
Extreme Mechanics Letters 35 (2020) 100617

Contents lists available at ScienceDirect

ExtremeMechanics Letters

journal homepage: www.elsevier.com/locate/eml

The effect of water content on the elasticmodulus and fracture energy
of hydrogel
Ziqian Li a, Zishun Liu a,∗, Teng Yong Ng b, Pradeep Sharma c

a International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace
Engineering, Xi’an Jiaotong University, Xi’an 710049, China
b School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
c Department of Mechanical Engineering, University of Houston, USA

a r t i c l e i n f o

Article history:
Received 21 October 2019
Received in revised form 26November 2019
Accepted 3 December 2019
Available online 5 December 2019

Keywords:
Scaling law
Polymer fraction
Elastic modulus
Fracture threshold

a b s t r a c t

Both elastic and fracture behavior of hydrogel are affected by its water content. As shown by extensive
experimental data, currently prevalent models, which are primarily based on the Flory–Rehner theory
(F–R theory), are unable to correctly capture the effect of water content (or conversely polymer
fraction) on the elastic modulus of hydrogels. Lake–Thomas theory cannot provide correct predictions
on fracture toughness with different water content conditions as well. In this work, we carry out
experiments on polyacrylamide (PAAm) gel and discover scaling-laws that differ significantly in the
swollen and dehydrated state in addition to contradicting F–R model. We also derive scaling laws that
are consistent with our experiments. Intriguingly, we find that the application of the scaling theory
to fracture problems of the hydrogel can also provide a better theoretical prediction. An intriguing
implication of this result is that the study of the fracture threshold of soft matter may be replaced to
some extent by merely the studying of their elastic modulus.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Well-designed hydrogels can exhibit several superior
attributes such as high stretchability, biocompatibility, self-
healing, improved ionic conductivity and more. They are ex-
pected to pave the way for future applications that range from
drug delivery, flexible electronics, tissue engineering to optics.
In most of the applications, hydrogels are likely to be sub-
jected to complex periodical mechanic loads. The swelling and
deswelling process that involves a gain and loss in water content
respectively, in response to environmental changes is an exam-
ple of the mechanical deformation experienced by hydrogels.
Predicting the mechanical response of hydrogels in response
to different environmental stimuli is, therefore, a fundamental
problem underlying the design and use of hydrogels [1–10].

Arguably the most well-known model that describes the ho-
mogeneous swelling behavior of strained and undeformed poly-
mers is F–R model [11]. This approach is based on the clas-
sical Gaussian chain model that describes the elastic response
of a polymer network, as well as the mixing energy between
polymer molecules and solvent molecules derived from Flory–
Huggins solution theory [11–14]. Although it is widely used as
the theoretical basis for interpreting the mechanical properties
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of swollen polymers [9] [15–19], F–R model suffers from several
shortcomings which we highlight below.

Hydrogels become harder and more brittle during water loss,
and vice-versa. According to F–R model, the elastic modulus E of
hydrogels is proportional to the 1/3 power of the polymer volume
fraction φ, i.e. E (φ) = E0φ1/3, where E0 is the elastic modulus
of the hydrogel in a dry state [20]. However, E (φ) = E0φv has
various scaling exponents v as reported in some previous works,
depending on the underlying elastomer network used to form a
hydrogel [21,22]. Furthermore (as will be further elaborated in
due course) our own experiments on PAAm hydrogels confirm
that the scaling exponent v is not universally 1/3. Taking into
consideration this discrepancy in the prediction of the scaling
exponent by F–R model and experimental data, several phe-
nomenological models have been proposed [21] [23–25]. The
typical approach is to introduce a modified strain energy func-
tion beyond the standard Neo-Hookean model, by introducing
additional phenomenological parameters. The key observation in
this regard is that these phenomenological parameters are not
universal, as most of them essentially amend the Neo-Hookean
model to describe the mechanical response and one or more
pertinent fitting parameters are then determined by experiments.

