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a b s t r a c t

Soft elastomers that can exhibit extremely large deformations under the action of an electric field are
essential for applications such as soft robotics, stretchable and flexible electronics, energy harvesting
among others. The critical limiting factor in conventional electro-actuation of such materials is the
occurrence of the so-called pull-in instability. In this work, we demonstrate an extraordinarily simple
way to coax a dielectric thin film towards a symmetry-breaking pitchfork bifurcation state while
avoiding pull-in instability. Through the nonlinear interplay between the two bifurcation modes,
we predict electro-actuation strains that exceed what is conventionally possible by 200%, and at
significantly lower applied electric fields.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Soft materials such as elastomers have elastic moduli that
an be several orders of magnitude smaller than conventional
olymers. Consequently, materials like silicone are able to easily
ustain large deformations under the action of relatively modest
orces. For several applications e.g. soft robotics [1,2] or actua-
ors [3–7], we require the deformation to take place in response
o an electric field. In a well-known study, Keplinger et al. [8] ob-
ained an areal increase of almost 1700% for a specially fabricated
crylic membrane under the action of a suitably high electric field.
ver the past two decades, research on electro-active dielectric
lastomers has significantly intensified due to potential appli-
ations like energy harvesting [9–13], adaptive optics [14], and
tretchable electronics [15,16].
With the large deformations and highly nonlinear behavior

haracteristic of elastomers, we must also contend with the
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inevitability of instabilities such as surface wrinkles [17–19],
creases [20–22], folds [23,24], electro-buckling [25,26], pull-in
instability, bursting drops in solid dielectrics [27], and so on.
We specifically highlight the pull-in instability [28–34] due to
its singular role as a ‘‘failure mode" in dielectric elastomers and
the key limiting factor that limits electro-actuation and energy
harvesting.

Consider a thin dielectric film subjected to a fixed potential
difference across its thickness. The applied field will compress the
film – due to Maxwell stress, or more generally electrostriction
– thereby decreasing the film thickness and causing a lateral
expansion. The thinning of the film increases the magnitude of
the electric field in the material, in turn leading to a further de-
crease in thickness. When the film thickness decreases to a critical
value, this coupling leads to a pull-in instability. At this critical
value, the thinning increases dramatically, and the magnitude of
the electric field causes electrical breakdown. Mathematically, the
pull-in instability can be regarded as a limit point or saddle–node
bifurcation [35]. That is, the stable and unstable branches ‘‘collide’’
at the critical electric field, and subsequently are annihilated as
the electric field increases beyond the critical value.

Traditionally, researchers have devised strategies to suppress
pull-in instability to improve electro-actuation, e.g., by using pre-
stretch; among many papers, we highlight recent approaches
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Fig. 1. Schematic of the central idea: We consider the various deformation paths that a circular thin film dielectric elastomer can take under the combined action
of an applied voltage Φ in the thickness direction and an in-plane symmetric radial dead load S. A gradually increasing voltage (Φ↑) will lead to pull-in instability,
owever, a gradually increasing dead load (S↑) will lead to the so-called Treloar–Kearsley (T–K) instability at which the stable (circular) film will bifurcate into a

stable elliptical configuration.
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including [36–39]. In this work, we break from the conventional
philosophy of suppressing pull-in instabilities, and instead seek
to exploit an interplay between pull-in instability and another
instability described below. We propose to guide the soft material
system towards an alternate symmetry-breaking instability – a
super-critical pitchfork bifurcation – to obtain an unprecedented
level of electro-actuation not possible with current approaches.

The key concept that we propose has its roots in a purely
mechanical experiment by Treloar about half a century ago [40].
He studied a square rubber sheet stretched (within its plane) by
equal forces on the lateral faces, corresponding to dead loading.
Treolar, however, observed that upon reaching a critical load,
the square sheet deformed into a symmetry-breaking rectangular
sheet. Of course, linear elasticity predicts that the square sheet
remains square regardless of the magnitude of the equibiax-
ial forces. This surprising experimental observation motivated a
number of follow-up theoretical and experimental works, c.f. [41–
44]. Kearsley [41], using nonlinear elasticity, showed theoretically
that indeed, beyond a critical load, the elastic sheet admits a
stable symmetry-breaking deformed state and the symmetric
response becomes unstable. This phenomenon – the Treloar–
Kearsley (T–K) instability – is a supercritical pitchfork bifurcation
[45]. To date, this instability has not be investigated in the context
of coupled electro-mechanical behavior of soft materials.

