hz–20 kHz), and can handle a million-fold variation in amplitude ( Hudspeth, 2014; Martin and Hudspeth,

2001 ). Remarkably, the fluid filled sensor, cochlea, is so sensitive that even a signal that vibrates the eardrum by merely a

picometer can be detected ( Dalhoff et al., 2007; Hudspeth, 2014; Maoileidigh and Hudspeth, 2013 ). The energy of incoming

sound waves dissipates quickly in the viscous liquid that fills a cochlea but there is strong evidence that the ear actively

supplies energy to compensate for this dissipation. Since the pioneering work of Gold (1948) in the late forties, it is now

well-accepted cf. ( Camalet et al., 20 0 0; Choe et al., 1998; Hudspeth, 2005; Hudspeth et al., 2010; Maoileidigh and Hudspeth,

2013 ) that the ear is not a passive sensor but actively aids in the process of audition. As eloquently articulated in the fol-

lowing reviews and expositions ( Hudspeth et al., 2010; Nadrowski et al., 2004 ), this active trait of the ear is encapsulated

by the following three attributes: amplification, compressive nonlinearity and tuning . The amplification denotes the ability of

the ear to amplify a weak sound it collects. This feature effectively decreases the threshold for the sound detection of the

ear. With an active process, weak input acoustic signals can be amplified by several hundred times in amplitude ( Martin

and Hudspeth, 1999; 2001 ). The compressive nonlinearity exhibited by the human ear allows exceptional sensitivity to even

the faintest sound while simultaneously possessing the capability of enduring the roar of jet engines. Notably, although the

amplitude of the weakest and strongest sound waves that can be handled by the ear spans a million fold (from picometres

to microns), the actual response within the cochlea is compressed into only a hundred fold (several nanometers to hun-

dreds of nanometers) in range ( Eguiluz et al., 20 0 0; Hudspeth et al., 2010; Kern and Stoop, 2003; Martin and Hudspeth,

2001 ). In other words, if the input signal is weak, the cochlea amplifies it “sufficiently” however if it is very strong, as a

protection mechanism, the amplitude of vibration are attenuated by the active process. Finally, the tuning feature endows

the mammalian ears with a rather sharp frequency selectivity ( Spiegel and Waltson, 1984 ). 

The active processes and the features of the hearing mechanisms mentioned in the preceding paragraph are intimately

related to the hair cells located in the cochlea. While the mammalian and non-mammalian hearing mechanisms differ in

several respects, they share many common features and exhibit several similar characteristics outlined in the preceding

paragraphs. Specifically, the hair bundle’s motility is believed to play an important role in the active process of the cochlea,

for both mammals with outer hair cells ( Chan and Hudspeth, 2005; Kennedy et al., 2005; Maoilidigh and Juicher, 2010 )

and non-mammals in which they are absent ( Choe et al., 1998; Fettiplace and Kim, 2014; Hudspeth, 1997; Tinevez et al.,

2007 ). Our work focusses primarily on hair bundle motility although it is likely to have ramifications to understand somatic

motility also. In the interest of brevity, we avoid further discussion of somatic motility and simply refer the reader to the

literature (and references therein) cited in this paragraph for further information. 

So far, in our opinion, there are two key open questions pertaining to hair bundle motility: 

1. How does the hair-bundle motility boost the active process in cochlea? 

2. How does the hair-bundle achieve its electromotility? 1 

The most widely accepted explanation that purports to address the first question is based on the unstable nonlinear oscil-

lation of the hair bundles. The schematic in Fig. 1 (a)-(d) presents the main ideas. Although the hair bundle motility is critical

to the hearing of both mammals and non-mammals, in this paragraph, we will primarily focus on the non-mammalian hear-

ing mechanism. Fig. 1 (a) shows the cross-section of the receptor organ in the hearing organ of a generic non-mammalian

vertebrate. The organ contains hair cells located on top of the basement membrane (BM). As can be seen in the figure, the

tip of each hair bundle penetrates into an accessory noncellular structure. This acellular structure is located right above

the hair cells. As the acoustic wave propagates in the BM, it causes the vibration of the hair cells and the hair bundles.

Normally, each hair bundle consists of dozens to hundreds of actin based microvilli called stereocilia. The stereocilia within

the same hair bundle have differing lengths. They are aligned in an orderly way to form a wedge shape. The schematic

drawing for a hair bundle is shown in Fig. 1 (b). For simplicity, only three stereocilia of the bundle are shown. Each stere-

ocilia is connected to its neighbor by a fine and elastic molecular strand called the tip link. It is believed that, located on

each stereocilia and around the connection with the tip link, are several mechano-sensitive ion channels ( Camalet et al.,

20 0 0; Hudspeth, 1989; 2005 ). When the hair bundle is deflected, the increase of tip-link tension causes the opening of

the ions channel gates and allows the influx of ions(both K 

+ and Ca 2+ ). The actual relationship between the tip link force

and the channel gate is complex. Power and coworkers proposed a biophysical model to analyze how the force that arise

in tip links influence the channel of the stereocilia ( Power et al., 2014; 2012 ). Since the tip link force depends on the de-

flection of a stereocilia, the probability of the channel’s open-state is thought to be a nonlinear function of the stereocilia

deflection. Fig. 1 (c) shows that the vibration of a stereocilia is actively coupled with the charge flow through its channel

gates ( Choe et al., 1998; Maoileidigh and Hudspeth, 2013 ). This active motion of the stereocilia is able to amplify a vibration

with small amplitude into another with much larger amplitude. The nonlinear electromechanical behavior of the stereocilia
1 At least for high frequency oscillations. The hair bundle’s motility can be both slow and fast adapted ( Hudspeth, 2014 ). The slow adaption is believed 

to be related to the molecular motor, Myo1c, a member of the myosin family ( Batters et al., 2004 ). Experiments indicate that small clusters of Myo1c 

molecules are essential to keep tip-links under tension, which cause the reopening of the ions channel gates ( Grati and Kachar, 2011 ). The entry of cations 

provokes the slipping down of the upper insertional plaque of the tip-link attached to the longer stereocilia and causes the closure of the ions channel. 

Then the Myo1c reopens the channel by increasing the tension in the tip-links which causes the further deflection of the hair bundle in the direction 

of the stimulation. In this way, the energy is fed into the oscillation of the hair bundle. However, the fast adaption mechanism is still poorly understood 

( Hudspeth, 2014 ). 
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Fig. 1. The key ideas pertaining to the active process and its importance to the amplification function of the hearing system are described by Fig. 1 (a)- 

(d). Fig. 1 (a). shows a cross-section of the receptor organ in the hearing organ of a generic non-mammalian vertebrate. Located on top of the basement 

membrane, there are hair cells whose hair bundles penetrate into the upper tectorial membrane. The acoustic wave propagating in the basilar membrane 

causes the vibration of the hair cells and the hair bundles. The hair bundle itself consists of “hair-like” objects called stereocilia. As shown in Fig. 1 (b), each 

stereocilia is connected to its tallest neighbor by a fine molecular strand called tip link. It is believed that, located on each hair bundle and around the 

connection with the tip link, are several mechano-sensitive ions channels. When the hair bundle is deflected, the increase in tip-link tension causes the 

opening of the ion channel gates which allows the influx of ions (both K + and Ca 2+ ). The charge flow triggers the active motion of the hair bundle through 

a (somewhat debated) electromechanical coupling mechanism. As shown in Fig. 1 (c), since the charge flow changes the voltage of the hair bundle, it 

affects the shape and consequently the motion of each stereocilia. Evidently, nature has evolved to tune parameters like ion concentration, the membrane’s 

bending stiffness and even the length and spring constant of the tip links, in subtle ways, so that the system runs on the verge of the so-called Hopf- 

bifurcation ( Fig. 2 (d)). Being on the verge of instability is speculated to be the key mechanism that allows the amplification of weak sounds in a rather 

specific way and several other critical and idiosyncratic features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

is thought to be the reason for the active motion and the amplification. As the charge flow changes the transmembrane

electric field, due to the electromechanical coupling, the shape and consequently the motion of the stereocilia also changes

accordingly. Nature appears to have well-tuned the parameters of the whole system, such as: the ion concentration, the

membranes’s bending stiffness and even the length and spring constant of the tip links, so that it runs on the verge of the

so-called Hopf-bifurcation. Fig. 1 (d) shows the trajectory for the motion of a stereocilia in the phase space. As shown in

the figure, if a perturbation slightly displaces the system away from its stationary point, then the system starts oscillating

due to the loss of stability of the system. With the passage of time, the radius of the oscillation keeps increasing until the

system eventually enters a limit cycle with a relatively larger radius. 