In this work, based on a scaling theory by de Gennes [26],
which is often used to analyze the physical properties of long flex-
ible chains, we establish a model to understand the swelling and
deswelling behavior of hydrogels regarding its elastic response
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Fig. 1. (a) The acrylic plate mold for making hydrogel specimens (b) Hydrogel specimens are hung up for dehydration. (c) Hydrogel specimen placed into a sealed
bag for approximately 3 days to allow for homogenization.

and fracture energy. Numerous studies over the years have used
c’ approach to analyze the mechanical behavior of polymers with
satisfactory results [27–31]. We examined PAAm gel in the ex-
periments. The scaling theory can successfully explain the various
scaling exponents observed in our tests.

Furthermore, we postulate that the elastic modulus and frac-
ture toughness of hydrogels are equivalent to some extent, be-
cause these two material properties both increase with the de-
crease of water content and vice-versa. Recently, Zhang et al. [32]
tested the modulus and the fracture threshold of PAAm gel with
different water content, and their results appear to verify this
hypothesis. This provides some credence to our conjecture that
there must be a connection between modulus and the fracture
threshold of hydrogels. Based on this notion, we arrive at an
expression for the fracture threshold that is similar to that for the
modulus, thus yielding an elegant mathematical bridge between
modulus and fracture threshold of hydrogels. Finally, a more
accurate model to theoretically predict the fracture threshold of
PAAm gel under different water content conditions is proposed.

The layout of this paper is as follows. Section 2 details the
experimental processes and the data obtained. Section 3 provides
the detailed derivations of the scaling-law between the modulus
and polymer fraction. In Section 4, we propose the scaling theory
to the study of fracture properties of PAAm gel and achieve better
consistency with experimental data. Finally, we summarize all the
major conclusions in Section 5.

2. Experimental section

We examined PAAm gel in this work. 20 wt.% powder of acry-
lamide is dissolved in deionized water. Irgacure 2959, 0.2 wt.%,
and N, N-methylenebisacrylamide (MBAA), 0.02 wt.%, are added
in acrylamide aqueous solution as photoinitiator and crosslinker,
respectively [33]. The precursor solution of PAAm gel can become
homogeneous very quickly. The liquid precursor solution is then
poured into an acrylic plate mold (Fig. 1a) with 24 rectangular
cells (50 mm × 6 mm size for each cell). The hydrogel precur-
sor is cured under ultraviolet light (40 W power and 254 nm
wavelength) for 4 h at room temperature.

To obtain hydrogel test-pieces with various water contents
ranging from a swollen state to a deswollen state, a batch of cured
hydrogel specimens from the mold is divided into two groups.
The first group is the dehydrated group (low water content).
Specimens are hung up for natural evaporation on a thin iron
wire (Fig. 1b) and then sealed into plastic bags (Fig. 1c) at every
half-hour interval. The other group is the water-absorption group.
Specimens are soaked in water for swelling and then seal up
one by one in sealed bags in every 5 min. It is necessary to seal

Fig. 2. Uniaxial tensile test for measuring the modulus of a hydrogel test-piece.
(a) Schematic of a hydrogel test-piece (b) Nominal stress–stretch curve (elastic
modulus of the hydrogel test-piece in the undeformed state is selected as the
slope of the curve at λ → 0+).

those specimens for at least three days for complete homogeniza-
tion [32]. Following these processes, we can eventually produce
PAAm gel specimens with various water content ranging from
approximately 30 wt.% to 95 wt.%.

The elastic modulus E of a PAAm gel test-piece is determined
by uniaxial tensile testing. Four small acrylic clamps (Fig. 2a) are
adhered to the two ends of a test-piece for securing it firmly
to the clamps of the stretch machine (SHIMADZU AGS-X). The
stretching rate is 5 mm/min which is sufficiently slow to avoid
any possible dynamic effects from the test-pieces. Before con-
ducting the uniaxial tensile test for a specimen, the mass m and
its size (l × w × t) needs to be recorded. It is necessary to finish
one tensile test as soon as possible to prevent the test-piece from
losing too much water. The stretching machine can output the
applied displacement L and corresponding force f, and based on
them we can calculate the stretch (λ = L/l) and nominal stress
(s = f/wt), and subsequently, draw the stretch–stress curve
(Fig. 2b) for each test-piece. The slope of the stretch–stress curve
at λ → 0+ determines the elastic modulus E of the hydrogel
test-piece in the undeformed state.