Fig. 1 illustrates our key concept. Consider a dielectric elas-
tomer thin film. For both illustration and subsequent calculations,
we will assume the film to be initially circular. If we increase
the applied voltage (Φ↑) slightly, the circular film will become
thinner and expand laterally into a larger circular film. If we
continue to increase the voltage (Φ↑), the larger circular film
will eventually undergo a pull-in instability (at some critical
voltage that depends on the material parameters and the film
thickness). However, we may, instead of a voltage difference,
apply a radially-symmetric in-plane dead-load to the thin film,
analogous to the experiment by Treloar. Increasing the magnitude
of the dead load (S↑) will also deform the circular film to a larger
circular film until the occurrence of the T–K instability. At that
point, the circular configuration will be unstable and the film will
deform into an ellipse.

The loading configurations depicted in Fig. 1 and described in
the preceding paragraph naturally bring up the following ques-
tions, in terms of the various combinations of electromechanical
2

loads and possible instabilities: (1) Which instability (pull-in or
T–K) will occur first and how does the constitutive law of the
material affect their occurrence? (2) If we continue to increase
the electromechanical load after the onset of T–K instability, what
are the equilibrium states? (3) For a given electromechanical load,
what are the equilibrium solutions, and which are stable? (4)
Most importantly, can we exploit the interplay between the two
instabilities to obtain large electro-actuation? In the remainder of
this paper, we will quantitatively address these questions.

2. Formulation

We briefly summarize the key points of our formulation of the
central problem with details being relegated to Appendix A. We
remark that there have been intriguing recent developments [46,
47] that address the electromechanical coupling of dielectric elas-
tomers starting from the monomer level and then upscale to
a coarse-grained description using statistical mechanics. In this
work, we follow a purely phenomenological macroscopic descrip-
tion of the elastomers. To that end, consider a circular dielectric
film with radius R and thickness H in the reference undeformed
state, subject to both an applied potential difference Φ across
its thickness and in-plane mechanical tractions. We denote the
reference and deformed coordinates by X and x, and define the
deformation gradient F = ∂x/∂X . We restrict our attention to ho-
ogeneous deformations with F constant, thereby automatically
atisfying force equilibrium if we satisfy the boundary conditions.
e use Cartesian coordinates (X1, X2, X3) with an orthonormal

basis (e1, e2, e3) that are aligned along the principal directions of
F TF , and e3 is the direction of the film normal. The deformation
then has the simple form x = (α1X1, α2X2, α3X3), where αi >
, i = 1, 2, 3, are the (constant) principal stretches, and we

assume without loss of generality that α1 ≥ α2. Further, assuming
ncompressibility – a very good approximation for elastomers –
equires that the Jacobian J = det F = 1, i.e., α1α2α3 = 1.
We also define the domain of the circular film in the reference
configuration as B0 = {X : 0 ≤

√
X2
1 + X2

2 ≤ R, 0 ≤ X3 ≤ H}.
The total nominal stress T within the incompressible dielectric

lastomers is then [36,48]:

=
∂W e

+ TM
− κF−T . (1)
∂F
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ere W e is the purely mechanical contribution to the energy den-
ity, TM is the nominal electric Maxwell stress, κ is the Lagrange
ultiplier conjugate to the incompressibility constraint, and F−T

is the inverse of the transpose of F . The nominal Maxwell stress is
given by TM

:=
1
2εẼ

2α−2
3 diag (−α−1

1 , −α−1
2 , α−1

3 ), where ε is the
ielectric permittivity and Ẽ = Φ/H .
Assuming isotropy, W e in (1) depends on F only through the

rincipal stretches α1, α2 and α3. Using the fact that the top
nd bottom faces are traction-free, i.e. Te3 = 0, we can readily
olve for the Lagrange multiplier κ = α3∂W e/∂α3 + εẼ2α−2

3 /2.
The given radial traction with magnitude S applied on the lateral
faces, together with the constraint of incompressibility, forms a
system of algebraic equations with unknowns (α1, α2, α3) for a
given applied stimulus (Ẽ, S).

