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Apparent Flexoelectricity Due to
Heterogeneous Piezoelectricity
Recent work has highlighted how the phenomenon of flexoelectricity can masquerade as
piezoelectricity. This notion can not only be exploited to create artificial piezoelectric-
like materials without using piezoelectric materials but may also explain measurement arti-
facts in dielectrics. In this article, we show that the reverse is also possible and potentially
advantageous in certain situations (such as energy harvesting). By constructing a compu-
tational homogenization approach predicated on the finite element method, we argue that
composites made of piezoelectric phases can conspire to endow the material with a distinct
overall flexoelectric-like response even though the native flexoelectricity of the constituent
materials is negligible. Full finite element procedures for numerical evaluation of the differ-
ent effective tensors, including the flexoelectric tensor, are provided. Numerical investiga-
tions are conducted, showing variation of the effective flexoelectric properties with respect
to local geometry and properties of the composite in piezoelectric–piezoelectric and
polymer–piezoelectric composites. We find that the flexoelectric response can be tuned to
nearly five times higher than the constituents. [DOI: 10.1115/1.4047981]
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1 Introduction
The ability of certain materials that can convert mechanical

deformation into electricity and vice-versa is a prized property
with applications that are well recorded in the vast literature on
so-called smart materials [1–10]. Piezoelectrics are the traditional
material system that embody this concept of electromechanical cou-
pling and have found applications in energy harvesting [11,12], arti-
ficial muscles [13], sensors [14], actuators [15], and robotics among
many others [16].
More recently, significant attention has been paid to another elec-

tromechanical mechanism—flexoelectricity—which links strain
gradients to electric fields2 and electric field gradients to mechanical
deformation [18–30]. This is in contrast to piezoelectrics, which
exhibit a linear coupling between uniform strain and uniform elec-
tric fields. The following comparison between the two phenomena
is important to understand the motivation underpinning our work:

(1) The advantage of flexoelectricity over piezoeletricity is that it
is universal and all dielectrics exhibit this phenomenon
[25,27]. This is in sharp contrast to piezoelectric materials
that must possess a noncentrosymmetric crystal structure
and is thus limited in nature to materials such as quartz or fer-
roelectrics like barium titanate and lead zirconate titanate.

(2) The price of the universality of flexoelectricity is that the
electromechanical coupling is rather weak. The intrinsic
value of flexoelectric properties for most dielectrics is such
that unless extremely large strain gradients are present
(usually only possible for nanostructures or at the nanoscale),
the induced electric fields are small [25,31].

(3) One of the most important applications of piezoelectricity is
the prospects of energy harvesting from mechanical motion
[20,25,26,32]. Flexure motion, in particular, is the most

facile manner in which mechanical deformation can be har-
vested into electrical energy. However, that said, simple
bending of piezoelectrics is not very efficient to generate
electricity since the compression on one side of the neutral
axis produces electrical polarization that tends to counteract
the polarization in the tensile portion of the flexing element.
A simple recourse is to use bimorphs—i.e., placement of an
inactive element that shift the neutral axis. Flexoelectricity, if
it were to be substantive, does not suffer from this handicap
and is perfectly suited to directly convert flexure motion into
usable electricity [33–35].

In hard ceramics such as BaTiO3, the flexoelectric coefficients
can be relatively high [27], but the required local high strain gradi-
ent may be limited by the high stiffness and brittle nature of these
materials. To our knowledge, there are very few such exceptional
materials like BaTiO3.

3 Two possible ways to increase flexoelectri-
city is to consider electrets, i.e., to insert fixed charges in the mate-
rial [35,36] or increase the local strain gradient by considering
nanostructures. In the study by Rahmati et al. [35], the behavior
of electrets under nonlinear bending and showed significant
enhancement of flexoelectricity, and this notion was experimentally
verified in Ref. [36].
Earlier works focused on exploiting flexoelectricity to design

piezoelectric-like materials without using piezoelectrics [37,38].
A related notion is also of how flexoelectricity could mimic piezo-
electricity [39]. In this work, we examine the reverse problem. Is it
possible to use piezoelectrics to create a very large flexoelectric
response? As motivated earlier, if the flexoelectric response is engi-
neered to be substantive, energy harvesting can be made more effi-
cient especially for small scale structures. Accordingly in this work,
we consider the use of architectured materials composed of hetero-
geneous piezoelectric phases with an aim of achieving a large emer-
gent flexoelectric response—one that may effectively overshadow
the materials native flexoelectricity. Indeed, it has been shown in
Ref. [40] that the recent progresses of material engineering and

1Corresponding author.
2Or alternatively to polarization gradients. Electrostatics offers a choice of multiple

independent variables, and theories of electromechanical coupling can superficially
appear different based on this choice. We refer to the exposition by Liu [17], which
outlines this and other related aspects in detail.
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3Flexoelectricity in soft materials is also an actively studied subject [34,35]. The
value of coupling is, like most hard dielectrics, also small although higher strain gra-
dients may be easily achieved.
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3D printing techniques allow designing heterogeneous piezoelectric
structures or materials with “on-demand” microstructures.
It is germane here to mention several relevant papers. Guinovart-