Finally, we need to put those already tested sample pieces into
an oven (80 ◦C) for complete dehydration. From weighing their
dry mass mdry, the corresponding polymer fractions by weight ψ
are determined by ψ = mdry/m. However, we will use polymer
fraction by volume φ in following theory sections, which is the
hydrogel’s volume in the dry state divided by the volume before
the test (φ = Vdry/V ). Over 99 wt.% components of the hydrogels
used in Section 2 are acrylamide and water. The density of acry-
lamide ρA is 1.13 g/cm3 and the water density ρw is 1 g/cm3.
Thus, we have φ = 1/

[(
ψ−1

− 1
)
(ρA/ρw)+ 1

]
. Eventually, the
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Fig. 3. The log–log plot between polymer fraction φ and elastic modulus E(φ) of
PAAm gel, the scaling exponent in the swelling process is 0.56, which is smaller
than the one in the dehydration process, 2.3.

graph of φ ∼ E discrete data is obtained by measuring dozens of
specimens as shown in Fig. 3.

We also notice that the water content of specimens in the
preparation state, obtained by the air-drying method, decreases
to some extent. The water content of a PAAm gel specimen that
is just taken out from the casting model should be 80 wt.%.
However, after entirely desiccating (at 25 ◦C, 60 ◦C or even 80 ◦C)
the specimens of PAAm that are just cured, their water contents
(loss mass divided by initial mass) unexpectedly decrease slightly
to around 72 wt.%. This discrepancy of water content might
be attributed to the different water structures in the hydrogel
network. These structures can be classified into three categories:
bound water, intermedia water, and free water [34–37]. We con-
jecture that only free and intermedia water can escape from a
network by natural evaporation, while bound water will stay in
the system due to its strong interconnection with polymer chains.
Consequently, the polymer mass will be overestimated as the
mass of bound water is inevitably included.

3. Scaling-law theory for hydrogel modulus with water con-
tent change

We shall denote φ0 as the polymer fraction in the preparation
state, where cross-linkage junctions have not formed in a hydro-
gel precursor solution, and the corresponding volume is V0. It is
evident that V0φ0 = Vφ = Vdry because of incompressibility.
When a hydrogel specimen swells in water under the uncon-
strained state, it deforms uniformly by the same amount in all
directions. Hence the stretch ratio λ in each direction is

λ = (V/V0)
1/3

= (φ0/φ)
1/3 (1)

The elastic energy Fel of a polymer chain adopts Panyukov form
in Eq. (2) [38,39], which is the modern treatment of polymer
networks utilizing a more general form for the elastic energy of
a swollen or deformed network strand.

Fel ≈ kT (λR0)
2/R2

ref (2)

where R0 is the mean-square end-to-end distance of network
strands in their preparation state, and R2

ref is the mean-square
fluctuation of the end-to-end distance of the network strand. In
many cases, R2

ref is equal to the mean-square end-to-end distance
of a free chain which is in the same precursor solution that the
cured hydrogel has [11]. Its expression, as given by Eq. (A.3) in
the Appendix, is

Rref ∼ φ−(v−1/2)/(3v−1) (3)

where v is defined in Eq. (A.1). In scaling theory, the shear
modulus G of the gel in is proportional to the product of the chain
number density v and the elastic free energy per chain Fel [11].

G (φ) ≈ v · Fel (4)

The chain number density v = n/NV can be easily determined,
where n = Vdry/ve is the total number of monomers within the
polymer network, and ve ∼= a3 is the volume of one monomer (a is
Kuhn length defined in Appendix). In the case of incompressible
materials, E = 3G. Eq. (4) can be E (φ) ≈ φ · Fel. Then, the chain
number density can be expressed as v ∼= φ/

(
Na3

)
. Consequently,

E (φ) ≈ kT
φ

Na3
(λR0)

2

R2
ref

(5)

We can use Eqs. (1) to (5) to draw some preliminary in-
ferences. Firstly, the network strands will increase the elastic
modulus during swelling (E changes with φ−2/3), while the de-
creasing of chain number density v caused by swelling leads to
the reduction of the modulus [see Eq. (4)]. Hence, the net effect
is that the gel modulus will slightly decrease during swelling.
Secondly, it is impossible to produce a negative stretch in the
process of dehydration. Thus, only the chain number density
v can increase the modulus. The statements above imply that
the scaling exponent during swelling is smaller than that in the
dehydration process. PAAm gel has smaller scaling exponents in
the swelling state than that in the deswelling state. In the follow-
ing two subsections, we will give much-detailed interpretations
concerned with Fig. 3.