The material constitutive law is implicit in the specification of
the strain–energy function. In what follows, we will consider a
Mooney–Rivlin solid [49] (W e

=
µ

2

∑3
i=1

{(
α2
i − 1

)
+γ

(
α−2
i −1

)}
)

which also subsumes the often used neo-Hookean model. Here
µ and γ are the elastic material constants. The case of γ =

0 corresponds to a neo-Hookean solid. We refer the reader to
Appendix B regarding the choice of the constitutive law for the
problem at hand.

Since both the mechanical loads and the applied electrical field
are consistent with radial symmetry in the plane, we might antic-
ipate that the equilibrium configuration will also be symmetric,
i.e., α1 = α2. However, to allow for the possibility of symmetry-
breaking deformations, we allow α1 ̸= α2, and find the following
relation using the equilibrium condition (see Appendix A for
details):

0 = (α1 − α2) ×

[
1 +

(εẼ2

µ
− γ

)
α1α2

+ α−3
1 α−3

2

[
1 + γ

(
α2
1 + α1α2 + α2

2

)] ]
.

(2)

The key point is that the second term on the right of (2) can
be zero under some conditions, and hence allows for α1 ̸= α2.
For the case of neo-Hookean solids (γ = 0), it is evident that
the second term on the right of (2) is always positive, which
then mandates α1 = α2. In contrast, the more general Mooney–
Rivlin solid can admit both symmetric and symmetry-breaking
equilibrium solution.

3. Linear bifurcation analysis

We next use a linear bifurcation analysis, before turning to a
numerical approach further below. While the linear bifurcation
analysis can only give us the necessary conditions for the onset
of bifurcation and will not allow us to distinguish between pull-in
instability (a limit point bifurcation) and T–K instability (a pitch-
fork bifurcation), the closed-form calculations provide physical
insights and also guide the numerical calculations.

In the linearized setting, the equilibrium equations reduce to:

Lj(α1, α2; Ẽ, S) = Tj(α1, α2; Ẽ) − S = 0, (3)

where j = 1, 2 and Tj are the principal stresses. We can deter-
mine the onset of bifurcation by examining the conditions for
det( ∂Li

∂αj
) = 0. At the onset of bifurcation, we have that α1 =

2 = α since we are linearizing about the symmetric state.
The condition for the onset of bifurcation then becomes (see
Appendix C):

0 =

(
1 + 3γα−4

+ 5α−6
+ 3(γ −

εẼ2

µ
)α2

)

×

(
1 + 3γα−4

+ α−6
− (γ −

εẼ2

µ
)α2

)
.

(4)
3

Fig. 2. The bifurcation diagram. (a) The stretch α1 as a function of the dead load
Ŝ. The solid curves are the stable equilibrium states, corresponding to either a
circular film (α1 = α2) or an elliptical film (α1 ̸= α2). The dashed curves are
the unstable equilibrium states, corresponding to the T–K instability. The critical
point for the onset of T–K instability is marked by □. (b) The contours of the
total energy in the α1 − α2 plane at (Ŝ, Ê) = (5, 0). The point labeled K1 is
the stable asymmetric elliptical configuration, and K0 is the unstable symmetric
circular configuration.

Using that γ ≥ 0 for real materials, we can distinguish three
cases:

1. When εẼ2
µ

= γ , the equality (4) does not hold for any
α > 0 since both the first and second terms in (4) are
positive. In other words, this case implies the nonexistence
of bifurcations, and neither the T–K instability nor pull-in
instability will occur.

2. When εẼ2
µ

> γ , the second term on the right of (4) is
always positive while the first term may be zero under
some conditions. Setting the first term on the right of (4)
to zero and using also the equilibrium equations, we can
determine the threshold and the corresponding value of
α > 1 at which the bifurcation occurs. Since the second
term on the right of (2) is positive, this case only admits
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the solution α1 = α2 and the bifurcation point corresponds
to a limit point, i.e., the onset of pull-in instability.

3. When εẼ2
µ

< γ , the first term on the RHS of (4) is always
positive while the second term can be zero under some
conditions. The zero second term on the RHS of (4), to-
gether with the equilibrium condition, we can determine
the threshold and the corresponding value of α > 1 at
which the bifurcation occurs. Since the second term on
the RHS of (2) and the second term on the RHS of (4) be-
come zero simultaneously, the bifurcation point in this case
corresponds to the onset of Treloar–Kearsley instability.