Sanjuán et al. [41] used a two-scale asymptotic homogenization
method to derive the homogenized flexoelectric behavior in 1D
rods. In Ref. [42], the effective flexoelectric and piezoelectric
behaviors of fiber-reinforced nanocomposites with local flexoelec-
tric fibers was derived using an analytical approach. In Ref. [43],
a homogenization technique was developed to predict the apparent
piezoelectric and flexoelectric properties for specific (pantographic)
structures with flexoelectric pivots and bars. In Ref. [44], Moham-
madi et al. considered a heterogeneous membrane and derived its
homogenized flexoelectric behavior. In Ref. [45], the effective flex-
oelectricity was studied in inhomogeneous dielectrics using direct
(local) calculations on microstructures. As indicated earlier, emer-
gent flexoelectricity has also been explored with embedded
charges in materials—both theoretically and experimentally
[35,36]. Another promising approach is the use of topology optimi-
zation to design heterogeneous piezoelectric structures so as to max-
imize the flexoelectric effects. In Ref. [46], Nanthakumar et al.
developed a topology optimization framework for heterogeneous
piezoelectric structures and demonstrated a significant enhancement
in energy conversion. In Ref. [47], the same authors extended this
framework to multi-materials.
In all mentionedworks, either analytical homogenizationmethods

or direct numerical calculations on structures ormicrostructureswere
performed to analyze their apparent properties [48]. Numerical for-
mulations, i.e. finite element formulations, can be found in Refs.
[49–51], and more general approaches that tackle computational
electrostatics may be found in the following and citations therein
[52,53]. While numerical approaches using finite element method
(FEM) of fast Fourier transform for homogenization of piezoelectric
composites in the absence of strain gradient is well known (see, e.g.,
[54,55]), a computational homogenization framework for effective
flexoelectric materials is so far not available. Such homogenization
framework is required to study and optimize the aforementioned
related applications without the need to solve the full heterogeneous
structure, especially when the ratio between the characteristic dimen-
sions of the heterogeneities and those of the structure is very small
(separated scales).
In the present paper, we achieve our goal of designing flexoelec-

tricity by using heterogeneous piezoeletric phases through the
development of a computational homogenization framework. Spe-
cifically, the effective behavior is defined as a Mindlin strain gradi-
ent medium [56,57] enriched with energetic terms associated with
the electromechanical coupling corresponding to flexoelectricity.
A finite element procedure is described to compute the different
homogenized (effective) tensors on a representative volume
element (RVE), including the full fourth-order flexoelectric tensor.
This article is organized as follows. In Sec. 2, the notations used

in this work are summarized. In Sec. 3, the equations of the local
piezoelectric problem on the RVE are presented. The homogenized
model and the method to compute the effective tensors are pre-
sented in Sec. 4. Finally, numerical investigations are performed
in Sec. 5 to analyze the effective flexoelectric behavior of piezoelec-
tric composites, including polymer–piezoelectric and piezoelectric–
piezoelectric microstructures.

2 Preliminary Notations
Vectors and second-order tensors, as well as matrices, are

denoted by bold letters A. Third-order tensors are denoted by calli-
graphic uppercase letters G, fourth-order, fifth-order, and
sixth-order tensors are denoted by double case letters A. Double
contraction of indices for second-order tensors A and B is
denoted by A : B=AijBij, dot product for two vectors a and b by
a · b= aibi, and simple contraction of indices for a second-order
tensor A and a vector b is denoted by (A · b)i=Aijbj. In this
article, we introduce the triple contraction of indices for two

third-order tensors G and B as G ..
. B = GijkBijk . The gradient opera-

tor is denoted by ∇(.) and the divergence operator by ∇ · (.).
Let u be the displacement vector and x be the material coordinate,

we define

εij =
1
2

∂ui
∂xj

+
∂uj
∂xi

( )
(1)

and the third-order strain gradient tensor as

∇ε( )ijk =
1
2

∂2ui
∂xj∂xk

+
∂2uj
∂xi∂xk

( )
(2)

The second gradient displacements (third-order) tensor is defined
as follows:

Gijk =
∂2ui
∂xj∂xk

(3)

It can be shown (see Refs. [57,58]) that these two tensors are
related by

Gijk = ∇ε( )ijk + ∇ε( )ikj − ∇ε( ) jki (4)

Let ϕ be the electric potential, we define the electric field as
follows:

Ei = −
∂ϕ
∂xi

(5)

3 Micro Representative Volume Element Problem
We assume a periodic medium characterized by an RVE defined

in a domain Ω ⊂ R2 whose boundary is denoted by ∂Ω (see
Fig. 1(c)). The RVE is assumed to be subjected to a homogeneous
strain ε, a homogeneous strain gradient ∇ε, and a homogeneous
electric field E. The RVE is characterized by a size ℓ. Within the
RVE, the different phases are assumed to be locally linear piezo-
electric and characterized by fourth-order elastic tensors C

i,
second-order tensors of dielectric properties α i, and third-order
tensors of piezoelectric properties Ei, i= 1, 2, …, N, with N the
number of phases. The local equations are defined as follows:

∇ · σ(x) = 0 in Ω (6)

∇ · d = 0 in Ω (7)

where d denotes the dielectric displacement, and σ is the Cauchy

Fig. 1 (a) heterogeneous structure, (b) equivalent piezo-
flexoelectric homogeneous structure, and (c) RVE embedding
local piezoelectric phases
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stress tensor with

