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Flexoelectricity as a universal mechanism for energy harvesting from crumpling of thin sheets
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Can the mere crumpling of a paper produce electricity? An inhomogeneous strain can induce electrical
response in all dielectrics and not just piezoelectric materials. This phenomenon of flexoelectricity is rather
modest unless unusually large strain gradients are present. In this paper, we analyze the crumpling of thin
elastic sheets and establish scaling laws for their electromechanical behavior to prove that an extremely strong
flexoelectric response is achieved at submicron length scales. Connecting with recent experiments on crumpling
of a polymer paper, we argue that crumpling is a viable energy-harvesting route with applications in wearable
electronics and related contexts.
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I. INTRODUCTION

Crumpling of flat sheets is ubiquitous in our daily lives.
The inevitable deposition of a used (and crumpled) paper
before its relegation to the recycling bin provides but just one
example. This phenomenon has attracted much attention and
has been heretofore studied purely as a mechanical and geo-
metrical problem [1–7]. Indeed, the mechanics of crumpling
is quite rich, and the intricate coupling between deformation
energy stored in stretching, bending, and subtle differential
geometric aspects pertaining to 2D structures has bearing on
problems as diverse as the shape of flowers to the speed of
earthquakes [8].

Is crumpling truly a purely mechanical problem? For mate-
rials that are not piezoelectric, the answer would appear to be
in the affirmative. However, this ignores a rather underappre-
ciated phenomenon that has attracted much recent attention.
Flexoelectricity is a universal electromechanical coupling be-
tween strain gradients and polarization [9–17]. It’s universal
nature is to be emphasized since it exists, in principle, in all
(insulating) materials and has paved the way for fascinating
applications such as piezoelectric materials without using
piezoelectric materials [17–20], nanoscale energy harvesting
[21–24], ferroelectric domain engineering [25–27], sensors
and actuators [28–30], defects [31], and biomedicine [32–34],
among others. In a conventional piezoelectric material, elec-
tricity (or electric polarization, p) can be generated through
the piezoelectric effect,

pi ∼ di jkε jk, (1)

where di jk denote the components of the third-order piezo-
electric tensor and ε jk are the strain tensor components. Here
we have used index notation and Cartesian basis to make
explicit the order of the material property tensors as well as
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make comments about symmetry. Piezoelectricity only exists
in a few special materials (that have a noncentrosymmetric
crystalline structure). In contrast, if flexoelectricity is ac-
counted for, the polarization takes the form

pi ∼ di jkε jk + fi jkl
∂ε jk

∂xl
, (2)

where fi jkl are the components of the fourth-order flexoelec-
tric tensor.

A most notable characteristic of flexoelectricity is the size
dependency inherent in its response. As numerous works
have shown, and as may be evident from its reliance on
gradients of strain (which imparts a nonlocal character to
the phenomenon), the flexoelectric response increases dra-
matically when the feature size of the dielectric structure
shrinks to submicron or nanoscale [17,21,23,35]. The simple
bending of a thin paper or paperlike structure ought to acti-
vate a flexoelectric response—a fact amply demonstrated in
the case of atomically thin 2D materials like graphene and
others [20,34,36]. However, the electrical energy gain would
be rather modest since the flexoelectric coefficients of most
materials are rather small—unless very high curvatures are
induced. The latter is most facile when the underlying geomet-
ric feature size (thickness in this instance) is at the nanoscale.
Crumpling provides a rather interesting alternative to generate
large localized strain gradients (or in this context, changes in
curvature). Recently, Kodali et al. [37] proposed generating
electric power from the crumpling of micron-thick polymer
piezoelectric foils for wearable electronics and experimentally
observed the development of a voltage (≈ 0.1 V). Recognizing
the potential of crumpling to induce a significant flexoelectric
response, we argue that crumpling could provide a facile route
to generate electric power in thin paperlike structures of all
materials (and not just piezoelectric). Figure 1 shows the basic
concept underlying the present work of power production
from crumpling of a thin dielectric sheet.

Before outlining some of the novel aspects of the present
paper, it is imperative to briefly recapitulate the current
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FIG. 1. Schematic of the electricity generated due to the crum-
pling of a thin dielectric sheet. Large strain gradients at the sharp
tips in the crumpling sheet may polarize the material due to the
phenomenon of flexoelectricity.

understanding of the crumpling problem from a purely me-
chanical and geometric viewpoint. The simplest example of
a crumpled sheet is a developable cone (d-cone), which is a
deformed circular sheet under a central point force perpendic-
ular to the original flat sheet constrained by a cylinder. This is
shown in Fig. 2(a) and, as is evident, may be created on regular
office printer paper. The pointlike singularities [Fig. 2(b)]
that appear on a crumpling elastic sheet, as a result of
stress focusing, have recently been the subject of several

FIG. 2. A crumpled thin sheet. (a) The crumpled shape of a
circular paper with radius Rp resting on a cup with radius R. The
crumpled shape is generated by applying a concentrated load F at
the central point of the paper. Parts (b) top view and (c) front view,
show the geometry underpinning the crumpling state.

investigations [1,38,39]. To analytically model the d-cone,
Cerda and Mahadevan [3,6] presented an analytical solution
for the universal shape of a d-cone with singularities and
also gave a scaling relation for the core size [5]. Somewhat
complementarily, Chaïeb and Melo [4] carried out an experi-
ment to investigate d-cone topology and calculated the angle
(≈120◦) over which the d-cone is not in contact with the edge
of the cylinder. This angle, however, is a little different from
what Cerda and Mahadevan estimated (≈140◦) [3]. Recently,
Müller and Olbermann [40] improved the scaling law of the
elastic energy of d-cones by following the work of Brandman
et al. [41].

In a departure from the works quoted in the preceding para-
graphs, Kodali et al. [37] examined crumples in composite
piezoelectric thin sheets. Specifically, they embedded sheets
of a polymer piezoelectric [poly vinyldenefluoride (PVDF)]
in clothing in which power is generated by crumpling of
clothes due to human body movements. They showed that a
nontrivial voltage is generated from a single d-cone crumple
and presented a scaling law relating the geometry of the
crumpling d-cone and the generated open circuit voltage and
short circuit current.