3.1. From preparation state to swelling state

The elasticity is balanced by the osmotic pressure π of a
semidilute solution of uncrosslinked chains at the same con-
centration (G ∼ π ). The osmotic pressure π stays unchanged
during the formation of the crosslink junctions. Therefore, the
elastic modulus of a hydrogel in preparation state φ0 is balanced
with osmotic pressure. Moreover, the end-to-end distance R0 of a
network strand in the preparation state can be calculated based
on φ0, and it is given by Eq. (A.3) [11].

R0 ≈ φ
−(v−1/2)/(3v−1)
0 (6)

During swelling, many new water molecules (small purple
circles in Fig. 4) have diffused into the PAAm network, and the
cross-linkage junctions (red points) of the hydrogel networks
have moved further apart. As a result, chains will be stretched to
some extent due to the volume expanding, and the system will
store some elastic energy. Therefore, the network strands are no
longer in the unconstrained state but in a stretched state. In such
case, the end-to-end distance become Rref [see Eq, (3)] rather than
R0. Here, φ0 is uncoupled with φ, and elastic modulus G is not
balanced with osmotic pressure π .

For PAAm in the swelling state, by substituting the Eqs. (1), (3)
and (6) into Eq. (5), we have

E (φ) ≈
kT
Na3

φ
1/[3(3v−1)]
0 φ(9v−4)/[3(3v−1)] (7)

Since v = 0.588 (the theoretical value derived by the renormal-
ization group method [40]), the elastic modulus of a PAAm gel in
the swelling state (φ < φ0) increases slightly as E (φ) ∼ φ0.56,
which is very close to the red line in Fig. 3.
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Fig. 4. Schematic diagram of crosslinking and swelling process of hydrogels. The
crosslinking process only forms crosslink junctions with any other features that
stay unchanged. The swelling of hydrogel will move crosslink junctions apart
and stretch hydrogel chains a bit.

Fig. 5. The osmotic pressure stays constant in the process of forming crosslink
points. Process (a)→(b)→(d) is equivalent to Process (a)→(c)→(d).

3.2. From preparation state to dehydration state

In the dehydration process, the scaling exponent is different.
Unlike the conditions in Section 3.1, the network strands become
denser, however, they still preserve the unconstrained state dur-
ing dehydration. There is no elastic energy stored in the system.
Therefore, we have two ways to obtain a hydrogel network with
polymer fraction φ2 (as shown in Fig. 5d) from the precursor
solvent with polymer fraction φ1 (Fig. 5a): 1⃝, forming crosslink
junctions first and then losing some water (along the path of
Fig. 5a→8b→8d); 2⃝, loss water first and then forming crosslink
junctions (along the path of Fig. 5a→8c→8d). By these two ways,
the final osmotic pressures are identical as the concentrations are
the same, however, R0 is not equal as R0 depends on the network
configuration at the moment of forming gel [see Eq. (A.3)].

As mentioned before, the elasticity is balanced by the osmotic
pressure π of uncrosslinked chains at the same concentration
(G ∼ π ). Here, we can directly use this scaling-law to obtain the
correlation between E and φ. The expression of the equilibrium
state of a gel can be determined by Eq. (A.5). The modulus can
also be expressed as

E ∼= G ∼ π ∼=
kT
a3

( ve
a3

)3(2v−1)/(3v−1)

φ3v/(3v−1) (8)

E (φ) ≈ φ3v/3v−1 (9)

Since v = 0.588, the elastic modulus of an AAm gel in the
dehydration state increases significantly with E (φ) ∼ φ2.3 (the
blue line in Fig. 3).