σij(x) = Cijkl(x)εkl(x) − Ekij(x)Ek(x) (8)

and

di(x) = Eijk(x)ε jk(x) + αij(x)Ej(x) (9)

Quadratic boundary conditions have been introduced in several
works (see, e.g., Refs. [59–61]) to prescribe an effective strain gra-
dient over the RVE:

u(x) = ε · x + 1
2
G:x⊗ x + ũ(x) on ∂Ω (10)

where G depends on ∇ε according to Eq. (4) and ũ(x) is either zero
or periodic on ∂Ω. We have shown in Refs. [58,62] that such bound-
ary conditions alone can induce several issues such as spurious gra-
dient terms and a nonconvergence of the effective higher order
coefficients with respect to the RVE size. In Ref. [58], we have
introduced body forces in addition to the aforementioned quadratic
boundary conditions as an ingredient to remove the aforementioned
spurious effects. The body forces are such that when the RVE is
homogeneous, the local strain field is strictly linear. In this work,
we extend this idea to the coupled electromechanical problem.
Then, for a linear strain field ∇ε · x in the RVE with constant
local properties C0 and E0, Eqs. (6) and (7) together with Eqs. (8)
and (9) lead to

σij,j = C0
ijkl ∇ε
( )

klj (11)

di,i = E0
pjk ∇ε
( )

jkp (12)

Choosing C
0 = C and E0 = E as the effective elastic and piezoelec-

tric tensors guarantees that when the material is homogeneous, the
local properties go to constant values equal to the local material
properties. The definition of C and E is provided in Sec. 4.2.
Then, an alternative local problem is defined as follows:

∇ · σ u(x)( ) = f(∇ε) ∀x ∈ Ω (13)

∇ · d(x) = r(∇ε) ∀x ∈ Ω (14)

where

fi = Cijkl ∇ε
( )

klj (15)

r = Eijk ∇ε
( )

jki (16)

The effective electric field can be prescribed using boundary con-
ditions in the form (see e.g. [63]):

ϕ(x) = −E · x + ϕ̃(x) on ∂Ω (17)

where ϕ̃(x) is either zero or a periodic fluctuation over Ω. To sum-
marize, we define the localization problem to be solved on the RVE
as follows:
Given ε, ∇ε, and E, find ε(x) and ϕ(x) such that

∇ · σ u(x)( ) = f(∇ε) ∀x ∈ Ω (18)

where f is given by Eq. (15)

∇ · d(x) = r(∇ε) ∀x ∈ Ω (19)

where r is given in Eq. (16)

σ x( ) = C(x):ε(x) − ET (x) · E (20)

d(x) = E(x):ε(x) + α(x) · E (21)

and subjected to

u(x) =
1
2
G:x⊗ x + ε · x + ũ(x) on ∂Ω (22)

ϕ(x) = −E · x + ϕ̃(x) on ∂Ω (23)

Problem (18)–(23) can be solved classically by FEM (see, e.g.,
Ref. [63]). For the self-completeness of this article, we have intro-
duced the details in Appendix B. In this article, we restrict the bound-
ary conditions to purely quadratic ones, i.e., ũ(x) = 0, ϕ̃(x) = 0. In
Refs. [58] and [62], we have discussed the link between the above
quadratic boundary conditions and asymptotic expansion homogeni-
zation techniques in the context of purely mechanical strain gradient
problems. Even though extensions are required, the same ideas can
be applied in the context of electromechanical coupling.

4 Effective Piezo-flexoelectric Model
In this section, the effective piezo-flexoelectric model is pro-

vided, and the definition of its different tensors is provided from
the RVE micro problem solutions.

4.1 Macroscopic Model. We introduce the energy density
function (electrical enthalpy density) of an effective piezo-flexo elec-
tric material as composed to classical terms related to piezoelectric
materials, terms of a Mindlin strain gradient model [56,57], as well
as a term coupling strain gradient and electric current (see, e.g.,
Ref. [64]):

W =
1
2
ε:C:ε − E · E:ε − 1

2
E · α · E

+ E · F ..
.
∇ε + ε:M ..

.
∇ε +

1
2
∇ε ..

.
G ..

.
∇ε

(24)

where C denotes the fourth-order effective elastic tensor, α is the
second-order effective dielectric tensor, E is the third-order effective
piezoelectric tensor, F is a fourth-order flexoelectric tensor coupling
electric field and strain gradient, M is a fifth-order tensor coupling
first- and second-order strains, andG is the sixth-order strain gradient
elasticity tensor. Note that in the aforementioned model, and in con-
trast to Ref. [64], we neglected the terms involving electric current
gradient for the sake of simplicity. However, the present procedure
could be extended to evaluating the terms associated with the electric
field gradient in future studies.
Assuming only perfect interfaces between phases, the effective

strain and electric fields are classically defined as follows:

ε = ε(x)〈 〉, E = E(x)〈 〉, ∇ε = ∇ε(x)〈 〉 (25)

It has been shown in several works (see, e.g., Refs. [65,66]) that
using quadratic boundary conditions as in Sec. 3, the relation ∇ε =
∇ε(x)〈 〉 does not hold. Some attempts have been made to correct
this point, such as in Ref. [66]. In the present work, we do not
intend to satisfy this relationship exactly and only consider the def-
inition of ∇ε as an applied macroscopic quantity defined through
the boundary conditions (22) and body forces in (18) and (19).
This point could be improved in future studies.
Then, the effective stress tensor σ, effective electric displacement

d, and effective hyperstress tensor S are defined, respectively, by

d = −
∂W

∂E
= E:ε + α · E − F ..