The second question is related to the origin of the electromechanical coupling in stereocilia. Although the electromechan-

ical coupling plays a critical role in the whole process, currently, the precise mechanism for the electromechanical coupling

in stereocilia is still under debate. The electromechanical coupling is reminiscent of “piezoelectricity” observed in certain

hard crystals, but there is no basis to believe that stereocilia are “piezoelectric” as they lack the atomistic structure to act

that way. The myosin-based mechanism mentioned above is thought to be effective for low frequency (less then 1 kHz ) hair

bundle motions ( Hudspeth, 2014 ). For high frequency motions, a mechanism based on the cation’s concentration-sensitive

channel is proposed ( Hudspeth, 2005; Maoileidigh and Hudspeth, 2013 ). It has been argued that each channel is anchored

to the stereocilia cytoskeleton by an adaptation spring whose stiffness decrease with the increase of the Ca 2+ concentra-

tion. As the channel is open, Ca 2+ ions flow in and release the tension in the adaptation spring. Then the reduction of the

tension in adaptation spring causes the closure of the channel. Maoil ́e idigh and Hudspeth have shown that, during these

open-close cycles, energy is fed into the system in terms of the Ca 2+ current flow. This process is much faster than the

myosin-based process and could account for fast adaption ( Maoileidigh and Hudspeth, 2013 ). Lumpkin and Hudspeth be-

lieve that the free Ca 2+ concentration in a stereocilia is critical to its adaption process and have developed a model for

stereociliary Ca 2+ homeostasis ( Lumpkin and Hudspeth, 1998 ). We remark here that flexoelectricity , like electrostriction, is a
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universal electromechanical coupling mechanism that is present in all dielectrics including of course biological membranes

( Ahmadpoor and Sharma, 2015 ). There are strong indications in the work of Brownell, his colleagues and others that flexo-

electricity is a key element of the hair bundle’s electromotility ( Breneman et al., 2009; Brownell et al., 2001; Krichen and

Sharma, 2016; M. Raphael et al., 20 0 0 ). 

While substantial research has been performed by several groups elucidating the myriad aspects of the hearing mech-

anism, we highlight a few that the current work is based on. Hudspeth’s group was probably the first to link the active

process in cochlea with the dynamical instability—Hopf-bifurcation ( Chan and Hudspeth, 2005; Choe et al., 1998; Hudspeth,

2005; Martin and Hudspeth, 1999; 2001 ). In their model, the motility of hair bundles plays a critical role to link the charge

flow to the active motion of the outer hair cells and the Hopf-bifurcation, the characteristic of the nonlinear system they

construct plays an essential role in the amplification process. Brownell and his collaborators have advocated the viewpoint

that membrane flexoelectricity is the source for the electromechanical coupling in hair bundles ( Breneman et al., 2009;

Brownell et al., 2001; M. Raphael et al., 20 0 0 ). Using a theoretical model, they have shown that flexoelectricity is a possible

source for the hair bundle’s fast adaption ( Breneman et al., 2009 ). The flexoelectric effect, first observed in liquid crystals

( Meyer, 1969 ), is a universal two-way electromechanical coupling phenomenon in dielectric materials. Mathematically, flex-

oelectricity links the polarization to the gradient of deformation of materials via the material property parametrized by

the so-called flexoelectric coefficient. Petrov ( Petrov, 20 01; 20 06; Petrov and Sokolov, 1986 ) has argued that flexoelectricity

of the nanometer thick biomembranes is the basic mechanoelectric effect for living matter. Within a lipid bilayer mem-

brane, lipids are organized to form a liquid crystal membrane. This membrane exhibits a strong flexoelectric response due

to its small thickness ( ∼ 1 nm) and low bending stiffness( ∼ 10 −19 J). In a lipid bilayer membrane, the polarization caused

by the direct flexoelectric effect is proportional to its mean curvature ( Petrov, 20 01; 20 06; Petrov and Sokolov, 1986 ). A

phenomenological expression for this relationship is given by: 

p s = μH, (1.1) 

where p s (in C/m) is the electric polarization per unit area, H (in 1/m) denotes the membrane’s mean curvature (defined as

the sum of the membrane’s two principal curvatures) and μ (in C) is the area flexoelectric coefficient. Note that p s relates

to the polarization volume density P by Deng et al. (2014b) and Ahmadpoor et al. (2013) 

p s = P h. (1.2) 

where h is the thickness of the membrane. The direction of p s is assumed to remain normal to the middle plane during the

deformation. Since the coupling between p s and H is two-way, a change in p s or transmembrane potential also results in

the change of the membranes’ mean curvature ( Petrov, 2001 ) due to the converse flexoelectric effect. Experimentally, this

converse flexoelectric effect has been observed using an atomic force microscope (AFM) to measure the deformation of a

biomembrane ( Mosbacher et al., 1998; Zhang et al., 2001 ) and optical tweezers (OT) to pull membrane tethers and measure

their force production ( Brownell et al., 2010 ) in response to an applied voltage. The membrane tethers had similar geometry

to stereocilia lacking only their actin cores. In particular, it has been experimentally observed that the length of stereocilia

changes during current flow ( Hakizimana et al., 2012 ). 

In the present work, we attempt to construct a physical model that takes into account the nonlinear dynamics, mechan-

ics and flexoelectricity of the hair bundle. The physical model is constructed based on the following three facts: (1) the

rotation of the hair bundle changes the tension of the tip links; (2) the ions channel gates are mechano-sensitive and the

change of tip link force therefore impacts the opening state of the gates; (3) the ions flowing through the channel gate

can significantly change the voltage of the hair bundle and then alter the shape of the stereocila due to the flexoelectric

effect. Although there are numerous parameters that could affect the performance of the hair bundle, such as: the length of

the stereocilia, the spring constant for the tip link, the viscosity of the surrounding fluid, and the channel gate parameters,

two parameters that make our model different from others are the intracellular charge density (–which may, potentially, be

linked with K 

+ and Ca 2+ ions) and the biomembrane’s bending stiffness; both of which also play a critical role in several

other biological contexts. Without fitting any artificial parameters—and using merely the thermodynamically defined prop-

erties of biomembranes determined by experiments—the current model shows that the hair bundle indeed runs at the edge

of a Hopf-bifurcation for typical values of the intracellular charge density and the membranes bending stiffness. The model

also indicates that, as the above two parameters deviate from their normal value, Hopf bifurcation and the active motion

of the system is severely suppressed. In particular, we find that flexoelectricity can be a possible cause for the fast adaption for

hair bundle’s motility and serve as an essential ingredient for the occurrence of Hopf bifurcation. Through the proposed model,

we can quantitatively relate the intracellular cations concentration and the membrane’s mechanical properties to the nonlinear

dynamic behavior of the hair bundle. 