4. Scaling theory of hydrogel fracture threshold

The threshold for fatigue fracture Γ0 (fracture threshold for
short) of rubber has been described by the Lake–Thomas model,
in which C–C bonds will break ahead of the crack tip during crack
propagation [41]. Basing on Lake–Thomas mode, Zhang et al.
have proposed that the fracture threshold Γ0 of a PAAm gel will
increase slowly with water content reduction, as Γ0 ∼ φ2/3 [32].
Earlier, Creton and Ciccotti had proposed another relation Γ0 ∼

φ [42]. However, both of them are unable to accurately predict
the relationship between fracture threshold and polymer fraction.
According to Lake–Thomas model, at the crack tip, some chains
span the plane of crack propagation, and the fracture threshold Γ0
is the product of the number of such chains per cross-sectional
area (ϑ) and the energy required to break one bridging strand
(U) [43].

Γ0 (φ) = ϑ · U (10)

ϑ has a relation with the bulk chain density v. If L is the thickness
of the single bridging-chain layer, then within a unit area, the
number of chains is vL. Thus, we can obtain the relation ϑ = vL,
which can also be expressed as ϑ ∼= v in scaling law. The energy
for breaking a chain U is provided by external forces. The put-
in energy will store in elastic energy first. Then, at the break
moment, the put-in energy reaches the critical value U of every
chain. Thus, when crack tip just begins to propagate, Fel can be
seen as equal to U . In scaling law, it can be expressed as U ∼= Fel.
Therefore, Eq. (10) becomes

Γ0 (φ) ∼= v · Fel (11)

It is fascinating that Eqs. (11) and (4) have the same expres-
sion. Consequently, we can use a similar method in Section 3 to
derive the relation between Γ0 and φ. Since the hydrogel network
strands are highly stretched at the crack tip, we assume that the
strands will break as the stretch ratio at the crack tip reaches a
critical value λc . This critical value is assumed to be the product
of the stretch ratio λs caused by expansion/shrinking of volume
and the stretch ratio λf caused by put-in energy such as external
stretch force (λc = λsλf ). The exact value of λc is not known ex-
plicitly, and it may vary depending on the loading method. Tang
et al. applied monotonic, static, and cyclic load on PAAm gel and
observed three types of fracture behavior: fast fracture, delayed
fracture, and fatigue fracture. As different fracture behaviors have
different fracture critical values [44], we need to assume that the
strands will break as the stretch ratio at the crack tip reaches a
critical value λc , only in the loading situation corresponding to
λc . Substituting λc into Eq. (5) then, we have

Γ0 (φ) ≈
kT
a3
φ

N
(λcR0)

2

R2
ref

(12)

Substituting λc = λsλf to Eq. (12), we obtain

Γ0 (φ) ≈ λ2f
kT
a3
φ

N
(λsR0)

2

R2
ref

(13)

The only difference between. Eqs. (13) and (5) is that Eq. (13) has
an extra λ2f . Since λf is induced by external forces rather than
swelling/deswelling process, λf is independent of φ. Here, we are
only interested in the correlation between φ and Γ0. Therefore,
λf can be ignored in the scaling-law theory.

Γ0 (φ) ≈
kT
a3
φ

N
(λsR0)

2

R2
ref

(14)

Eqs. (14) and (5) are now exactly the same. By using the same
method as in Section 3, the relationship between Γ0 and φ is also
defined as

Γ0 (φ) ∼ φ(9v−4)/[3(3v−1)] for φ < φ0 (15)
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Fig. 6. The log–log plot between polymer fraction φ and fatigue threshold Γ0
of PAAm hydrogel. Experimental data and the theoretical prediction (black dash
line) are from Zhang et al. [32]. Our theory gives a better prediction: in the
swelling process, the threshold decreases slightly with decreasing of polymer
fraction, Γ0 ∼ φ0.56 (orange dash line); in the dehydration process, the scaling
exponent is larger, Γ0 ∼ φ2.3 (blue dash line). The intersection of the two trends
happens to occur at φ = φ0 . (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

and

Γ0 (φ) ∼ φ3v/(3v−1) for φ > φ0 (16)