.
∇ε (26)

σ =
∂W
∂ε

= C:ε − ET · E +M ..
.
∇ε (27)

S =
∂W

∂∇ε
=M

T
:ε + F

T · E +G ..
.
∇ε (28)

where F
T · E

( )
i
= FijklEi.
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Let Ω ⊂ R2 a domain associated with the homogeneous strain
gradient medium and ∂Ω its boundary (see Fig. 1(c)), balance equa-
tions are given by (see, e.g., Ref. [56]):

∇ · σ − ∇ · ∇ · S( )
= 0 in Ω (29)

∇ · d = 0 in Ω (30)

with boundary conditions

u = u∗ on ∂Ωu (31)

σ · n − ∇ · S( ) · n − F
∗
= 0 on ∂ΩF (32)

S · n⊗ n = 0 on ∂Ω (33)

(see, e.g., Ref. [17] for a justification) and where ∂Ωu and ∂ΩF are
the Dirichlet and Neumann parts, respectively, of the boundary ∂Ω,
and

ϕ = ϕ
∗
on ∂Ωϕ (34)

d · n = d
∗
n on ∂Ωd (35)

where ∂Ωϕ and ∂Ωd are the Dirichlet and Neumann parts, respec-
tively, of the boundary ∂Ω for the dielectric problem. This
problem can be solved with appropriate C1

finite elements discreti-
zations (see, e.g., Refs. [51,67]).

4.2 Definition of Effective Tensors. The problem (18)–(23)
being linear, using the superposition principle, the local strain
field ɛ(x) and local electric fields E(x) can be expressed as follows:

ε(x) = A0(x):ε + B0(x) · E + A1(x) ..
.
∇ε (36)

E(x) =D0(x):ε + h0(x) · E +D1(x) ..
.
∇ε (37)

where

• A0
ijkl(x) is the strain solution ɛij(x) solution of (18)–(23) with

ε = 1
2 ek ⊗ el + el ⊗ ek( ), E = 0, and ∇ε = 0.

• B0
ijk(x) is the strain solution ɛij(x) solution of (18)–(23) with

ε = 0, E = ek , and ∇ε = 0.
• A1

ijkl(x) is the strain solution ɛij(x) solution of (18)–(23) with
ε = 0, E = 0, and ∇ε = 1

2 ek ⊗ el + el ⊗ ek( )⊗ em.
• D0

ijk(x) is the electric field solution Ei(x) solution of (18)–(23)
with ε = 1

2 ej ⊗ ek + ek ⊗ ej
( )

, E = 0, and ∇ε = 0.
• h0ij(x) is the electric field solution Ei(x) solution of (18)–(23)

with ε = 0, E = ej, and ∇ε = 0.
• D1

ijkl(x) is the electric field solution Ei(x) solution of (18)–(23)
with ε = 0, E = 0, and ∇ε = 1

2 ej ⊗ ek + ek ⊗ ej
( )

⊗ el,

where ei are unitary basis vectors. In Ref. [58], we have introduced a
correction on the localization operators associated with the strain
gradient tensor to separate purely strain gradient effects and other
loads and which has been shown also as a second ingredient to
remove spurious strain gradient remaining effects in a homoge-
neous medium. Following Ref. [58], we introduce a corrected
expression of the localized fields as follows:

ε(x) = A0(x):ε + B0(x) · E + Ã
1
(x) ..

.
∇ε (38)

E(x) =D0(x):ε + h0(x) · E + D̃
1
(x) ..

.
∇ε (39)

with

Ã
1
(x) = A1(x) − A0(x)⊗ x (40)

and

D̃
1
(x) =D1(x) −D0(x)⊗ x (41)

Computing the effective energy of the system:

W =
1
2

ε(x):C(x):ε(x)〈 〉 − E(x) · E(x):ε(x)〈 〉

−
1
2

E(x) · α(x) · E(x)〈 〉 (42)

introducing Eqs. (38) and (39) in Eq. (42) and comparing the differ-
ent terms of the resulting equation with Eq. (24), we obtain, after
some calculations:

C = A0(x)
( )T

:C(x):A0(x)
〈
−2 D0(x)

( )T ·E(x):A0(x) − D0(x)
( )T ·α(x) · D0(x)

〉
(43)

α = − B0(x)
( )T

:C(x):B0(x)
〈
+2 h0(x)

( )T ·E(x):B0(x) + h0(x)
( )T ·α(x) · h0(x)〉 (44)

G = Ã
1
(x)

( )T
:C(x):Ã

1
(x)

〈

−2 D̃1
(x)

( )T
·E(x):Ã1

(x) − D̃1
(x)

( )T
·α(x) · D̃1

(x)
〉

(45)

E = − B0(x)
( )T

:C(x):A0(x) + h0(x)
( )T ·E(x):A0(x)

〈
+ B0(x)
( )T

:E(x) · D0(x) + h0(x)
( )T ·α(x) · D0(x)

〉
(46)

F = B0(x)
( )T

:C(x):Ã
1
(x) − h0(x)