Recently, Maoil ́e idigh and Hudspeth have proposed a nonlinear model which combines the somatic motility of outer

hair cells and the hair bundle’s motility to show that the active process in the cochlea is caused by the Hopf-bifurcation

( Maoileidigh and Hudspeth, 2013; Maoilidigh and Juicher, 2010 ). The insights from their work emerge to be crucial to the

development of the present work. However, our proposed model is different from these aforementioned works in the fol-

lowing aspects 2 : 
2 The outline of the differences between the present work and prior literature should not be viewed as a criticism of the latter. Our intention is to 

merely highlight the novel contributions of the present work and the context underpinning our model. 
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(1) Maoil ́e idigh and Hudspeth proposed an adaption spring model that attempts to account for the electromechanical

coupling in hair bundles ( Maoileidigh and Hudspeth, 2013; Maoilidigh and Juicher, 2010 ). They assume that the adap-

tion spring located right at the ions’ channel gate is sensitive to cations(more precisely, Ca 2+ ). As cations flow in the

channel and bind to the adaption spring, the spring constant decreases. However, this adaption spring has not been

identified by experiments yet. In our model, the electromechanical coupling of hair bundles originates from a well

accepted behavior of lipid bilayer membranes, flexoelectric effect, which has been identified both theoretically and

experimentally; 

(2) Maoil ́e idigh and Hudspeth’s model combines the motions of outer hair cells and hair bundles. The outer hair cells

are thought to be piezoelectric . In their model, the Ca 2+ concentration is linked to the dynamics of the hair bundle

through the opening probability of ion channels ( Choe et al., 1998; Maoileidigh and Hudspeth, 2013; Maoilidigh and

Juicher, 2010 ). We have been unable to understand the possible mechanism could lead to piezoelectricity in the outer

hair cells or biological membranes in general—the symmetry rules of condensed matter physics would appear to pre-

clude this phenomenon in these structures. In our model, the electromechanical coupling is based on flexoelectricity.

Through flexoelectricity, the concentration of K 

+ or Ca 2+ is qualitatively related to the dynamics of the system; 

(3) Maoil ́e idigh and Hudspeth’s model, as well as any other existing models, are unable to connect the bending stiffness

of biomembranes to the active process in cochlea ( Maoileidigh and Hudspeth, 2013; Maoilidigh and Juicher, 2010 ). In

our model, which directly incorporates the elasticity of membranes, we can see that the change in the biomembranes

bending stiffness should cause the loss of the amplification function.In particular, our model yields contour maps

of the combination of membrane bending modulus and intercellular charge density that yields the Hopf bifurcation

phenomenology. 

Breneman et al. (2009) proposed that flexoelectricity of stereocilia is critical to the hearing. Our present work/model

differs from their’s in the following respects: 

(1) Breneman, Brownell and Rabbitt’s model is linear in terms of hair bundle dynamics ( Breneman et al., 2009 ). The

linear nature of the model ensures that Hopf-bifurcation is not predicted. Our model simply utilizes the principles

of condensed matter physics and soft matter mechanics to derive a set of nonlinear equations from which Hopf-

bifurcation emerges naturally for a range of physically measurable parameters; 

(2) Breneman, Brownell and Rabbitt’s model doesn’t take into account the activity of mechano-sensitive ions channels

( Breneman et al., 2009 ). The ion flow is treated as a known input to the system. Our model takes into account the

highly nonlinear behavior of ion-channels. In our nonlinear model, the ions flow is no longer a given function, but

depends on the motion of the stereocilia; 

(3) Breneman, Brownell and Rabbitt’s model is able to explain the frequency selectivity of hair bundles. However, for

the amplification function and the compressive nonlinearity, their model is not suitable since a nonlinear dynamical

model is required for that ( Breneman et al., 2009 ). 

The outline of the paper is as follows: in Section 2 , we derive the central physical model for the hair bundle dynam-

ics based on thermodynamics and principles of soft matter continuum mechanics. We propose that the phenomenon of

membrane flexoelectricity is a key mechanism underpinning membrane electromotility. We perform an analytical linearized

stability analysis in Section 3 to understand the stability and the frequency selectivity of the hearing system. To confirm our

interpretation of the link between Hopf-bifurcation and flexoelectricity, we perform all-numerical simulations of the derived

nonlinear model in Section 4 and finally conclude that the hair bundles do run close to a supercritical Hopf-bifurcation for a

broad range of physical parameters. The numerical simulations show that an oscillation that initiates within the limit cycle

can be amplified to the limit cycle, while an oscillation that initiates outside the limit cycle is pulled back into the limit

cycle. This observation is consistent with the experimental observation of nonlinear compression of the active motion of

hair bundles. 

2. A physical model for the dynamics of hair bundles 

Normally, a hair bundle is comprised of dozens to hundreds of stereocilia. Each stereocilia is connected to its shorter and

longer neighbors by tip links. Without loss of generality, only four stereocilia are shown in the schematic drawing ( Fig. 2 (a))

to describe the motion of a hair bundle due to the vibration of its base, the BM. The mass block M AS located on the top of

the longest stereocilia represents the mass of the accessory structure including tectorial membrane (TM) and others. Since

the weight of the TM is much larger than that of the hair bundle, we simply ignore the weight of the hair bundle. When

the vibration of the BM propagates to the hair bundle, it causes the rotation of the stereocilia. This rotation leads to the

increase or decrease of the tip link forces which are proportional to the length changes of the tip links. Subsequently, the

changes in tip link forces lead to the opening or closing of ions channel gates in stereocilia. Due to the flow of ion and the

flexoelectric effect, the stereocilia’s radius and length alter. Thus, in this work, we decompose the motion of each stereocilia

into two parts: the rotation around the pivot and the shape change. 

In prior works, the tip link force is assumed to be linearly proportional to the tip displacement of the connected stere-

ocilia ( Breneman et al., 2009; Choe et al., 1998; Maoileidigh and Hudspeth, 2013; Nadrowski et al., 2004 ). In Fig. 2 (b), to

capture the two motion modes mentioned above, we idealize the stereocilia and propose that while it can stretch and rigidly
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Fig. 2. A schematic drawing for the relative motion of a hair bundle. (a) The vibration of a hair bundle in response to the vibration of the BM. Although 

a hair bundle usually contains dozens to hundreds stereocilia, here, without loss of generality, we only plot four of them to illustrate the central ideas. As 

the vibration of the BM causes the rotations of stereocilia, the tip links’ length will change accordingly. For each tip link, its length change usually leads 

to a tip link force. (b)An effective model describes the mechanics of a stereocilia. Note that the rotation angle θ is caused by external forces including the 

BM’s vibration and the tip link force F TLK , while the length change �l is caused by the flexoelectricity of the stereocilia. The tip link force F TLK is along the 

tip link. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rotate (as shown), it does not “bend”along the longitudinal direction. These simplifications, while approximations, are fairly

well-grounded, based on the phenomenology of the problem. Experimental observations appear to indicate, also shown in

Fig. 2 (a), that each stereocilia becomes thinner at the region close to its root. Thus, the stereocilia is more likely to pivot

about its root than bend into a curve shape. We remark that the stretch and rotation modes interact with each other dur-

ing the vibration of a stereocilia and form a highly coupled system. The length change �l (corresponding to the stretching

mode) of a stereocilia can make the connected tip links change their length and subsequently result in the change of the tip

link force F TLK . As shown in Fig. 2 (b), F TLK along with the BM vibration affects the rotation of the stereocilia. The rotation of

the stereocilia, in turn, can also change the magnitude of the tip link force and subsequently lead to the change of the ion

channel opening state. Opening and closure of the ion channels then changes the stereocilia radius ( R ) due to the flexoelec-

tric effect. Finally, �l is related to R , through appropriate geometrical and physical constraints, to stereocilia’s shape change

(as will be evident shortly). 