Our work, motivated by the generated voltage in the
d-cone [37], is predicated on the observation that at the tip
of the d-cone, not only is the strain considerable, but so
is the strain gradient (i.e., curvature). Taking cognizance of
Eq. (2), polarization may be induced by both piezoelectricity
(if the material is piezoelectric) and flexoelectricity (in all
dielectrics). So the following questions may be asked both
from the viewpoint of fundamental physics as well as potential
applications: (1) Given that flexoelectricity is universal, what
is the correct interpretation of the experiments of Kodali et al.
[37] on electricity generated by PVDF paper? (2) What are
the mechanics and physics of crumpling if flexoelectricity is
accounted for? (3) What are the pertinent electromechanical
scaling laws? (4) Is the energy harvested viable or at least
comparable to what might be obtained from analogous crum-
pling of piezoelectric materials? In this paper, we seek to
answer the questions posed in the preceding paragraph. In par-
ticular, in this paper, we focus on the possibility of generating
electric power from the universal flexoelectric response of a
crumpling dielectric sheet.

II. THEORETICAL FORMULATION FOR THE
CRUMPLING OF A THIN ELASTIC SHEET WITH
PIEZOELECTRICITY AND FLEXOELECTRICITY

We now briefly sketch out the central aspects of the
theoretical formulation for crumpling of a thin elastic sheet
incorporating both flexoelectricity and piezoelectricity. While
the latter is not the focus of this paper, to connect with recent
experiments, we address piezoelectricity also. Most of the
details related to the theory are recorded in the Appendices.
The deformation of a crumpling sheet is shown in Fig. 2(a).
A vertical force F is applied to push the central point of
the flat circular sheet (with radius of Rp), which is centrally
placed on the supporting hoop (with inner radius R). The
thin sheet bends up to the depth d when F is very small.
However, crumpling ensues once F is increased sufficiently.
Consider the domain occupied by a continuum body in the
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space is denoted by B with the boundary ∂B. In general, the
deformation of the body B can be expressed by a mapping
y : B → R3. A representative material point of the body is
x ∈ B. In contrast, the spatial point is y = y(x) = x + u,
where u is the displacement vector. The displacement and
electric potential (ξ ) boundary conditions may be specified on
the respective surface domains as detailed in the Appendices.

The total potential energy associated with the deformed
electrostatic system is given by

F[u, p, ξ ] =
∫
B

{
W − 1

2
ε0|∇ξ |2 + p · ∇ξ

}
dv

−
∫

∂Bd

ξQds −
∫

∂Bt

t · uds, (3)

where W (∇u,∇∇u, p) is the internal energy function, ε0 is
the vacuum permittivity, p is the polarization, Q is the surface
charge density, and t is the applied dead load.

The Euler-Lagrange equations and the natural boundary
conditions can be determined by minimizing the total poten-
tial energy: min

∀(u,p,ξ )∈S
F[u, p, ξ ], where the minimization is

carried out over a suitable admissible space S. We omit further
details here and refer the reader to the Appendices. After
using the relevant kinematic assumptions for thin bodies,
suitable constitutive choices, and other aspects elaborated in
the Appendices, we obtain the following key result for a thin
elastic dielectric sheet. The total energy Eq. (3) specialized to
a thin sheet with thickness h becomes

F[u] = 1

2

∫
S

Wsds − Fd, (4)

where the two-dimensional energy function Ws is

Ws = Es · CsEs + (Ks + K∗
s )[tr(κ)]2. (5)

Here the coefficients Ks and K∗
s are

Ks = Cb + hg − ha∗ f 2
s , K∗

s = −ha∗ f 2
s (η2 + 2η) (6)

with the ratio η = dstr(Es)/[ fstr(κ)].
Here, Es is the in-plane strain tensor and κ is the curva-

ture tensor. The material properties are parametrized by Cs

which is the in-plane stiffness tensor, and by Cb which is
the bending stiffness. The property g parametrizes the elastic
cost of strain gradients and in the context of thin sheets (as
opposed to three-dimensional bodies) merely renormalizes the
bending modulus. The other terms (ds, fs, a∗) are related to
the piezoelectricity, flexoelectricity, and dielectric permittivity
of the sheet and are defined in detail in the Appendices.
Typically, in the case of non-piezoelectricity, ds = 0, the ratio
η and the coefficient K∗

s in Eqs. (6) are zero. As shown in
Fig. 2, the crumpling sheet deforms into a nonaxisymmetric
conical surface that is in partial contact with the supporting
hoop. To model the d-cone, the middle surface S of the
dielectric sheet is divided into two parts: Sc = {x ∈ S : 0 �
ρ � Rc}, Sd = S \ Sc. The core part Sc is the region near
the tip of the d-cone and Rc can be interpreted as the core
size [5,6]. The core part of a crumpling sheet is analogous to
the core of a dislocation [3,42]. In addition, the outer region
of the d-cone is Sd . We remark that the variation of the
local curvature along the d-cone separates the d-cone into two
parts [3,4]: in terms of the azimuthal angle (θ ), the concave

part (−θ1 � θ � θ1) and the convex part (θ1 � θ � 2π − θ1).
In the convex part, the surface fully contacts the hoop and
forms a near-perfect circular cone except near its tip or core;
while in the concave part the d-cone loses contact with the
supporting hoop. For the purely mechanical problem, we note
that Cerda and Mahadevan [3] predicted the angle (θ1) to
be θ1 ≈ 70◦ while θ1 ≈ 60◦ was estimated by Chaieb et al.
[4]. Finally, the conical shape of a crumpling sheet can be
completely parametrized by two nondimensional numbers,
(α1 = d/R, α2 = Rc/R), which are the proxies for (d, Rc):
the tip displacement and the core radius (see the Appen-
dices). Thus, the dimensionless numbers (α1, α2) are the two
unknown quantities which are determined by the variational
principle described earlier. Due to the nonlinear nature of the
problem, the final results are obtained numerically.