For PAAm gel, the polymer solution belongs to the good sol-
vent. Substituting v = 0.588 to Eqs. (15) and (16), we have
Γ0 (φ) ∼ φ0.56 for φ < φ0 and Γ0 (φ) ∼ φ2.3 for φ > φ0.
Referring to the experimental data of Zhang et al. [32]. Fig. 6
which shows our theoretical results, to our surprise, is fully
consistent with their reported experimental data much better
than their own theatrical prediction. The original literature of
Zhang et al. only tested the fracture thresholds of PAAm gels
under four different water contents and did not draw error bars
either. The point enclosed by the dash-line ellipse in Fig. 6 is the
test result of PAAm gels under preparation state (87 wt.% water
content) in their original paper. They only tested swollen PAAm
gels with 96 wt.% water content and just produced two types
of dehydrated PAAm gels (78 wt.% and 69 wt.% water content)
by a similar air-drying method. They were only able to provide
experimental data for four sorts of PAAm gels because fatigue
tests for hydrogels are usually very time-consuming. If we want
to obtain more experimental data to verify our theoretical results
on PAAm gel’s fracture threshold, at least hundreds of fatigue
tests with various water contents should be done. No work has
provided such tremendous data so far.

Our scaling theory can only treat nearly perfectly elastic poly-
mer like PAAm gel for the moment because we previously use an
assumption that U is approximately proportional to Fel (U ∼ Fel)
up to a dimensional constant. Only a perfectly elastic hydrogel
can release all elastic energy Fel for crack propagation, while
hydrogels possessing viscoelasticity, such as double-network gels,
can dissipate more or less Fel. Under such circumstance, U cannot
be simply assumed to be approximately proportional to Fel any
more because viscoelasticity is a nonlinear behavior.

5. Concluding remarks

Hydrogels are a class of polymeric materials that comprise the
polymer network and solvent molecules. F–R model, based on

mean-field assumptions, has several limitations and it is unable
to accurately predict the variation of the elastic modulus with
respect to the water content. In the current work, we successfully
use the scaling-law theory that can accurately capture the scaling
relation between elastic modulus and polymer fraction of PAAm
gel. For φ > φ0, E (φ) ∼ φ2.3, and for φ < φ0, E (φ) ∼

φ0.56. Subsequently, we conducted experiments and verified the
theory. The results show that the scaling exponents are generally
different in the swelling and deswelling processes in a hydrogel.

Furthermore, we discover a rather straightforward but in-
triguing connection between modulus and fracture threshold of
PAAm gel. It is motivated by the well-known observation that the
hydrogel becomes hard and more brittle during the deswelling
process, and vice versa. In particular, we can establish scaling-
laws for the fracture properties of PAAm gel, viz: that Γ0 (φ) ∼

φ2.3 for φ > φ0, and Γ0 (φ) ∼ φ0.56 for φ < φ0. This result is
consistent with experimental data reported by Zhang et al. [32].
We believe that the establishment of this connection between
fracture threshold and elastic modulus of hydrogels is significant
as it implies that the study of the fracture threshold of soft matter
can be replaced to some extent by the study of their elastic
modulus.
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Appendix

We will introduce and explicitly define some mathematical
signs and essential physical concepts in the scaling-law theory
used in this paper, even as more details can be obtained from
the book [11]. Scaling theory eliminates the barrier between
unintelligible statistical data and rigorous theoretical formulas
as numerical coefficients in scaling theory are ignored in most
formulas. In scaling theory, the sign ‘‘∼=’’ indicates a numerical
approximation, the sign ‘‘≈’’ indicates that two quantities are pro-
portional to each other up to a dimensionless prefactor of order
unity, and the notation ‘‘∼’’ indicates that the two quantities are
proportional to each other up to a dimensional constant.