( )T ·E(x):Ã1
(x)

〈
− B0(x)
( )T

:ET (x) · D̃1
(x) − h0(x)

( )T ·α(x) · D̃1
(x)

〉
(47)

M = A0(x)
( )T

:C(x):Ã
1
(x) − D0(x)

( )T ·E(x):Ã1
(x)

〈
− A0(x)
( )T

:ET (x) · D̃1
(x) − D0(x)

( )T ·α(x) · D̃1
(x)

〉
(48)

4.3 Vector and Matrix Forms of Effective Tensors. In this
study, we only consider composites with infinitely long parallel
fibers. Then, we consider 2D plane strain conditions. In this case,
the 2D vector and matrix forms of the different tensors are provided
in what follows. The vector form associated with the nonsymmetric
components of ∇ε can be written as follows:

∇ε
[ ]

=

∇ε
( )

111

∇ε
( )

221

2 ∇ε
( )

122

∇ε
( )

222

∇ε
( )

112

2 ∇ε
( )

121

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

∂2u1
∂x21
∂2u2
∂x1∂x2

∂2u1
∂x22

+
∂2u2
∂x1∂x2

∂2u2
∂x22
∂2u1
∂x1∂x2

∂2u1
∂x1∂x2

+
∂2u2
∂x21

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(49)
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We then introduce the vector containing the components of the
hyperstress tensor S as follows:

S[ ]
=

S111

S221

S122

S222

S112

S121

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(50)

In matrix form, the constitutive equations (26)–(28) are given by

[d] = E[ ]T [ε] + [α]E − [F][∇ε] (51)

σ[ ] = [C][ε] − E[ ]
E + [M][∇ε] (52)

S[ ]
= [M]

T
[ε] + [F]

T
E + [G][∇ε] (53)

where [d] is a column vector, and

[α] =
α11 α12

α12 α22

[ ]
(54)

[C] =
C1111 C1122 C1112

C1122 C2222 C2212

C1112 C2212 C1212

⎡
⎢⎣

⎤
⎥⎦ (55)

[E] =
E111 E211

E122 E222

E112 E212

⎡
⎢⎣

⎤
⎥⎦ (56)

[F] =
F1111 F1221 F1122 F1222 F1112 F1121

F2111 F2221 F2122 F2222 F2112 F2121

[ ]
(57)

[M] =
M11111 M11221 M11122 M11222 M11112 M11121

M22111 M22221 M22122 M22222 M22112 M22121

M12111 M12221 M12122 M12222 M12112 M12121

⎡
⎢⎣

⎤
⎥⎦
(58)

[G]

=

G111111 G111221 G111122 G111222 G111112 G111121

G221221 G221122 G221222 G221112 G221121

G122122 G122222 G122112 G122121

G222222 G222112 G222121

Sym. G112112 G112121

G121121

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

(59)

where we have taken into account the symmetries of these tensors,
which are expressed as follows:

Eijk = Eikj, Fijkl = Fikjl (60)

Cijkl = Cklij = C jikl = Cijlk (61)

Gijklmp =Glmpijk =G jiklmp =Gijkmlp (62)

Mijklm =M jiklm =Mijlkm (63)

5 Numerical Investigation
5.1 Composite With Piezoelectric Phases. In this first

example, we investigate the effective flexoelectric properties of a
two-phase periodic composite whose phases are made of piezoelec-
tric materials. The RVEs are composed of periodic unit cells. Two
geometries are investigated: one with triangular inclusions
(Fig. 2(a)) and one with a fully asymmetric geometry as depicted
in Fig. 2(b). Both geometries are chosen to limit the number of sym-
metries to increase the gradient effects. We assume that both phases
are made with the same piezoelectric material, but that there is a
rotation mismatch between the main directions of the crystal in
phases 1 and 2 by an angle θ, which creates a material heterogeneity
as the different mechanical, dielectric, and piezoelectric tensors are
assumed to be fully anisotropic.
The geometric description of the different unit cells is provided

later. For the unit cell with triangular inclusions (Fig. 2(a)), A=
{−aℓ; aℓ}, B= {aℓ; 0}, and C= {− aℓ;− aℓ}. For the unit with
asymmetric inclusions (Fig. 2(b)), A= {−bℓ; bℓ}, B= {bℓ; bℓ},
C= {bℓ; 0}, D= {0; 0}, and E= {−bℓ;−bℓ}, with a =

�����
0.8ℓ

√
/2

and b= 0.4ℓ. The parameter a is chosen such that both unit cells
correspond to the same volume fraction f= 0.4. Then, the RVE is
assumed to be made of N ×N unit cells. Unless otherwise specified,
the length of the RVE is chosen as L=Nℓ, where ℓ= 1mm.
The inclusions (material 2 in Fig. 2) are made of a transversely

anisotropic ceramic (lead zirconium titanate) whose parameters
are given in 2D, and for an orientation of the piezoelectric crystal
main direction along x1, by Ref. [68]

[C1] =

131.39 83.237 0

83.237 154.837 0

0 035.8

⎡
⎢⎣

⎤
⎥⎦ (GPa) (64)

[E1] =
−2.120582 −2.120582 0

0 00

[ ]
(C/m2) (65)

[α1] =
2.079 0

0 4.065

[ ]
(nC/m/V) (66)