III. RESULTS AND DISCUSSIONS

Before interrogating our model for insights into crumpling-
induced energy harvesting, we believe it is worthwhile to val-
idate its prediction against established literature for the purely
mechanical case. Using identical geometrical and material
parameters as those reported in Ref. [5], we compared the
results of the prediction of our model (see the Appendices)
for the purely mechanical case (i.e., with piezoelectricity and
flexoelectricity suppressed) and found excellent agreement for
small deformation between our model predictions and the
experimental data in Ref. [5]. For relatively large deformation,
the agreement is not perfect, but accounts for it not being the
focus of this paper. Our central goal is to achieve sufficient
accuracy (and correct qualitative behavior) to account for
piezoelectric and flexoelectric response of crumpling sheets,
which we discuss next.

In their experiments, Kodali et al. [37] measured the open
circuit voltage and the short circuit current of a crumpling
circular composite sheet. The composite sheet was made of
a 52-μm-thick PVDF—a known piezoelectric polymer—with
electrodes on both sides and bonded to a soft cloth-plaster.
The circular sheet was placed on a supporting hoop and then
a concentrated vertical force was applied at the sheet center
to form the crumpled configuration. For different radii of the
supporting hoop R = (12.5, 20, 25) mm, roughly 0.1 V was
measured by pushing the center of the circular sheet (with
radius 50 mm) into a supporting hoop up to the maximum
depth (≈4 mm). Kodali et al. attribute the observed induced
voltage to the piezoelectric effect exhibited by PVDF. Our
hypothesis is that, since flexoelectricity cannot be “turned
off,” the observed potential difference is due to both phenom-
ena. What are their relative contributions? We report some
surprising and interesting insights below.

In our theoretical model, the flexoelectric constant is cho-
sen as fs = −179 Nm/C [17,21]. The geometrical and mate-
rial parameters of a circular composite sheet in the crumpling
experiment [37] are Rp = 50 mm, h = 52 μm, E = 5 GPa,
d31 = 5 pC/N, and ε = 88.5 × 10−12 F/m. Using our model,
we partition the total voltage obtained into that due to flexo-
electricity (FL voltage) and piezoelectricity (PZ voltage). As
elaborated in the Appendices, the nonlocal elastic constant g
has a negligible effect on the comparison with experiments
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FIG. 3. Comparison of the generated voltage of a crumpling
sheet predicted by our model with the experimental data of Kodali
et al. [37]. The generated voltage vs the tip depth d of the crumpling
circular sheet is plotted. In our model, we consider both the contri-
butions of piezoelectricity and flexoelectricity while the experiments
can only calibrate the total voltage on the upper and bottom surfaces
of a crumpling sheet.

since sheet thickness in the experiments is quite large com-
pared to the characteristic nonlocal length scale.

Figure 3 shows how the induced voltage varies with the
increase of the tip deflection d , where we also compare our
model predictions with the experimental data from Ref. [37].
The radius of the supporting hoop is taken to be R = 12.5 mm.
The developed potential difference increases to 0.14 V as the
tip deflection increases to 4 mm. Thus, the electric field in
the 52-μm-thickness film can be as high as 3 × 103 V/m,
which is considerable when placed in the context of soft
dielectrics. The key insight is that our flexoelectricity-based
model is able to predict the generated voltage including both
piezoelectricity and flexoelectricity. More importantly, both
voltages are comparable to each other and are of the same
order as the experimental data reported by Kodali et al. [37].
Notably, our model shows that the flexoelectricity leads to a
nontrivial contribution to the generated voltage of a crumpled
sheet at microscale and cannot be ignored. In addition, due to
the size dependency inherent in the phenomenon of flexoelec-
tricity (which is absent in piezoelectricity), it becomes dom-
inant when the film thickness decreases from microscale to
nanoscale. This is articulated in Fig. 4 in terms of the variation
of the electromechanical coupling with respect to film thick-
ness. Explicitly, the piezoelectricity in our model originates
from the in-plane strain Es of the core part while the flexo-
electricity results from the curvature of the crumpled film, see
Eq. (6) or Eq. (A20). Physically, this may be rationalized in
the following way. For a piezoelectric material (like PVDF)
attached to a very thin soft cloth, it is unlikely that bending
will contribute significantly to a piezoelectric response (since
compression and tension below and above the neutral axis
of the material will produce significant cancellation). This
is, however, not the case for flexoelectricity. We remark that
in the case of inextensible films, piezoelectricity “turns off”
but flexoelectricity does contribute, i.e., crumpling-induced
electricity is essentially mediated by bending in the case of
inextensible materials. Needless to say, as evident from Fig. 3,

FIG. 4. Flexoelectric and piezoelectric effects vs the sheet thick-
ness h. The effective effect (electromechanical coupling) is defined as
deff = Q/F , and is normalized by deff

0 = 652 pC/N that is calculated
by the geometrical and material parameters in Fig. 3 at tip depth
d = 4 mm. The experimental data (solid circle, deff/deff

0 = 0.38) of
the effective effect of a thin sheet with thickness h = 52 μm is
also plotted for comparison between different thicknesses. The re-
ported piezoelectric coefficient of barium titanate is around dBaTiO3 =
78 pC/N.

crumpling-induced mechanical energy can be converted to
electrical energy.