There are several factors that may cause a shape change of the stereocilia. Firstly, the pressure difference between the

inner and the outer walls of the stereocilia can potentially cause a change of shape. Secondly, the fluid inside the stereocilia

makes it difficult for the total volume to change in a short time (several ms). Thus, in the analysis of high frequency vibra-

tion, it is reasonable to assume that the volume enclosed by the stereocilia is conserved which implies that the changes in

the radius R and the length l are coupled by 

V (t) = πR (t ) 2 l(t ) = V 0 = πR 

2 
0 l 0 , (2.3)

where l 0 and R 0 respectively denote its initial length and the radius. So the length change �l can be expressed in term of

the radius as 

�l = l − l 0 = 

(
R 

2 
0 

R 

2 
− 1 

)
l 0 , (2.4) 

Finally, the shape of the stereocilia is also affected by its voltage difference between the inner and outer walls through

flexoelectricity. In this work, we propose that this is the main reason for the active motion of the stereocilia since it can

keep transferring ions flow into mechanical vibration and supply energy to compensate what has been dissipated by the

surrounding fluid. 
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2.1. Rotation mode of the stereocilia 

We first address the rotation mode of the stereocilia shown in Fig. 2 (b). We denote the relative displacement of the

stereocilia tip to its base, the BM, by x and the base displacement by x BM 

. Due to the rotational spring located at the base

of the stereocilia, the rotation angle θ is proportional to the total moment by a factor K rsp which is the spring constant.

Assuming that the rotation angle θ is always very small, the motion of the stretchable bar is governed by the following

equation: 

K rsp θ = K rsp 
x 

l 0 
= [ F tip cos ϕ − M AS ( ̈x + ẍ BM 

) − c e f f ( ̇ x + 

˙ x BM 

)] l 0 , (2.5)

where c eff is the effective damping coefficient and K rsp is the spring constant of the rotational spring. F tip is the tip link force

applied from the tip link to the stereocilia. The tip link force is in the direction of the tip link and proportional to the length

change of it. Without loss of generality, we assume that the length change of a tip link is proportional to both x and �l .

Thus, the tip link force may be given by 

F tip = K L (x cos ϕ − �l sin ϕ) , (2.6)

where K L is the effective tip link spring constant which links the tip displacement to the tip link force. In Eq. (2.6) , the

negative sign is an indication that the effects of x and �l are opposite to each other. 

Substituting (2.6) into (2.5) and after some manipulations, we arrive at the following equation for the motion of a stere-

ocilia (in terms of the two unknowns x and �l ): 

M AS ̈x + c e f f ˙ x + (K e f f − K L cos 2 ϕ) x = −K L sin ϕ cos ϕ�l + F stim 

, (2.7)

where 

K e f f = 

K rsp 

l 2 
0 

(2.8)

is defined as an effective spring constant which links the tip displacement x to the force applied on it. As shown in Eq. (2.8) ,

K eff is inversely proportional to l 2 0 . Longer stereocilia(larger l 0 ) leads to smaller K eff and subsequently lower natural frequency.

Thus, for a fixed l 0 , K eff is treated as a constant. 

F stim 

= −M AS ̈x BM 

− c e f f ˙ x BM 

(2.9)

is the effective stimulation force due to the vibration of the BM. This stimulation force can also be regarded as an input to

the system. This input comes from the sound heard by our ears. An additional equation is required to resolve both x and �l

which is tied to the electro-mechanical coupling exhibited by the system. 

2.2. Flexoelectricity induced deformation of the stereocilia 

Other than the rotation motion mode, the stereocilia can also change its shape in response to mechanical and electrical

stimulations. In the following, we formulate flexoelectricity and deformation of the stereocilia through Hamilton’s princi-

ple.We remark that the general topic of flexoelectricity has generated significant recent interest in the mechanics commu-

nity in a variety of contexts ranging from materials design to energy harvesting ( Abdollahi et al., 2015; Catalan et al., 2010;

Chandratre and Sharma, 2012; Cross, 2006; Deng et al., 2014a,b; Dumitrica et al., 2002; Kothari et al., 2018; 2019; Liu and

Sharma, 2013; Mao and Purohit, 2015; Maranganti et al., 2006; Nanthakumar et al., 2017; Rahmati et al., 2019; Zhou et al.,

2018 ). The reader is referred to the following works for an overview of the subject ( Ahmadpoor and Sharma, 2015; Deng

et al., 2016; Krichen and Sharma, 2016; Nguyen et al., 2013; Yudin and Tagantsev, 2013; Zubko et al., 2013 ). 

2.2.1. Deformation pattern of the stereocilia 

The stereocilia are usually very long compared to its diameter so it is appropriate to model them as cylindrical shells–

ignoring thus any end effects. To simplify matters further, also assume that the deformation of the cylindrical shell is always

uniform and the thickness of the membrane ( h ) does not change with its deformation. Thus the shape of a stereocilia is

confined to be cylindrical throughout the deformation and its mean curvature H ( t ) at time t is simply the reciprocal of the

radius R ( t ). For the specific case considered here, the displacement in the radial direction ( w ) is uniform and related to R ( t )

by 

w (t) = R (t) − R 0 , (2.10)

where R 0 denotes the radius of the undeformed stereocilia. The longitudinal change of the stereocilia can be described by

the displacement ( u ) which is in the longitudinal direction and linear with respect to the longitudinal coordinate y so that

the deformation in this direction is uniform. Let the displacement u ( y, t ) at y = 0 be zero, then we have 

u (y, t) = 

(
l(t) 

l 0 
− 1 

)
y. (2.11)

The objectives of (2.10) and (2.11) are to convert two field variables w ( t ) and u ( t ) into two state variables R ( t ) and l ( t ). With

these two state variables, the deformed configuration of a stereocilia can be determined. 
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2.2.2. Hamilton’s principle for the stereocilia 

The dissipation of a fluctuating lipid membrane in viscous fluid is complex but relatively reasonable way to handle that is

to take the energy dissipation rate as proportional to the bending and torsion rates, Q 

B and Q 

T . Here, we should distinguish

the bending of membranes’ from the bending of the stereocilia. In the preceding section, we assumed that the stereocilia

does not bend. However, the membrane that makes up the stereocilia can bend (or wrap up) into a cylindrical shape.

Following Rey’s approach ( Rey, 2008 ), the dissipation bending moment M 

B and torsion moment M 

T are defined as: 

M 

B = c B Q 

B (2.12) 

M 

T = c T Q 

T , (2.13) 

where c B and c T are the bending and torsion viscosities. Consider a fluctuating membrane whose middle plane denoted by

ω. We may then derive its electromechanical behavior through recourse to Hamilton’s principle given by: 

δ

∫ t 1 

t 0 

d t 

{∫ 
ω 

[
h 

2 

ρ( ̇ u 

2 + 

˙ w 

2 ) − H 

]
d a − λ(V − V 0 ) 

}

+ 

∫ t 1 

t 0 

d t 

[ ∫ 
ω ±

t e δwd a −
∫ 
ω ±

q̄ δφda − h 

∫ 
ω 
M δHda 

] 
= 0 , (2.14) 

where δ( ∗) denotes the variation of a functional, ρ is the mass density, V = πR 2 l is the volume enclosed by the cylindrical

membrane whose length and radius are respectively denoted by l and R , the Lagrangian multiplier λ is used to ensure that

the total volume V does not change the deformation, V 0 is the initial value for V , ω 

+ and ω 

− denote the outer and inner

surfaces of the membrane, respectively. The external pressure applied normal to the surfaces ω 

± by the surrounding fluid

is denoted by t e . The density of the net charges attached to the surfaces ω 

± is q̄ and φ is the electric potential. The last

term in (2.14) corresponds to the energy dissipation due to viscous damping. The energy dissipation part is simply written

as M δH where M = c ˙ H is the effective moment and c is the effective viscosity that links the mean curvature H to M . 

For the pure mechanical problem, H is taken as internal energy density of the system. For the electromechanical coupling

problem described here, H is given by 

H = W (H, K, �) − e · (p s + p e ) − hε0 

2 

e 2 , (2.15)

where K designates the Gaussian curvature which, due to the celebrated Gauss-Bonnet theorem, is irrelevant in our context.