Then, the properties of phase 2 (inclusion) are defined with
respect to the angle θ according to

α2ij = RipR jqα
1
pq (67)

E2
ijk = RipR jqRkrE1

pqr (68)

C
2
ijkl = RipR jqRkrRlsC

1
pqrs (69)

where R is a rotation matrix defined by

R =
cos (θ) − sin (θ)
sin (θ) cos (θ)

[ ]
(70)

(a) (b)

Fig. 2 (a) Unit cell with triangular inclusions and (b) asymmetric
unit cell
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Examples of deformed configurations corresponding to the elemen-
tary loads are depicted in Fig. 3.
We first investigate the convergence of the effective flexoelectric

properties with respect to the number of unit cells N along each
direction in the RVE. The triangular unit cell (Fig. 2(a)) is chosen
here. Results for the components F1221 and F2112 are provided in
Fig. 4. In this case, we have chosen θ= π. We can appreciate a
quick convergence with respect to N.

Next,wecompute theevolutionofsomecomponentsofFwithrespect
to themismatchangleθ forboth triangularandasymmetricunit cells.We
only depict the coefficients F1221, F2221, F1112, and F2112. These coeffi-
cients represent the polarization induced by bending, while other coeffi-
cients are associated with polarization induced by more complex strain
gradient modes, difficult to obtain practically.
From Fig. 5 (triangular unit cell), we can first note that when θ=

0 (homogeneous medium), the flexoelectric effects vanish as

Fig. 3 d2(x) electric displacement field in deformed (×0.2) configurations for RVE with triangular inclusions:
(a) [∗ε∗]= 1; 0; 0[ ], ∇∗ε∗= 0, E= 0; (b) [∗ε∗]= 0; 1; 0[ ], ∇∗ε∗= 0, E= 0; (c) [∗ε∗]= 0; 0; 1/2[ ], ∇∗ε∗= 0, E= 0; (d) [∗ε∗]= 0,
∇ ∗ uu ∗ ∗ε∗= 0, [E]= 1; 0[ ]; (e) [∗ε∗]= 0, ∇ ∗ uu ∗ ∗ε∗= 0, [E]= 0; 1[ ]; (f) [∗ε∗]= 0, ∇ ∗ uu ∗ ∗ε∗= 1; 0; 0; 0; 0; 0[ ], E= 0;
(g) [∗ε∗]= 0, ∇ ∗ uu ∗ ∗ε∗= 0; 1; 0; 0; 0; 0[ ], E = 0; (h) [∗ε∗]= 0, ∇ ∗ uu ∗ ∗ε∗= 0; 0; 1; 0; 0; 0[ ], E = 0; (i) [∗ε∗]= 0,
∇ ∗ uu ∗ ∗ε∗= 0; 0; 0; 1; 0; 0[ ], E= 0; (j) [∗ε∗]= 0, ∇ ∗ uu ∗ ∗ε∗= 0; 0; 0; 0; 1; 0[ ], E= 0; and (k) [∗ε∗]= 0,
∇ ∗ uu ∗ ∗ε∗= 0; 0; 0; 0; 0; 1[ ], E= 0
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expected. A maximum of the components F1221 and F2112 is found
in this case for θ= π, where both crystal phases are in the same
direction, but coefficients have opposite signs. The other compo-
nents (F2221 and F1112) have very small values compared to F1221
and F2112 and exhibit local minima.
In Fig. 6 (asymmetric unit cell), we can note that in this case the

components F1221 and F2112 have two extrema with a maximum
value for F1221 at approximatively θ≃ 1.2π.
Comparing both case, we can see that the maximum value of the

coefficient F2112, which corresponds to the variation of polarization
in the direction x2 with respect to bending around an out of plane
axis x3 (Fig. 3( j)) is larger for the triangular inclusion (0.124 ×
10−3 C/m compared to (0.090 × 10−3 C/m for the asymmetric
case). Then, we show that choosing appropriately direction mis-
match between crystal directions and shapes, important increase
of flexoelectric effects can be achieved. It is also worth noting
that the obtained values are quite high compared to naturally flexo-
electric materials such as BaTiO 3 whose flexoelectric coefficients
are of the order of 10−5 C/m.

5.2 Piezoelectric–Elastic Composite. Next, a composite
whose matrix is made of a piezoelectric material and an elastic
inclusion is considered. The same geometries than in the previous
example are considered (triangular shape, Fig. 2(a)) and asymmet-
ric geometry, Fig. 2(b)). The material parameters of the matrix are
the same as in the previous example (Eqs. (64)–(66)).
The properties of the inclusions are here assumed to be linear

isotropic elastic:

[C2] =
λi + 2μi λi 0

λi λi + 2μi 0

0 0μi

⎡
⎢⎣

⎤
⎥⎦ (GPa) (71)

[E2] =
0 0 0

0 0 0

[ ]
(C/m2) (72)