A major consequence of the establishment of the scaling
relation for flexoelectricity in crumpling is that we are now
in a position to go beyond known experiments and exam-
ine the size dependency of the electromechanical coupling.
As noted earlier, piezoelectricity does not produce any size
effects while the flexoelectric effect is size dependent, cf.
Ref. [17]. We define and focus on the emergent electrome-
chanical coupling that is defined as the ratio of the induced
charge Q on the sheet surface in response to the applied force
F , namely deff = Q/F . Such a definition can be considered
as the amount of electric charge (including the contribution
of both piezoelectricity and flexoelectricity) produced by per
unit of applied force. As a point of comparison, for a common
crystalline piezoelectric material like barium titanate, this
coefficient is around dBaTiO3 = 78 pC/N. In the crumpling of
a thin sheet with thickness h = 52 μm used in Fig. 3, for
instance, the effective effect at a tip deflection d = 4 mm
is found to be deff = 250 pC/N from the experimental data
[37]. As demonstrated in Fig. 4, as the thickness of the
sheet is reduced to around 100 nm, the electromechanical
coupling reaches values close to 65 000 pC/N. In the plot,
we chose the same basic parameters in Fig. 3 as the starting
point, and the geometry of the sheet was scaled as (Rp : R :
h : d ) = γ (50 mm : 12.5 mm : 52 μm : 4 mm), where γ is a
nondimensional scale factor and γ = 1 corresponds to the size
of the thin sheet in Fig. 3. By changing the scale factor γ ,
we can make the sheet thickness h ranging from 10 nm to
100 μm. We chose deff

0 = 652 pC/N to normalize the effective
piezoelectric and flexoelectric effects in Fig. 4 at different
thicknesses. The piezoelectric effect is insensitive to the scale
of thin sheets; however, the flexoelectric effect remarkably
increases (two orders) as the thickness decreases from several
microns to a few nanometers.
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APPENDIX A: THE DETAILED THEORETICAL
FORMULATION

1. Energy minimization of an electrostatic system

The domain occupied by a continuum body in the space is
denoted by B with the boundary ∂B. In general, the deforma-
tion of the body B can be expressed by a mapping y : B →
R3. A representative material point of the body is x ∈ B. In
contrast, the spatial point is y = y(x) = x + u, where u is the
displacement vector.

The boundary conditions of the displacement u and the
displacement gradient ∇u are

u = u0, n · (∇u)n = n · (∇u0)n on ∂Bu, (A1)

where n is the outward unit normal to the surface ∂Bu, u0 is the
prescribed displacement vector, and the normal derivative of
the displacement vector is also prescribed. For simplicity, we
assume that the displacement boundary and normal derivative
boundary conditions are at ∂Bu. In contrast, the traction
boundary and higher-order traction boundary conditions are
at ∂Bt = ∂B \ ∂Bu.

The electric boundary condition of the electric potential ξ

is

ξ = ξ0 on ∂Bξ , (A2)

where ξ0 is the prescribed potential. The surface charge
boundary condition is at ∂Bd = ∂B \ ∂Bξ .

The total potential energy associated with the deformed
electrostatic system is given by

F[u, p, ξ ] =
∫
B

{
W − 1

2
ε0|∇ξ |2 + p · ∇ξ

}
dv

−
∫

∂Bd

ξQds −
∫

∂Bt

t · uds, (A3)

where W (∇u,∇∇u, p) is the internal energy function, ε0 is
the vacuum permittivity, p is the polarization, Q is the surface
charge density, and t is the applied dead load.

The Euler-Lagrange equations and the natural boundary
conditions can be determined by minimizing the total poten-
tial energy,

min
∀(u,p,ξ )∈S

F[u, p, ξ ], (A4)

where the admissible space S for (u, p, ξ ) is given by

S =
{

Eq.(A1), Eq.(A2),

∫
B

|∇u|2, |∇∇u|2, |p|2, |∇ξ |2 < +∞
}
.

The minimization problem leads to the zero first variation
δF = 0, namely,

δF[u, p, ξ ] := d

dτ
F[u + τu1, p + τ p1, ξ + τξ1]|τ=0 = 0,

(A5)
where τ ∈ R and u1, p1, ξ1 are the admissible variations of
u, p, ξ , respectively. The variations (u1, p1, ξ1) have to satisfy
the following conditions:

u1 = 0, n · (∇u1)n = 0 on ∂Bu, (A6a)

ξ1 = 0 on ∂Bξ , (A6b)

and {∫
B

|∇u1|2, |∇∇u1|2, |p1|2, |∇ξ1|2 < +∞
}
. (A6c)

Direct consequences of the zero first variation Eq. (A5),
together with Eqs. (A6), are

∇ · (T I − ∇ · T II ) = 0 in B, (A7a)

Wp + ∇ξ = 0 in B, (A7b)

∇ · (−ε0∇ξ + p) = 0 in B, (A7c)

(T I − ∇ · T II )n − ∇ · ([T II ]n) = t on ∂Bt , (A7d)

[T II ]n = 0 on ∂Bt , (A7e)

(−ε0∇ξ + p) · n = Q on ∂Bd . (A7f)

Here ∇· is the divergence operator and Wp = ∂W
∂ p . T I is

the second-order stress tensor and T II is the third-order stress
tensor, namely,

T I = ∂W

∂∇u
, T II = ∂W

∂∇∇u
. (A8)

With a linearized setting, the internal energy function
W (∇u,∇∇u, p) can be written as [18,43]

W = W elast + 1
2 p · ap + p · dI2 + p · f I3 + 1

2I3 · gI3, (A9)

where W elast is the purely elastic energy function, I2 =
I2(∇u) is a second-order tensor related to the strain, and
I3 = I3(∇∇u) is a third-order tensor related to the strain
gradient. Material parameter a corresponds to the reciprocal
dielectric susceptibility, other parameters d, f , and g are
related to the piezoelectric, flexoelectric, and strain-gradient
effects, respectively.

2. Large deflection of thin films

Consider a flat-disk thin film with radius Rp and thickness
h. The domain occupied by the flat film is

B = {(ρ, θ, z) ∈ R3 : 0 � ρ � Rp, 0 � |θ | � π, 0 � z � h},
(A10)

where (ρ, θ, z) are cylindrical coordinates with unit basis
(ρ̂, θ̂ , ẑ). The material point in the cylindrical coordinates is
x = ρρ̂ + zẑ ∈ B. The middle surface of the disk film is

S = {x ∈ B : z = h/2}, (A11)

while the upper and lower surfaces are

Su = {x ∈ B : z = 0} and Sl = {x ∈ B : z = h}. (A12)

035438-5



WANG, YANG, AND SHARMA PHYSICAL REVIEW B 100, 035438 (2019)

In addition, the surrounding surface is represented by Ss =
∂B \ (Su ∪ Sl ).