The symbol e is the electric field and ε0 is the vacuum permittivity. Here, we also consider the contribution from the

external polarization p e which might be caused by proteins embedded in the membrane. Since p e represents the polarization

density per unit area and the surface area of a membrane changes with its deformation, p e relates to its original value P e 
0 

in

the undeformed state by 

p e da = P e 0 dA (2.16) 

where da and dA denote the area of a small part of the membrane in its deformed and undeformed states, respectively. Note

that P e 
0 

is a fixed parameter which only depends on the initial conformation of the membrane but not on the deformation

of it. In order to decouple the dependence of the polarization p s on the local deformation of the membrane, we introduce

�, the mass density of polarization, which is related to p s by 

� = 

p s 

hρ
. (2.17) 

A quadratic form for the internal energy density W may be written as 

W = 

1 

2 

κb H 

2 + 

1 

2 

ap 2 s + f Hp s , (2.18) 

where κb is the bending modules, f is the constant for flexoelectricity and the coefficient a = 1 / ((εr − 1) ε0 h ) links the

polarization to the internal energy density. Note that f is different from but related to the flexoelectric coefficient μ in

Eq. (1.1) by f = −aμ. 

Notice that ω and ω 

± respectively denote the middle layer and the surface layers of the biomembrane in its deformed

state. So the integration domains in (2.14) change with time. For the convenience of variational calculus, we firstly convert

domains ω and ω 

± into their counterparts in the undeformed or reference state. Here, we denote the undeformed middle

layer and the surface layers by � and �± , respectively. In this work, the thickness h is assumed to be constant and the

ratio of ω to � is J = 

Rl 
R 0 l 0 

due to the uniform deformation assumption. Correspondingly, the four governing equations may

be obtained through the usual variational calculus procedure given below: 

(1) Variation of the kinetic energy 

During deformation, the stereocilia changes its radius and length with time. Thus, the kinetic energy contains two

parts corresponding to the displacement u ( t ) and w ( t ). Assuming that the mass density is a constant throughout the
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whole membrane prior to deformation, the kinetic energy can be written as: 

δ

∫ t 1 

t 0 

d t 

[∫ 
ω 

h 

2 

ρ( ̇ u 

2 + 

˙ w 

2 ) d a 

]
= 

∫ t 1 

t 0 

d t 

[ ∫ 
�

−ρ0 h ( ̈u δu + ẅ δw ) dA 

] 
, (2.19)

where ρ0 is the mass density of the undeformed membrane. Because of the local mass conservation and constant

thickness assumption, we have ρda = ρ0 dA . 

(2) Variation of the internal energy 

The internal energy is an integral of the internal energy density W ( H, K , �). Thus, its variation is given by 

δ

∫ t 1 

t 0 

dt 

∫ 
ω 

W (H, K, �) da = 

∫ t 1 

t 0 

dt 

∫ 
�
(δW J + W δJ) da 

= 

∫ t 1 

t 0 

dt 

∫ 
�

[(W H δH + W �δ�) J + W δJ] dA, (2.20)

where W H and W � denote the derivatives of the energy density function W with respect to the mean curvature H

and the polarization �, respectively. The variation of J is given by 

δJ = 

R 

R 0 l 0 
δl + 

l 

R 0 l 0 
δR. (2.21)

(3) Variation of the energy associated with the electric field 

Due to the assumption of constant electric field across the thickness of the membrane, the electric field can be simply

expressed as 

e = −�φ

h 

. 

So the variation of the energy associated with the electric field becomes 

δ

∫ t 1 

t 0 

d t 

{∫ 
ω 

[
e (p s + p e ) + 

hε0 

2 

e 2 
]

d a 

}

= δ

∫ t 1 

t 0 

d t 

∫ 
�

[
−�φ(ρ0 � + 

P e 0 

h 

) + 

ε0 

2 h 

(�φ) 2 J 

]
d A 

= 

∫ t 1 

t 0 

d t 

∫ 
�

[
−�φρ0 δ� + 

(
ε0 

h 

�φJ − ρ0 � − P e 0 

h 

)
δ(�φ) + 

ε0 

2 h 

(�φ) 2 δJ 

]
d A, (2.22)

where �φ = φ+ − φ− denotes the potential difference between the surfaces ω 

+ and ω 

−. 

(4) Virtual work done by the mechanical forces 

We denote the external pressure applied to the surfaces ω 

+ and ω 

− by t e + and t e −, respectively. Since the membrane

is very thin and assumed to have constant thickness, it is reasonable to assume that the displacement w is constant

across the thickness of the membrane. So we have ∫ 
ω ±

t e δwda = 

∫ 
ω 

�t e δwda = 

∫ 
�

�t e δwJdA, (2.23)

where �t e = t e + − t e − represents the pressure difference between the two surfaces ω 

+ and ω 

−. 

(5) Virtual work done associated with the surface charges attached to ω 

±
Normally, the charge density of a lipid bilayer membrane surfaces is negative due to the arrangement of its lipid

molecules. The emergent or coarse-grained or continuum parameters representing the dielectric constant and flex-

oelectric coefficient dictate the electromechanical behavior of the membrane. These intrinsic surface charges endow

the membrane with flexoelectricity. Thus, the lipid bilayer membrane can be viewed as a flexoelectric thin membrane

without surface intrinsic charges. In this work, we follow this idea and employ a flexoelectric membrane model to

account for the intrinsic surface charge of the lipid bilayer membrane. In reality, there are also ions moving towards

and binding with the membrane. They can effectively alter the potential of the membrane and affect its electrome-

chanical behaviors. It is worthwhile to mention that the charge densities appear in the following equations are those

due to the moving ions. ∫ 
ω ±

q̄ δφda = 

∫ 
ω 
(q + δφ+ + q −δφ−) da = 

∫ 
�
(q + δφ+ + q −δφ−) JdA, (2.24)

where q + (t) and q −(t) represent the charge densities on surfaces ω 

+ and ω 

−, respectively. Note that these charge

densities are due to the ions exist in the electrolyte surrounding and within the stereocilia. The variation of poten-

tial φ on these two surfaces are denoted by δφ+ and δφ−. Usually, the charge density in the external electrolyte is

relatively stable. So the change of the charge density and potential on the outer surface ω 

+ is much slower than the

inner surface. Accordingly, we simply assume that q + and φ+ are constants when the stereocilia is vibrating. Thus the

term q + δφ+ in (2.24) is zero. 
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Power and coworkers proposed that the stretch force that arise in tip links influence the channel of the stereocilia

( Power et al., 2014; 2012 ). Thus, in this work, we assume that the inner surface charge density q − depends on the K 

+ 

and Ca + ions flowing through the mechano-sensitive ion channels. Experiments indicates that the current associated

with the ions flowing relates to the hair bundle’s deflection by Fettiplace and Kim (2014) 

I = I max / { 1 + exp [(x 0 − x ) /x s ] } , 
where I max is the peak value of the current I, x is the deflection, x 0 is the deflection to half activate the current, and

x s is the slope factor which determines how fast the ion channel opening state is switched with respect respect to

the hair bundle deflection. Thus the expression for ion channel open probability P o can be proposed as: 

P o = 1 / { 1 + exp [(x 0 − x ) / �] } , (2.25)

where the parameter � denotes the range of the hair bundle deflection over which the channel open probability

changes from 10% to 90%. Without loss of generality, in this work, we set x 0 = 0 for simplicity. 

We designate the positive charge density of the inner surface of the stereocilia with opening ions channels as q 0 . As

the channel open probability decreases, fewer positive charged ions, such as: K 

+ or Ca + , flow inside the stereocilia

and cause the decrease of the value of q 0 . The inner surface charge density q − for a specific P o is given by 

q − = αP o q 0 , (2.26) 

where α is a parameter less than 1 and describes the sensitivity of channel opening. When the channel is closed,

P 0 = 0 and q − = 0 . While if the channel is open, P 0 = 1 and q − = αq 0 . 