[α2] =
αi 0

0 αi

[ ]
(nC/m/V) (73)

with λi and μi are the Lamé’s parameters related to the
Young’s modulus and Poisson’s ratio, respectively, through λi=
Eiνi/((1+ νi)(1− 2νi)), μi=Ei/(2(1+ νi)), and αi is an isotropic
dielectric coefficient. We first investigate the effect of varying the
elastic modulus of the inclusion for a fixed Poisson’s ratio νi= 0.4
and αi= 3.72 × 10−2 nC/m/V. Computations are conducted using
4 × 4 cells. Results are presented in Figs. 7 and 8 for the triangular
and asymmetric shapes, respectively. Surprisingly, the evolution of
the effective coefficients is not monotonous and exhibit local
extrema.
Finally, we now evaluate the effect of varying the dielectric coef-

ficient αi for afixed valueEi= 102GPa, νi= 0.4. Results are depicted
in Figs. 9 and 10, exhibiting again nonmonotonous evolution of the
flexoelectric coefficients with respect to the dielectric properties of
the inclusion. Such complex evolutions show that such computa-
tional homogenization method could be used in future studies as a

Fig. 4 Convergence of effective flexoelectric properties with the
number of unit cells in the RVE

Fig. 5 Evolution of effective flexoelectric components with
respect to the mismatch angle θ for the RVE with triangular
inclusions

Fig. 6 Evolution of effective flexoelectric components with
respect to the mismatch angle θ for the RVE with asymmetric
inclusions

Fig. 7 Evolution of effective flexoelectric components with
respect to the Young modulus of the inclusion for the RVE with
triangular inclusions
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tool to optimize the effective flexoelectric properties of composite
with respect to geometry and properties of phases.

6 Concluding Remarks
There are several instances of physical significance where we

may prefer a flexoelectric response as opposed to piezoelectricity.
In this study, we put concrete ideas on how to obtain a large effec-
tive flexoelectric response by creating composites constructed from

piezoelectric phases. The constituents may exhibit negligible flex-
oelectricity. Specifically we have proposed a computational frame-
work for estimating the effective linear flexoeletric behavior of such
piezoelectric composites. As opposed to the prior work, the present
method allows evaluation of the full anisotropic flexoelectric tensor,
by means of finite element numerical calculations over RVEs, and
then for arbitrary local geometries of phases. A corrected scheme
has been proposed to remove spurious effects of previous strain gra-
dient numerical homogenization schemes. Numerical investigations
have been conducted to evaluate the evolution of flexoelectric coef-
ficients with respect to local material properties and geometry of the
composite phases, showing the potential of the approach for future
optimization-based design of efficient flexoelectric systems and
concomitant applications in fields such as energy harvesting.
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Appendix A: Numerical Evaluation of Effective Tensors
The discrete form associated with Eqs. (38) and (39) is given by

[ε(x)] = A0(x)[ε] + B0(x)E + Ã
1
(x) ∇ε

[ ]
(A1)

E(x) = D0(x)[ε] + h0(x)E + D̃
1 ∇ε
[ ]

(A2)

with

Ã
1
(x) = A1(x) − A0

x (x) (A3)

D̃
1
(x) = D1(x) − D0

x (x) (A4)

Before defining the different aforementioned matrices, we introduce
the matrices:

Uu = u1; u2; u3
[ ]

; Vu = u4; u5
[ ]

;

Wu = u6; u7; u8; u9; u10; u11
[ ] (A5)

where u1, u2, and u3 are the respective vector columns containing
the nodal displacement solution of the problems (18)–(23) with
ε11 = 1, all other strain components to zero, E = 0, ∇ε = 0;
ε22 = 1, all other strain components to zero, E = 0, ∇ε = 0;
ε12 = 1/2, all other strain components to zero, E = 0, ∇ε = 0, u4,
u5 are, respectively, the vector columns containing the nodal displa-
cement solution of the problem (18)–(23) with E1 = 1, all other
electric field components to zero, ε = 0, ∇ε = 0; E2 = 1, all other
electric field components to zero, ε = 0, ∇ε = 0, and u6, u7, u8,
u9, u10, u11 are the respective vector columns containing the
nodal displacement solution of the problem (18)–(23) with
∇ε111 = 1, all other components of the strain gradient tensor to
zero, ε = 0, E = 0;∇ε221 = 1, all other components of the strain gra-
dient tensor to zero, ε = 0, E = 0; ∇ε121 = 1, all other components
of the strain gradient tensor to zero, ε = 0, E = 0; ∇ε222 = 1, all
other components of the strain gradient tensor to zero, ε = 0,
E = 0; ∇ε112 = 1, all other components of the strain gradient
tensor to zero, ε = 0, E = 0; and ∇ε121 = 1, all other components
of the strain gradient tensor to zero, ε = 0, E = 0.
Furthermore, we define

Uϕ = ϕ1; ϕ2; ϕ3[ ]
; Vϕ = ϕ4; ϕ5[ ]

;

Wϕ = ϕ6; ϕ7; ϕ8; ϕ9; ϕ10; ϕ11[ ] (A6)

Fig. 8 Evolution of effective flexoelectric components with
respect to the Young modulus of the inclusion for the RVE with
asymmetric inclusions

Fig. 9 Evolution of effective flexoelectric components with
respect to dielectric properties of the inclusion for the RVE
with triangular inclusions