Consider the deformation of the middle surface S . A mate-
rial point x ∈ S is deformed to a spatial point y = x + u ∈ R3.
The displacement vector u : S → R3 is assumed as

u = us + u⊥, (A13a)

where us is the in-plane displacement,

us = uρ (ρ, θ )ρ̂ + uθ (ρ, θ )θ̂ , (A13b)

and u⊥ is the out-of-plane deflection,

u⊥ = ζ (ρ, θ )ẑ. (A13c)

The in-plane strain tensor of the thin film is defined as [44]

Es = 1
2 (∇sus + (∇sus)T + ∇sζ ⊗ ∇sζ ), (A14a)

where ∇s = ρ̂∂ρ + θ̂ρ−1∂θ is the two-dimensional (in-plane)
gradient operator. By Eqs. (A13b) and (A13c), the matrix
form of Es in Eq. (A14a) is

Es :=
(

Eρρ Eρθ

Eθρ Eθθ

)
, (A14b)

where the entries are

Eρρ = ∂ρuρ + 1

2
(∂ρζ )2, (A14c)

Eθθ = uρ

ρ
+ ∂θuθ

ρ
+ 1

2

(∂θζ )2

ρ2
, (A14d)

Eρθ = Eθρ = 1

2

(
∂θuρ

ρ
− uθ

ρ
+ ∂ρuθ + ∂ρζ∂θζ

ρ

)
. (A14e)

The (linearized) curvature tensor of the thin film is

κ = −∇s∇sζ (ρ, θ ) :=
(

κρρ κρθ

κθρ κθθ

)
, (A15a)

where the entries are

κρρ = −∂ρρζ , (A15b)

κθθ = −∂ρζ

ρ
− ∂θθ ζ

ρ2
, (A15c)

κρθ = κθρ = −∂ρθ ζ

ρ
+ ∂θζ

ρ2
. (A15d)

3. Maxwell’s equations and electric boundary
conditions of thin films

We only consider the electric quantities in the thickness
direction, namely,

p = p(z)ẑ, −∇ξ = −ẑ∂zξ = e(z)ẑ. (A16)

It follows from Eqs. (A16) that the Maxwell Eq. (A7c)
becomes ∂z(ε0e + p) = 0, 0 < z < h. Since the (free) surface
charge Q = 0 is zero here, the boundary condition Eq. (A7f)
reads ε0e + p = 0 at z = 0, h. The reduced Maxwell equation
and boundary condition lead to the relation

e(z) = −p(z)/ε0. (A17)

For thin-film problems, the electric field e(z) and the
polarization p(z) can be assumed approximately constant

in the thickness direction, i.e., e = ∫ h
0 e(z)dz/h and p =∫ h

0 p(z)dz/h.

4. Energy formulation of thin films

The internal energy function Eq. (A9) can be recast as

W = W elast + 1
2 ap2 + pdsI2s + p fsI3s + 1

2 gI2
3s (A18)

for thin film problems. Here we choose the parameters as
I2s = tr(Es) and I3s = tr(κ), that is, the trace of the in-plane
strain tensor Es in Eqs. (A14) and the trace of the curvature
tensor κ in Eqs. (A15). The parameter a corresponding to
the reciprocal dielectric susceptibility is a = 1/(ε − ε0), ε0

is the vacuum permittivity, and ε is the material permittivity.
Other parameters ds, fs, and g are related to the piezoelectric,
flexoelectric, and strain-gradient effects, respectively.

It follows from Eqs. (A7b), (A16), and (A18) that

ap + dsI2s + fsI3s − e = 0. (A19)

By Eq. (A17) and the parameters I2s = tr(Es) and I3s = tr(κ),
we further have

p = −a∗[dstr(Es) + fstr(κ)], (A20)

where a∗ = 1/(a + ε−1
0 ). Typically, Eq. (A20) shows that the

polarization is proportional to the mean curvature 1
2 tr(κ) in the

case of nonpiezoelectricity ds = 0. Such a relation between
the polarization and curvature is reported in a crystalline
membrane [45] and in the biological context [15,46].

For a thin dielectric disk, the thickness h is much smaller
than the in-plane dimensions; we recast the elastic energy in
Eq. (A3) as [44]∫

B
W elastdv = 1

2

∫
S

Es · CsEsds + 1

2

∫
S

Cb[tr(κ)]2ds.

(A21)
The first term on the right-hand side is the stretching energy

while the second term is the bending energy. Here Es is the
in-plane strain tensor Eqs. (A14), κ is the curvature tensor
Eqs. (A15), Cs is the in-plane stiffness tensor, and Cb is the
bending stiffness.

The potential work associated with the applied dead load
in Eq. (A3) can approximately be

−
∫

∂Bt

t · uds ≈ − lim
�s→0

(t · u)�s = −Fd, (A22)

where F is the vertical point force acting on the center of the
disk film and moving at a vertical distance d .

By Eqs. (A18)–(A22), the total energy Eq. (A3) specialized
to the film problem becomes

F[u] = 1

2

∫
S

Wsds − Fd, (A23)

where the two-dimensional internal energy function Ws is

Ws = Es · CsEs + (Ks + K∗
s )[tr(κ)]2. (A24)

Here the coefficients Ks and K∗
s are

Ks = Cb + hg − ha∗ f 2
s , K∗

s = −ha∗ f 2
s (η2 + 2η), (A25)

035438-6



FLEXOELECTRICITY AS A UNIVERSAL MECHANISM FOR … PHYSICAL REVIEW B 100, 035438 (2019)

with the ratio η = dstr(Es)/[ fstr(κ)]. Typically, in the case of
nonpiezoelectricity, ds = 0, the ratio η and the coefficient K∗

s
in Eqs. (A25) are zero.