(6) Virtual work done by the dissipative moment M 

The virtual work done by the dissipative moment is given by the last term of (2.14) . With M = c ˙ H , then we have ∫ 
ω 
M δHda = 

∫ 
ω 

c ˙ H δHda = 

∫ 
�

c 

R 

4 
˙ R δRJd A . (2.27) 

Substituting (2.19)–(2.27) into (2.14) and keep in mind that the Lagrange multiplier λ is an unknown, we obtain: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

− 2 W l 
R 0 l 0 

+ 

ε0 l(�φ) 2 

R 0 l 0 h 
− Jλ = 

2 
3 

ρ0 hl 
R 

l̈ 
JW H 

R 2 
− W l 

R 0 l 0 
+ 

ε0 l(�φ) 2 

2 R 0 l 0 h 
+ �t e J + 

M Jh 
R 2 

− Jλ = ρ0 h ̈R 

ρ0 �φ + JW � = 0 

ε0 

h 
�φJ − ρ0 � + (q − − p e 

h 
) J = 0 . 

(2.28) 

Note that from the 4th equation of (2.28) , we may find that the effect of external polarization p e is just like the surface

charge q −. Here, we introduce q −
e f f 

= q − − p e 

h 
to represent the effective surface charge density. In what follows, we ignore

external polarization since its contribution can be equivalently introduced by appropriately adjusting the charge density q −.

2.2.3. Nonlinear governing equation for the radius R ( t ) 

Substituting (2.18) into the third and fourth equations of (2.28) and keeping in mind that H = 1 /R, we obtain {
� = − fε0 

Rηρh 
+ 

q −

ηρh 

�φ = − ahq −
η − f 

ηR 
, 

(2.29) 

where η = aε0 + 

1 
h 

. 

The constant volume constraint (2.3) can be rewritten as 

l = R 

2 
0 l 0 /R 

2 . (2.30) 

Applying the first and the second time derivatives to (2.30) , we have 

˙ l = −2 

R 

2 
0 l 0 

R 

3 
˙ R (2.31) 

and 

l̈ = 6 

R 

2 
0 l 0 

R 

4 
( ˙ R ) 2 − 2 

R 

2 
0 l 0 

R 

3 
R̈ . (2.32) 

Using (2.29)–(2.32) along with the first equation of (2.28) , we may eliminate the variables �, �φ, l and λ in the second

equation of (2.28) and finally obtain a nonlinear governing equation for R , 

ρ0 h 

(
R 

5 

R 0 

+ 

4 

3 

R 

3 
0 l 

2 
0 

R 

)
R̈ − 4 

ρ0 hR 

3 
0 l 

2 
0 

R 

2 
( ˙ R ) 2 + ch ̇

 R −
[

3 

2 

κb −
f 2 ε0 

η

(
3 

2 

+ 

1 

ηh 

)]
R − 2 

f q −(x ) 

hη2 
R 

2 

+ 

a (aε0 h − 1) 

2 η2 
(q −(x )) 2 R 

3 = �t e R 

4 , (2.33) 
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where the expression for q −(x ) is given by (2.26) . 

Since the total volume of the stereocilia is conserved, this means there is no net fluid flow inside or outside the stere-

ocilia. A further implication is that the shape change of the stereocilia is mainly due to the flexoelectric effect, but not the

pressure difference between the two sides of the lipid bilayer membrane. For this reason, the pressure difference �t e can

be considered to be unchanged during the whole process. By setting R = R 0 , ˙ R = 0 and x = 0 , we may obtain the following

expression for �t e : 

�t e = −
[

3 κb 

2 

− f 2 ε0 

η

(
3 

2 

+ 

1 

ηh 

)]
1 

R 

3 
0 

− α f q 0 

η2 hR 

2 
0 

− a (1 − aε0 h ) α2 q 2 0 

8 η2 R 0 

. (2.34)

It is known that the high frequency vibration in a viscous fluid is usually over damped. Since the vibration frequency we

are interested in is over several kHz and the surrounding fluid is very viscous, it is reasonable to assume that the system is

over damped and we can ignore the contribution of the kinetic energy in (2.14) . Thus, (2.33) may be simplified as 

ch ̇

 R −
[

3 

2 

κb −
f 2 ε0 

η

(
3 

2 

+ 

1 

ηh 

)]
R − 2 

f q −(x ) 

hη2 
R 

2 + 

a (aε0 h − 1) 

2 η2 
(q −(x )) 2 R 

3 = �t e R 

4 . (2.35)

If we further assume that the shape change of the stereocilia is not large, the Maxwell stress effect may be also ignored.

So (2.35) can be further simplified as 

ch ̇

 R = 

(
κb −

f 2 ε0 

η

)
R + 

f q −(x ) 

η
R 

2 + �t e R 

4 , (2.36)

and the term �t e may be also reduced to 

�t e = −
(

κb −
f 2 ε0 

η

)
1 

R 

3 
0 

− α f q 0 

2 ηR 

2 
0 

. (2.37)

Eqs. (2.7) and (2.36) can be combined to solve for the two variables x ( t ) and R ( t ). With R ( t ) determined, the variable

l ( t ) can be obtained using the constant volume Eq. (2.3) , the constant volume constraint. �( t ) and �φ( t ) can be calculated

based on R ( t ) through Eq. (2.29) . 

3. Sharp frequency selectivity of hair bundles due to flexoelectricity 

In the previous section, we introduced two different modes of motion for the hair-bundles: rotation and shape change.

These two modes are coupled to each other by tip-link forces and the flexoelectric effect of the biomembrane. As the force

in a tip-link is changed by a small vibration, that also causes a change of the state (open probability) of the surrounding ion

channels. If the ion channel is open, more cations flow inside the stereocilia and subsequently alter its voltage. Due to the

converse flexoelectric effect, the voltage change across the lipid bilayer membrane may lead to a change in its curvature. So

the stereocilia experiences a shape change in response to the opening of its ion channels. According to (2.6) , the tip-link

force also depends on the length change �l of the stereocilia. Thus, the tip-link force and the length change �l interact

with each other during the vibration of the stereocilia. 

One of the main objectives of this section is to study how the cations’ flow modulates an active motion of the stereocilia

through the flexoelectric effect. To begin with, we choose the parameters according to references ( Breneman et al., 2009;

Maoileidigh and Hudspeth, 2013; Petrov, 20 01; 20 06; Rey, 20 08 ). As an ideal model for the ions channel gate, we set α = 1

which means that the channel can be completely open or closed according to the tip-link force. The parameters q 0 and κb

are set to their normal values initially. In the later analysis, we will alter these values within a reasonable range to examine

the sensitivity of the system’s dynamical behavior to these choices. 

For the system governed by (2.7) and (2.36) , we anticipate that the effect of κb is significant due to nonlinearities. An-

other parameter of interest is the initial charge density q 0 of a stereocilia’s inner surface which largely depends on the

cations’ density of the surrounding electrolyte 3 Accordingly, we vary κb and q 0 separately and study how the dynamical

behavior of the system changes as a result. The rationale for choosing these two parameters is that a variety of environ-

mental causes may alter these in mammalian or human body e.g. diseases, medicines, or temperature. Using the proposed

theoretical model, we aim to set the basis to link the human hearing ability to the above mentioned conditions. 

Initially, before the application of external stimulations, the stereocilia is at its equilibrium state (stationary point) where

the time derivatives of x and R are both zero. The stationary point ( x s , R s ) can be solved from (2.7) and (2.36) by setting ẍ =
˙ x = 

˙ R = 0 . In Fig. 3 , we plot curves for Eqs. (2.7) and (2.36) with ẍ = ˙ x = 

˙ R = 0 . Each color corresponds to a choice of κb and

q 0 . It’s seen from the figure that, for different combinations of κb and q 0 , the stationary point remains at (x s = 0 , R s = R 0 ) .