Fig. 10 Evolution of effective flexoelectric components with
respect to dielectric properties of the inclusion for the RVE
with asymmetric inclusions
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where ϕ1, ϕ2, and ϕ3 are the respective vector columns containing
the nodal electric potentials solution of the problem (18)–(23) with
ε11 = 1, all other strain components to zero, E = 0, ∇ε = 0; ε22 = 1,
all other strain components to zero, E = 0, ∇ε = 0; ε12 = 1/2, all
other strain components to zero, E = 0, ∇ε = 0, ϕ4, ϕ5 are the
respective vector columns containing the nodal electric potentials
solution of the problem (18)–(23) with E1 = 1, all other electric
field components to zero, ε = 0, ∇ε = 0; E2 = 1, all other electric
field components to zero, ε = 0, ∇ε = 0, and ϕ6, ϕ7, ϕ8, ϕ9, ϕ10,
u11 are the respective vector columns containing the nodal electric
potentials solution of the problem (18)–(23) with ∇ε111 = 1, all
other components of the strain gradient tensor to zero, ε = 0,
E = 0; ∇ε221 = 1, all other components of the strain gradient
tensor to zero, ε = 0, E = 0; ∇ε122 = 1, all other components of
the strain gradient tensor to zero, ε = 0, E = 0; ∇ε222 = 1, all
other components of the strain gradient tensor to zero, ε = 0,
E = 0; ∇ε112 = 1, all other components of the strain gradient
tensor to zero, ε = 0, E = 0; and ∇ε121 = 1, all other components
of the strain gradient tensor to zero, ε = 0, E = 0.
Using the aforementioned definitions, we set

A0(x) = B(x)Uu (A7)

B0(x) = B(x)Vu (A8)

A1(x) = B(x)Wu (A9)

A0
x (x) = B(x)Wx

u (A10)

with

Wx
u(x) = x × u1; y × u1; x × u2; y × u2; x × u3; y × u3

[ ]
(A11)

and

D0(x) = −Bϕ(x)Uϕ (A12)

h0(x) = −Bϕ(x)Vϕ (A13)

D1(x) = −Bϕ(x)Wϕ (A14)

D0
x (x) = −Bϕ(x)Wx

ϕ (A15)

with

Wx
ϕ(x) = x × ϕ1; y × ϕ1; x × ϕ2; y × ϕ2; x × ϕ3; y × ϕ3[ ]

(A16)

Introducing Eqs. (A1) and (A2) in Eqs. (43)–(48), we obtain

[C] = A0( )T
[C]A0(x) − 2 D0

( )T
[E]A0 − D0

( )T
[α]D0

〈 〉

[α] = − B0
( )T

[C]B0 + 2 h0
( )T

[E]B0 + h0
( )T

[α][h0]
〈 〉

[G] = Ã
1

( )T
CÃ

1 − 2 D̃
1

( )T
[E]Ã1 − D̃

1
( )T

[α]D̃
1

〈 〉

[E] = − B0
( )T

[C]A0 + h0
( )T

[E]A0 + B0
( )T

[E]D0 + h0
( )T

[α]D0
〈 〉

[F] = B0( )T
[C]Ã

1 − h0
( )T

[E]Ã1 − B0( )T
[E]T D̃1 − h0

( )T
[α]D̃

1
〈 〉

[M] = A0( )T
[C]Ã

1 − D0
( )T

[E]Ã1 − A0( )T
[E]D̃1 − D0

( )T
[α]D̃

1
〈 〉

where we have omitted the dependence to x to alleviate the
notations.

Appendix B: Finite Element Method Discretization of
Local Representative Volume Element Equations
In this section, we introduce the weak form and the FEM discre-

tization for piezoelectricity in 2D. The weak form associated with
the coupled problem (18)–(19) is given by∫

Ω
D · ∇(δϕ)dΩ = −

∫
Ω

E:∇εx{ } · ∇(δϕ) dΩ (B1)

∫
Ω
σ:ε(δu)dΩ =

∫
Ω
∇ · C:∇εx

{ }
ε(δu)dΩ (B2)

Introducing Eqs. (9) and (8) into Eqs. (B1) and (B2) yields∫
Ω
E:ε(u) + α · E(ϕ)( ) · ∇(δϕ)dΩ = −

∫
Ω

E:∇εx{ } · ∇(δϕ) dΩ
(B3)

∫
Ω
C:ε(u) − ET · E(ϕ)( )

:ε(δu)dΩ =
∫
Ω
∇ · C:∇εx

{ }
:ε(δu)dΩ

(B4)

Introducing classical FEM discretization in Eqs. (B3) and (B4),
we obtain the linear system of coupled equations:

Kϕϕ Kϕu

−KT
ϕu Kuu

[ ]
ϕe

ue

[ ]
=

Fϕ

Fu

[ ]
(B5)

with

Kϕϕ =
∫
Ω
Bϕ

( )T
[α]BϕdΩ (B6)

Kϕu =
∫
Ω
Bϕ

( )T
[E]BdΩ

Kuu =
∫
Ω
B( )T [C]BdΩ

(B7)

where Bϕ with and B are shape function derivatives such that
∇(ϕ) = Bϕϕ

e and [ɛ]=Bu e, where ϕe and u e denote nodal potential
and displacement vectors, respectively, and [ɛ] denotes the vector
form od the strain tensor ɛ.

Fϕ = −
∫
Ω
Bϕ

( )T
[E][η] (B8)

Fu =
∫
Ω
BT [C][η] (B9)

and

[η] =
∇ε111x1 +∇ε112x2
∇ε221x1 +∇ε222x2
∇ε121x1 +∇ε122x2

⎡
⎣

⎤
⎦ (B10)
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