The difference between an ideal chain and a real chain in
polymer science is that the former follows a random walk model,
while the latter is derived from the self-avoiding walk model.
Self-avoiding walk model indicates that monomers on a real chain
can exclude somewhat volume ve ≈ a3, and a is called Kuhn
length of polymer chains [12]. Besides, an isolated polymer chain
can be regarded as a fractal structure which possesses self-similar
property, as shown in Fig. A.1a, in which the small blob is called
thermal blob and its size marked as ξT . The blob each corresponds
to the length scale ξT ≈ a4/|ve| at which the interaction energy
is of the order of the thermal energy kT . On smaller scales the
interaction is negligible, and the chain behaves like a real chain.
On length scales larger than the blob size ξT , the interaction
energy is larger than kT and conformations of a polymer chain
are controlled by interaction effects.

The end-to-end distance of a polymer chain (R) in athermal
and good solvents is determined by [11]

R ≈ a
( ve
a3

)2v−1
Nv (A.1)
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Fig. A.1. (a) Schematic diagram of thermal blob model of the polymer chain (The blob size is ξT ). The distribution of polymer chain in (b) dilute polymer solution
and in (c) overlap concentration φ∗ .

where v is the scaling exponent, Flory gave v = 0.6 by using
mean-field theory, but more sophisticated theories lead to a more
accurate estimate of the scaling exponent in three dimensions,
v = 0.588 [40]. In polymer solvent, polymer coils are far from
each other and behave as isolated real chains at low concen-
trations (Fig. A.1b). When the volume fraction of polymer φ
exceeds the volume fraction of monomers inside each isolated
coil, polymer chains begin to overlap each other. In this case,
the current concentration of the solvent is called the overlap
concentration φ∗ (Fig. A.1c). Concentration c and volume fraction
φ are not completely equivalent in the physical meaning, but they
have c ∼ φ in scaling theory. Hence, it is rational to replace c with
φ.

φ∗
≈

Na3

R3 =

(
a3

ve

)6v−3

N1−3v (A.2)

Only when the polymer fraction in precursor (φ0) is larger than
φ∗ is it possible to form a hydrogel network by crosslinking. At
higher polymer fraction (φ0 > φ∗), chains interpenetrate and the
solution is called semidilute.

There is a critical concept in a semidilute solution called cor-
relation length ξ . On length scales smaller than the correlation
length, the conformations of a chain are very similar to that in
a dilute solution with a solvent of the same quality. On length
scales larger than the correlation length, the excluded volume
interactions are screened by the overlapping chains, which is
called screen-effect in polymer science. The polymer fraction
dependence of polymer size R in semi-dilute solution is [11]

R ≈ a
(
ve

a3φ

)(v−1/2)/(3v−1)

N1/2 for
(
φ∗ < φ

)
(A.3)

The correlation length ξ is also influenced by polymer fraction
φ. The correlation length ξ decreases with increasing concen-
tration, but the size of a thermal blob ξT is independent of
concentration. Therefore, at some concentration φ∗∗

≈ ve/a3,
the correlation length ξ is equal to the thermal blob ξT . It is the
boundary between the semidilute regime and the concentrated
solution regime. At and above the concentration (φ > φ∗∗),
polymer chains are ideal (R ≈ N1/2a). In dilute regime (φ < φ∗),
thermal blobs are isolated each other and chains are ideal as well.
Only in the semidilute regime (φ∗ < φ < φ∗∗), the size of a
polymer chain follows Eq. (A.1). The concentration φ dependence
of the polymer size R in the semidilute solution can be rewritten
with φ∗∗ [11].

R ≈ R0

(
φ

φ∗∗

)−(v−1/2)/(3v−1)

for
(
φ∗ < φ < φ∗∗

)
(A.4)

Flory and Huggins have proposed the expression of osmotic
pressure π by using mean-field theory. The mean-field theory
correctly predicts that the osmotic pressure is independent of
molar mass in semidilute solution. However, the mean-field the-
ory fails to consider the correlations between monomers along

the chain. De Gennes takes into account the correlations between
monomers along the chain by using the scaling approach and
derived the scaling connection between osmotic pressure π and
polymer fraction φ [26]. The osmotic pressure π in a good and
athermal solvent is [11]

π ∼=
kT
a3

( ve
a3

)3(2v−1)/(3v−1)
φ3v/(3v−1) (A.5)
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