So we conclude that the position of the stationary point is independent of the choice of κb and q 0 . This conclusion ensures

that the subsequent studies need be performed using only a single stationary point. 
3 Theoretically, the surface charge density is less than several tens of mC / m 

2 depending on the concentration of the cations in the surrounding environ- 

ment, the density of the binding sites in the membrane, and the binding energy of the binding site to cations ( Lakshminarayana, 1977 ). Here, since the 

gate opening time is very short for each cycle of the vibration, we choose a relatively small nominal value of q 0 . 
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Fig. 3. Stationary point for different combinations of κb and q 0 . All curves intersect at the same point, which implies that the stationary point ( x s , R s ) is 

insensitive to the parameters κb and q 0 . Note κ r 
b 

= 20 k B T and q r 0 = 0 . 2 mC/m 

2 denote the reference values for the parameters κb and q 0 . 

Table 1 

Parameters for the rotation physics pertaining to the hair bundle. 

Symbol Values Symbol Values 

M AS ( ng ) 32 κb ( J ) 30 k B T 

c eff ( nN · s · m 

−1 ) 150 εr 30 

K eff ( mN · m 

−1 ) 4.5 ρ ( kg / m 

3 ) 10 0 0 

K L ( mN · m 

−1 ) 4.5 c ( N · m · s ) 10 −15 

R 0 ( μm ) 0.16 h ( nm ) 5 

l 0 ( μm ) 6 � ( nm ) 20 

ϕ π /4 μ ( C ) 1 × 10 −19 

q 0 ( mC / m 

2 ) 0.2 α 1(ideal model) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Linearizing the system at the stationary point may provide us some general ideas of the dynamics of the system. Based

on the stationary point found above, the linearized version of the system of Eqs. (2.7) and (2.36) is: [ 

˙ x 
˙ v 
˙ R 

] 

= 

[ 

0 1 0 

K 1 K 2 K 3 

K 4 0 K 5 

] [ 

x 
v 

R − R 0 

] 

+ 

[ 

0 

F stim 

/M AS 

0 

] 

(3.38) 

where v = ˙ x is the hair bundle’s tip velocity, K 1 = − K e f f −K L / 2 

M AS 
, K 2 = − c e f f 

M AS 
, K 3 = 

K L l 0 
R 0 M AS 

, K 4 = 

f q 0 R 
2 
0 

4 ηhc� 

, and K 5 = 

κb −
f 2 ε0 
η

hc 
+

(4 � t e R 3 
0 

+ 

f q 0 R 0 
η ) / (hc) . 

Suppose the external stimulation F stim 

is harmonic, i.e. F stim 

= F 0 e 
iωt with ω being the angular frequency, then for the

linearized system (3.38) , the responses x ( t ) and R ( t ) are both harmonic such that, x (t) = Ae iωt and R (t) = R 0 + Be iωt . Substi-

tuting the above expressions for F, x and R into (3.38) and solving for the amplitude A for the variable x , we have 

A (ω) = 

−F 0 

M AS (ω 

2 + K 1 + iK 2 + 

K 3 K 4 
iω−K5 

) 
. (3.39) 

Obviously, A is a function of the angular frequency ω and also depends on multiple parameters. To study the frequency

dependence of A , we use the parameters given in Table 1 . To simulate a small acoustic stimulation, F 0 is chosen to be

1 pN . Fig. 4 shows the comparison of the frequency dependency of A for the cases with and without flexoelectricity. As

shown in Fig. 4 , the resonance frequency of the linear system changes from 1276 Hz to 3178 Hz due to the consideration of

flexoelectricty. This result indicates that flexoelectricty allows the system to resonant at higher frequencies. Fig. 4 also shows

that, if we normalize A by its value at low frequency where A (ω) = A 0 is almost a constant, the curve with flexoelectricity

exhibits a much sharper peak around the resonance frequency than that for the case without flexoelectricity. This implies

that the stereocilia may utilize flexoelectricity to enhance its frequency selection performance. In the plot of Fig. 4 , we

consider three cases to show how does flexoelectricity affect the frequency selectivity of the system. It is found that the

case for κb = 30 k B T and q 0 = 0 . 2 mC/m 

2 shows the best frequency selectivity among the others. Later, we will show that κb =
30 k B T and q 0 = 0 . 2 mC/m 

2 correspond to a special situation at which the system runs at the verge of the Hopf-bifurcation.

Thus, we may also conclude that the Hopf-bifurcation helps to enhance the frequency selectivity. 

It is worthwhile to mention that the frequency response derived from our flexoelectric approach ( Fig. 4 ) differs qualita-

tively from that obtained in prior works e.g Hudspeth et al. (2010) . The latter is symmetrical about the resonance frequency.
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Fig. 4. The frequency dependence of A for the cases of with and without flexoelectricity. The blue line corresponds to the case of with flexoelectricity has 

sharper peak which indicates that flexoelectricity enhances the frequency selectrion. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 5. The change of real part of the complex conjugate eigenvalues with respect to κb and q 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In contrast, our flexoelectric bundle frequency response is low pass below the resonance frequency and has an abrupt roll

off above. The low pass below and abrupt roll off above the resonance frequency resembles the frequency response we ob-

tained for a model of the outer hair cell lateral wall as a thin, compliant cylindrical piezoelectric ( Weitzel et al., 2003 ). The

high frequency roll off is consistent with classical and contemporary measurements of the cochlear traveling wave. Recent

cochlear mechanics studies ( Cooper et al., 2018; Dewey et al., 2019 ) have revealed the presence of low frequency ampli-

fication at frequencies several octaves below the presumed resonance frequency. The low pass behavior in our model is

consistent with electromechanical amplification occurring at frequencies well below the resonance frequency. 

We also note that, in the discussed linearized case, the actual values for A are very small (less than 1 nm ). However,

in reality, the response of a stereocilia is much larger due to a process of amplification. It is expected that the amplifica-

tion probably stems from a Hopf-bifurcation related active motion of the stereocilia. Next, we explore this aspect–i.e. the

response of a stereocilia to a small perturbation. 

Firstly, we calculate the eigenvalues of the system to check its stability and predict how it behaves when losing stability.

Normally, there are three eigenvalues for (3.38) . With the parameters given by Table 1 , it is found that two of the eigenvalues

are a pair of complex conjugates whose real parts ( Re ( λ)) are positive. We also find that varying the values of κb and q 0
alters the values of Re ( λ). 

In Fig. 5 , we plot the real part of the conjugate pair Re ( λ) as a function of the parameters κb and q 0 . The white line

in the figure represents the condition under which Re ( λ) becomes zero. This white line corresponds to the supercritical
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Hopf-bifurcation points of the system. As shown in Fig. 5 , on the right hand side of the white line, Re ( λ) is less than zero

which implies that the vibration of the system is stable. While on the left hand side of the white line, Re ( λ) is greater than

zero which implies that the vibration of the system is unstable. Since the imaginary part of λ is basically nonzero, when

Re ( λ) > 0, the system has a limit cycle whose radius may be determined by the parameters κb and q 0 . If the radius of this

limit cycle is large enough, the system may act as an amplifier that transforms a small input stimulation vibration into a

larger one. 

Starting from the region Re ( λ) > 0, keep increasing κb or decreasing q 0 would eventually make Re ( λ) negative which

means the loss of the ability of amplification. As has been addressed previously, the charge, q 0 depends on the intracellular

cations’ density (K 

+ and Ca 2+ ) when the ions channel is open. Thus, q 0 also depends on the cations’ density of the envi-

ronment where the stereocilia located. Higher concentration of cations in the environment leads to larger absolute value

of q 0 and vice versa. When the cations’ concentration of the environment is too small, the system would become stable

and the active motion would disappear. The bending stiffness κb of the biomembranes is another key factor that affect

the stability of the system. Medicine, for instance, has been known to alter the bending stiffness κb of the biomembranes

( Fa et al., 2007; Hakizimana and Fridberger, 2015 ). According to the results shown in Fig. 5 , the hair bundle may in such a

case, malfunction. 