5. Unit analysis

Here we would like to briefly discuss the units of symbols
in the three-dimensional energy Eqs. (A3) and (A9), and in the
two-dimensional energy Eqs. (A21), (A24), and (A25). We list
the relation

1 J = 1 N · m = 1 C · V.

In SI base units and the named SI derived units, J repre-
sents the Joule (energy), N represents the Newton (force), m
is the meter (length), C is the Coulomb (electric charge), V is
the volt (voltage), etc. In these (three- and two-dimensional)
symbols, we simply write

p, p → C

m2
, e, e → V

m
, ε0, ε → C

V · m
,

W elast, p · ap, p · f∇∇u, ∇∇u · g∇∇u → N · m

m3
,

ap2, pdstr(Es), p fstr(κ), g[tr(κ)]2 → N · m

m3
,

∇u → 1, ∇∇u, tr(κ) → 1

m
,

a, a → N · m2

C2 = V · m

C
, a∗ → C

V · m
,

ds → V

m
, f , fs → N · m

C
= C · V

C
= V,

g, g → N, Cs → N

m
, Cb → N · m, Ks → N · m.

6. Ansatz of the conelike shape

As shown in Fig. 2 in the main paper, the initially flat sheet
deforms into a conelike shape and the surface is in partial
contact with the supporting hoop. To model the d-cone, the
middle surface S of the disk film in Eq. (A11) is divided into
two parts:

Sc = {x ∈ S : 0 � ρ � Rc}, Sd = S \ Sc. (A26)

The core part Sc is the region near the tip of the d-cone
and Rc can be interpreted as the core size [5,6]. The core
part of a crumpling sheet is analogous to the core of a
dislocation [3,42]. In addition, the outer region of the d-cone
is represented by Sd .

To model the conical shape of a crumpling sheet, in cylin-
drical coordinates, the out-of-plane deflection in Eq. (A13c) is
assumed as follows:

ζ (ρ, θ ) =
{

ζ ∗(ρ, θ ) on Sc

ρψ (θ ) on Sd .
(A27)

Here ψ (θ ) is the tangent of the slope angle of the sheet
with θ the azimuthal angle, i.e., ψ (θ ) = d/R if there is no
crumpling and the sheet always contacts the supporting hoop.
The variation of the local curvature along the d-cone separates
the d-cone into two parts [3,4]: the concave part (−θ1 � θ �
θ1) and the convex part (θ1 � θ � 2π − θ1). In the convex

part, the surface that fully contacts the supporting hoop and
forms a near-perfect circular cone except near its tip or core;
while in the concave part, the d-cone loses contact with the
supporting hoop. Cerda and Mahadevan [3] predicted the
angle (θ1) to be θ1 ≈ 70◦ while θ1 ≈ 60◦ was estimated by
Chaieb et al. [4]. Here we adopt the model by Cerda and
Mahadevan [3], then ψ (θ ) in Eq. (A27) is written as

ψ (θ ) = α1ψ
∗(θ ). (A28)

Here α1 is the ratio

α1 = d

R
(A29)

of the tip deflection d to the radius R of the supporting hoop.
And the function ψ∗(θ ) is

ψ∗(θ ) = H∗(|θ | − θ1) + ψ̃ (θ )H∗(θ1 − |θ |), (A30)

where H∗ is the Heaviside function, and

ψ̃ (θ ) = sin θ1 cos αθ − α sin αθ1 cos θ

sin θ1 cos αθ1 − α sin αθ1 cos θ1
. (A31)

Here α and θ1 are two constants related to the shape
of crumpling sheets. As reported, α ≈ 3.8, θ1 ≈ 1.21 rad
(≈ 70◦) in Ref. [3]. Further, the ratio α2 = Rc/R defines
another dimensionless number. The quantities (d, Rc) and
their dimensionless proxies (α1, α2) are the two unknown
quantities which are determined by the variational principle
described earlier.

a. Strain and curvature tensors

The curvature of the core part is substantially large and
there exist large strain and strain gradient, especially near
the tip. Based on the observed deformed shape, for small
deformation, the order of the strain tensor Es and the order
of the curvature tensor κ in the cone part Sc are approximated
to [5,6]

|Es| ∼
(

α1
Rc

R

)2

, |κ| ∼ α1

Rc
on Sc. (A32)

Here the norm of a tensor is defined as |Es| = √
Es · Es.

Since only the orders of the two physical quantities (|Es|
and |κ|) are given approximately in Eqs. (A32), their exact
magnitudes are still unknown. To amend these simplifications,
we introduce two parameters λE, λκ ∈ R that correspond to
the purely mechanical behavior of a crumpling sheet. And
the magnitude of the strain tensor is approximately |Es| ≈
λE (α1

Rc
R )

2
while the magnitude of the curvature tensor is

approximately |κ| ≈ λκ
α1
Rc

. In the example of a crumpling
steel sheet in Fig. 5, these two parameters are calculated as
λE = 5.5 and λκ = 5, and our numerical results agree well
with the experimental data at small deformation. Some other
values of λE and λκ, 1 < λE, λκ < 10, are also studied and
the numerical results qualitatively agree with the experimental
data but some quantitative discrepancy exists.

By Eqs. (A15), (A27), and (A28), we can have the curva-
ture tensor κ in the outer region Sd . In addition, the condition
of inextensibility requires that the stretching strains vanish in
this region at moderate deflections [3,44]. Thus, in the outer
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FIG. 5. Comparison of our model with the experimental data
reported in Ref. [5] for the purely mechanical problem of a crumpling
sheet. (a) The dimensionless tip deflection α1 = d/R vs the radius of
core part Rc = Rα2 of a crumpling sheet. (b) The dimensionless tip
deflection α1 vs the vertical force F applied on the center of a thin
sheet of steel. The vertical force is approximately linear with the tip
deflection for small deformation. This linear relation is analogous to
the relation between the center load and the maximum deflection of a
simply supported beam. Note the notation difference that, in Ref. [5],
the tip deflection (horizontal axis) is denoted by ε = d/R.

region Sd of the d-cone, we have

Es = 0, κ :=
(

0 0

0 −α1
ρ

�∗(θ )

)
on Sd , (A33)

where �∗(θ ) = ∂θθψ
∗(θ ) + ψ∗(θ ).

b. Energy of the core and outer parts

By Eqs. (A32) and (A23)–(A25), the energy stored in the
core part Sc is∫

Sc

Wsds = 1

2
πR2

c

{
Csλ

2
E

(
α1

Rc

R

)4

+ (Ks + K∗
s )λ2

κ

α2
1

R2
c

}
.