4. Nonlinear analysis of the dynamical behavior of hair bundles 

Most prior studies have focused on studying a version of the linearized system in (3.38) . To further confirm and inves-

tigate the mechanism of the amplification, we carry out a fully numerical study to solve the nonlinear system described by

(2.7) and (2.36) . The details of the numerical simulation may be found in the Appendix. 

To investigate the importance of flexoelectricity to the function of amplification of the hair bundle, we compare the cases

with and without the consideration of flexoelectricity. Fig. 6 (a) shows the variation of the tip displacement with respect to

time without the consideration of flexoelectricity f = 0 as κb = 30 k B T and q 0 = 0 . 2 mC/m 

2 . Fig. 6 (b) shows the result for the

case of with flexoelectricity. It is seen from the figure that a slight perturbation is amplified to about 100 nm vibration in

about 3 ms . Comparing Fig. 6 (a) and (b) we infer that in the absence of flexoelectricity, the system will lose its ability to

amplify small perturbations of sound. This confirms our speculation that the amplification arises flexoelectric effect which

converts the energy of ions flow into the deformation of stereocilia. 

Regarding the flexoelectric effect, a practical question is how much energy of the flowing ions can be converted into

the mechanical energy of stereocilia. In other words, is this energy sufficient to adapt an active motion of hair bundles? To

answer this question is not easy. In what follows, we attempt to show how some parameters affect the energy conversion

efficiency. From the results we obtained from the linear analysis, it is found that the parameters q and κ are critical to the
0 b 

Fig. 6. Tip displacement vs time for κb = 30 k B T and (a) without flexoelectricity, (b) with flexoelectricity and q 0 = 0 . 2 mC/m 

2 , (c) with flexoelectricity and 

q 0 = 0 . 15 mC/m 

2 , and (d)with flexoelectricity and q 0 = 0 . 08 mC/m 

2 under a stimulation of F 0 = 1 pN. 
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Fig. 7. Tip displacement vs time for q 0 = 0 . 2 mC/m 

2 and (a) κb = 40 k B T, (b) κb = 50 k B T under a stimulation of F 0 = 1 pN. 

Fig. 8. The 3D (a) and 2D (b) plots of the phase diagram for the vibrating of the stereocilia with q 0 = 0 . 2 mC/m 

2 and κb = 30 k B T . Starting from different 

points, the trajectories always converge to the limit cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

performance of the dynamic system. So, here we also study the effects of these two parameters on the nonlinear behavior

of the system. Fig. 6 (c) and (d) give the tip displacement vs time curves for κb unchanged but q 0 equals to 0.15 mC / m 

2 and

0.08 mC / m 

2 , respectively. Comparing these two figures with Fig. 6 (b), we can easily see that decreasing the absolute value

of q 0 suppresses the amplification significantly. As shown in Fig. 6 (c), decrease of the absolute value of q 0 by about 25%

can reduce the amplitude of the tip displacement by about 50% (around 50 nm in magnitude) and increase the time for the

amplification to 7 ms . When q 0 is further reduced to 0.08 mC / m 

2 , the system loses its function of amplification. This finding

indicates that reducing the cations concentration of the environment could lead to the loss of hearing. 

In Fig. 7 (a) and (b), the effect of bending modulus κb on the dynamical behavior of the system is studied. As shown in

Fig. 7 (a), if we increase κb to 40 k B T , the amplitude for the tip displacement decrease to around 50 nm and it takes more

than 8 ms for the vibration of the tip displacement to become stable. If we further increase κb into 50 k B T , as shown in

Fig. 7 (b), the system would lose its ability of amplification. Compare Fig. 7 (a) and (b) with Fig. 6 (b), we find that increase

the membranes’ bending modulus κb leads to the suppression of the amplification. 

Fig. 8 (a) and (b) respectively show the 3D and 2D plot for the phase diagram for the vibration of the stereocilia with

q 0 = 0 . 2 mC/m 

2 and κb = 30 k B T . From the figures, it is found that, starting from different points, the trajectories always

converge to a fixed loop which is identified as a limit cycle. An important implication of this is that upon loss of stability,

the vibration of the hair bundle will not increase to “infinity” but limits itself. The amplitude of the vibration is always kept

to several hundred nanometers. The system therefore exhibits a supercritical Hopf-bifurcation for the chosen parameters.

Imagine that a very weak sound wave perturbs the hair bundle by a small distance from its stationary point, the active

process will amplify the perturbation towards the radius of the limit cycle. However, for a relatively strong sound wave that

perturbs the hair bundle vibrate outside the limit cycle, the active process will attenuate the response and pull the vibration

back to the limit cycle. In this way, the hair bundle is protected from extremely strong acoustic stimulations. Although not

rigorous, the above mentioned supercritical Hopf-bifurcation is consistent with the reported nonlinear compressibility of the

hearing system. 

It is interesting to see that the limit cycle shown in Fig. 8 (a) and (b) may also partially provide the rationale for the

origin of otoacoustic emissions.Mathematically, for a system whose dynamic behavior can be depicted by Fig. 8 (a) and (b),

an infinitesimally small oscillation about its steady point can be amplified into a detectable oscillation within few ms . Since
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flexoelectricity is critical to the existence of the limit cycle, we propose here that otoacoustic emissions are tightly linked

with the flexoelectric behavior of the biomembrane. 

5. Concluding remarks 

To understand the sound amplification in the mammalian hearing mechanism, we construct a physical model of the

mechanics and dynamics of hair bundles. A key aspect of our work is that we incorporate both membrane electromotility—

predicated on the phenomenon of flexoelectricity—as well as a physics-based nonlinear dynamical model. In a departure

from prior works, we directly link the mechanical and electrical properties of hair bundles to their performance. We find

that, because of flexoelectricity, the oscillation of the hair bundles becomes unstable for some combinations of the inner

surface charge density q 0 and the biomembranes’ bending stiffness κb . The instability endows the system with the ability

to amplify very weak acoustic perturbations. 

The physical nature of our model allows us to assess in a facile way the effect of external parameters on the performance

of the hearing apparatus. For example, we are able to show that the ability of amplification of the stereocilia is due to

the Hopf bifurcation related motion of the system. We find that an increase in the bending modulus, κb or a decrease in

the absolute value of q 0 —both may happen due to illness ( Marinkovic et al., 2009; Planells-Cases and Jentsch, 2009 ) or

medicine ( Tunstall et al., 1995 ), may stabilize the system and cause the malfunction of the hair bundle in its function of

amplification of external stimulations. In the current model, q 0 , the density of ions that binding to the inner surface of the

stereocilia when the ions channel is open, could be linked by future experiments to cations (K 

+ and Ca 2 + ) concentration of

the environment. 
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Appendix A 

The system of Eqs. (5) and (8) is nonlinear. Analytical solution is not possible. We first rewrite the system of Eqs. (5) and

(8) into the following form: ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

˙ x (t) = v 
˙ v (t) = − c e f f 

M TM 
v − K e f f −K L cos 2 ϕ 

M TM 
x − K L cos ϕ sin ϕ�l(R ) 

+ F stim 

˙ R (t) = 

(κb − f 2 ε0 /η) 
ch 

R + 

f q −(x ) 
chη

R 

2 + 

�t e 

ch 
R 

4 , 

(A.1) 

where the LHS correspond to the time rate of variables x, v and R . Secondly, forward Euler method is applied for time

marching. At time t = n �t where n = 1 , 2 , 3 . . . and �t being the time step, the time rate of the field variables x and R are

calculated using (A.1) . At last, the values of these two field variables at time t + �t are estimated by {
x (t + �t) = x (t) + 

˙ x (t)�t 

R (t + �t) = R (t) + 

˙ R (t )�t . 
(A.2) 

In the current work, the time step �t is chosen to be 0.01 ms which is small enough for a stable time marching. 
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