(A34)

The coefficients Ks and K∗
s are defined in Eqs. (A25), and η in

K∗
s here is η = η̄α1( Rc

R )
3

with η̄ = RdsλE/( fsλκ ).

By Eqs. (A33) and (A23)–(A25), the energy stored in the
outer part Sd is∫

Sd

Wsds = 1

2
Ksα

2
1

(
ln

Rp

Rc

) ∫ π

−π

[�∗(θ )]2dθ. (A35)

APPENDIX B: SCALING OF THE THEORETICAL MODEL

The nondimensional variables are defined by

α1 = d

R
, α2 = Rc

R
. (B1)

Here R is the radius of the supporting hoop, d is the
unknown deflection of the disk center, and Rc is the unknown
radius of the core part. Also, other nondimensional quantities
are

R̄p = Rp

R
, h̄ = h

R
, ρ̄ = ρ

R
, θ̄ = θ

π
, (B2)

κ̄ = κ

/
1

h
, ā = a

/
1

ε0
, ā∗ = a∗/ε0,

f̄s = fs

/√
1

ε0

Cb

h
, ḡ = g

/
Cb

h
,

K̄s = Ks/Cb = (
Cb + hg − ha∗ f 2

s

)/
Cb,

C̄s = Cs

/
Cb

h2
, W̄s = Ws

/
Cb

h2
,

ha∗ f 2
s /Cb = ā∗ f̄ 2

s ,

K̄∗
s = −ha∗ f 2

s (η2 + 2η)
/

Cb = −ā∗ f̄ 2
s

(
η̄2α2

1α
6
2 + 2η̄α1α

3
2

)
.

(B3)

1. Dimensionless energy

By using the nondimensional quantities (B1)−(B3), the
dimensionless energy of the core part Eq. (A34) becomes∫

Sc

Wsds

/(
1

2
πR2 Cb

h2

)

= C̄sλ
2
Eα4

1α
6
2 + K̄sh̄

2λ2
κα

2
1 − ā∗ f̄ 2

s h̄2λ2
κ

(
η̄2α4

1α
6
2 + 2η̄α3

1α
3
2

)
(B4)

and the dimensionless energy of the outer region Eq. (A35)
reads∫

Sd

Wsds

/(
1

2
πR2 Cb

h2

)
= I1K̄sh̄

2α2
1 ln

(
R̄pα

−1
2

)
, (B5)

where I1 = ∫ 1
−1[�∗(πθ̄ )]2d θ̄ . The dimensionless energy asso-

ciated with the external force Eq. (A22) is

−FRα1

/(
1

2
πR2 Cb

h2

)
= −F̄α1. (B6)

Finally, the dimensionless total energy reads

F̄[α1, α2] = F[α1, α2]

/(
1

2
πR2 Cb

h2

)

= C̄sλ
2
Eα4

1α
6
2 + K̄sh̄

2
[
λ2

κ + I1 ln
(
R̄pα

−1
2

)]
α2

1

− F̄α1 − ā∗ f̄ 2
s h̄2λ2

κ

(
η̄2α4

1α
6
2 + 2η̄α3

1α
3
2

)
. (B7)
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2. The governing equations

The first variation of the total energy Eq. (B7) now reads
δF̄[α1, α2] = 0 and yields

∂F̄[α1, α2]

∂α1
= 0,

∂F̄[α1, α2]

∂α2
= 0. (B8)

Solution of the two algebraic equations in Eqs. (B8) gives
the center deflection α1 = d/R and the core radius α2 = Rc/R.
Thus, the curvature of each part (the core part Sc and the
outer part Sd ) can be obtained by using Eqs. (A32) and (A33).
After obtaining the curvature, we can have the generated
polarization p through the relation Eq. (A20). We can de-
fine the average polarization through paver = (

∫
S pds)/(πR2

p).
And by using the relation Eq. (A17), the average electric
field is −paver/ε0 and the average voltage difference between
the upper and lower surfaces of the crumpling thin film is
determined as |�ξ | = |hpaver/ε0|.

APPENDIX C: VALIDATION OF THE
THEORETICAL MODEL

1. The purely mechanical crumpling

Before interrogating our model for insights into crumpling-
induced energy harvesting, we believe it is worthwhile to
validate its prediction against established literature for the
purely mechanical case. In our model, the dimensionless tip
deflection α1 = d/R and the radius of core part Rc = Rα2

are calculated by solving the two algebraic equations in
Eqs. (B8). The geometrical and material parameters are set
to be the same as those reported in Ref. [5], thin sheets of
steel with bending stiffness 7.76 × 10−3 Nm and thickness
h = 0.075 mm. Excellent agreement between our numerical
results and the experimental data in Ref. [5] is found for
small deformation (circles in Fig. 5). For relatively large de-
formation [rhombi in Fig. 5(a) with α1 > 0.1], the agreement
is not perfect but accounts for it not being the focus of this
paper. Our central goal is to achieve sufficient accuracy (and
correct qualitative behavior) to account for piezoelectric and
flexoelectric response of crumpling sheets, which we discuss
in the main paper.

2. The generated voltage of crumpling sheets
on different supporting hoops

In a recent work, Kodali et al. [37] experimented to mea-
sure the open circuit voltage and the short circuit current of
a crumpling circular composite sheet. The composite sheet
was made of a 52-μm-thick PVDF—a known piezoelectric
polymer—with electrodes on both sides and bonded to a soft
cloth-plaster. The circular sheet was placed on a supporting
hoop and then a concentrated vertical force was applied at the
sheet center to form the crumpling shape. For different radii
of the supporting hoop R = (12.5, 20, 25) mm, as shown in
Fig. 6, roughly 0.06 V was measured by pushing the center of
the circular sheet (with radius 50 mm) into a supporting hoop
up to the maximum depth (≈4 mm).

In our theoretical model, the flexoelectric constant is
chosen as fs = −179 Nm/C [21]. By the scaling analysis
in Eqs. (B3), the length scale related to the flexoelectricity
can be approximately calculated as: ∼| fs|/

√
E/ε0. With the

FIG. 6. Comparisons of the generated voltage of a crumpling
sheet predicted by our model with the experimental data by Kodali
et al. [37] with different supporting hoops. In our model, we consider
both the contributions of piezoelectricity and flexoelectricity while
the experiments can only calibrate the total voltage on the upper and
lower surfaces of a crumpling sheet.

parameters | fs| = 179 Nm/C, ε0 = 8.85 × 10−12 F/m, and
Young’s modulus E = 5 GPa in the experiment [37], we
have | fs|/

√
E/ε0 = 7.53 × 10−9m ∼ 10 nm. Thus the length

scale of flexoelectricity is in nanoscale. We can also simply
study the flexoelectric effect by checking the coefficient Ks

in Eqs. (A25) as follows: the ratio of the bending stiffness
to the flexoelectric part, i.e., Cb/(ha∗ f 2

s ). In the microscale
h ∼ 10−6m, the bending stiffness Cb ∼ Eh3 ∼ 5 × 10−9 Nm,
and the flexoelectric part ha∗ f 2

s ∼ 10−6 × 8.85 × 10−12 ×
1792 Nm ∼ 2.8 × 10−13Nm, thus Cb is 104 times higher than
the flexoelectric part at the microscale. In the nanoscale
h ∼ 10−9m, Cb ∼ Eh3 ∼ 5 × 10−18 Nm, and ha∗ f 2

s ∼ 2.8 ×
10−16 Nm, the flexoelectric part is 102 times higher than
Cb at the nanoscale, which cannot be omitted. The nonlocal
elastic constant g related to the material length l0 as g = El2

0 ,
where E is Young’s modulus of the composite sheet and
l0 is the radius of gyration of PVDF. The magnitude of l0
in PVDF is about 10 nm to 100 nm, and Young’s modulus
of PVDF is E = 5 GPa. Thus, g = El2

0 ∼ 109 × 10−16 N =
10−7 N, which is the same of order of g for PVDF used
in the work [21]. In the numerical calculation, we choose
l0 = 20 nm. The sheet thickness used in the experiment [37] is
h = 52 μm ∼ 10−5 m and the bending stiffness Cb ∼ Eh3 ∼
109 × 10−15 Nm = 10−6 Nm. Since Cb ∼ 10−6 Nm � gh ∼
10−7 × 10−5 Nm = 10−12 Nm in Eqs. (A25), the effect of the
nonlocal elastic constant g on the deformation is negligible.
We also have confirmed this negligible effect by setting g = 0
in extranumerical calculations. The geometrical and material
parameters of a circular composite sheet in the crumpling
experiment [37] are Rp = 50 mm, h = 52 μm, E = 5 GPa,
d31 = 5 pC/N, and ε = 88.5 × 10−12 F/m. Using our model,
we partition the total voltage obtained into that due to flexo-
electricity (FL voltage) and piezoelectricity (PZ voltage).

In Fig. 6, there are three different supporting hoops,
R = (12.5, 20, 25) mm, and the voltage is measured when
the tip deflection d increases to 4 mm in each supporting
hoop. The measured voltage can be found in Fig. 2(g) in
Ref. [37]. With the ratio α1 = d/R, the experiments with
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three different supporting hoops correspond to, respectively,
α1 = 0.32, 0.20, 0.16. In Fig. 6, at a fixed tip deflection 4 mm,
both the theoretical and experimental results show that the
generated voltage of crumpling sheets gradually decreases
with the increase of the radius R of the supporting hoop.
Furthermore, the generated voltage of the crumpling sheet
decreases with the decrease of the ratio α1. In the limiting case
α1 → 0, the generated voltage from the trend shown in Fig. 6
would decrease to zero. The prediction of the limiting case
can be understood as follows: A sufficiently large hoop radius
R corresponds to a large circular sheet (Rp > R), and a small
deflection d cannot make the large sheet crumpled when the
supporting hoop is also sufficiently large; therefore, a small
deflected sheet (α1 → 0) with small strain and strain gradient
can only have a diminutive electromechanical coupling and
generate a negligible voltage. From the above discussion, we
find that the generated voltage decreases with the decrease
of the ratio α1. In other words, a higher voltage corresponds
to a larger ratio α1, and one can obtain a high voltage by
increasing the tip deflection d and making a more crumpled

sheet. This prediction is also verified both theoretically and
experimentally in Fig. 3 in the main paper.

It is evident that the experimental data are lower than the
theoretical results in Fig. 6. One cause of the discrepancy is
the presence of the load impedance in experiments and the
measured voltage depends on the velocity of the actuator.
However, the experimental data in Fig. 6 correspond to a
actuator velocity 0.2 mm/s and the load impedance makes
the measured voltage much lower than the real generated one
as well as the theoretical results. In Fig. 2(d) in Ref. [37],
for example, the measure voltage at d = 4 mm is about
0.15 V when the actuator velocity is 2 mm/s, which is much
higher than the voltage 0.06 V that is calibrated at a velocity
0.2 mm/s. Although there is some quantitative discrepancy
between the theoretical and experimental results in Fig. 6
due to the existence of impedance in calibration, there is
no qualitative change, and the quantitative departure from
the experimental results is insignificant from an engineering
viewpoint (and given the other uncertainties in material prop-
erties used in our theoretical model).
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