. Results and discussions

We now turn to numerical calculations to make further
rogress (see Appendix D for the details of the approach). In
hat follows, we choose the material constant of γ = 0.3 for

all the numerical plots, but this particular choice does not impact
the central conclusions drawn in this paper. The nondimensional
dead load and electric field are defined by Ŝ =

S
µ

and Ê =
Ẽ

√
µ/ε

,
respectively.

Fig. 2(a) shows the bifurcation diagram. At zero electric field
and dead load Ŝ in the range of (0, 3.898), only the symmetric
state (α1 = α2) is a stable equilibrium (see the appendices for
more details). The equal stretches both increase monotonically
from 1 to 1.905 as Ŝ increases from 0 to 3.898. Once Ŝ exceeds
the threshold of 3.898, the circular film bifurcates to an elliptical
configuration with α1 > α2.

We take the case of (Ŝ, Ê) = (5, 0) as an illustration. There
exist two equilibrium states that correspond to two points K0
and K1 in Fig. 2(a), and the energy contour is shown in Fig. 2(b).
The symmetric deformation with stretches α1 = α2 = 2.135
at point K0 is an unstable circular film while the symmetry-
breaking deformation with stretches α1 = 3.939 and α2 = 0.958
at point K1 is a stable elliptical film. It is clear that the semi-
major axis of the ellipse is about twice the radius of the circle,
i.e., 3.939/2.135 = 1.845, which indicates a relatively large
deformation induced by the instability.

In Fig. 2(a), we also find that the electric field will delay the
onset of T–K instability. Without any applied electric field, T–K
instability occurs at Ŝ = 3.898 and the stretch α1 (or α2) is 1.905.
However, under an electric field of Ê = 0.4, T–K instability occurs
at Ŝ = 5.428 and the stretch α1 (or α2) is 2.699; moreover, there
exists only one stable circular film with stretches α1 = α2 =

2.591 at Ŝ = 5. This implies the nonexistence of bifurcation and
the suppression of T–K instability by using an electric field.

In Fig. 3(a), at an applied electric field of Ê = 0.7 but a
zero dead load, the film has two equilibrium states of symmetric
deformations, which are denoted by points P1 and P2. With the
energy contour shown in Fig. 3(b), point P1 is a stable node while
point P2 is a saddle point. By increasing the electric field, the two
points collide at the threshold of Ê = 0.842 and then pull-in
instability occurs. The dead load can assist the electric field in
inducing pull-in instability. For example, compared to the curve
of Ŝ = 0 with the threshold of 0.842, the curve of Ŝ = 2 has
a critical electric field of Ê = 0.580 for the onset of pull-in
instability, which has a much lower threshold. We note that there
is no T–K instability in these two curves.

In Fig. 3(a), we also observe that a sufficient large dead load
can cause the T–K instability to occur on the Ê − α1 plane, but
it occurs at a lower electric field compared to that of pull-in
instability. For the case of Ŝ = 0 (or 2), we only have pull-in
instability that occurs at ÊP

= 0.842 (or 0.580). However, for the
case of Ŝ = 4, we can have either T–K instability at ÊTK

= 0.139
or pull-in instability at ÊP

= 0.556. For another case of Ŝ = 5, T–K
4

Fig. 3. (a) The nominal electric field Ê vs. the stretch α1 . On each curve, the
critical point for the onset of pull-in instability is marked by a cross ‘×’. (b)
Contour plot of the total energy of the electrostatic system on the α1 − α2
plane.

instability occurs at ÊTK
= 0.365 while pull-in instability occurs

at ÊP
= 0.553.

To systematically explore the interplay between T–K instabil-
ity and pull-in instability, we plot the phase diagram in Fig. 4(a).
The thresholds of T–K instability (blue curve) and pull-in insta-
bility (red curve) in Fig. 4(a) can be determined by using linear
bifurcation analysis (see the appendices). The two thresholds,
i.e., the red and blue curves, separate the load-plane into three
regions: region#1, region#2, and region#3. To visualize the de-
formation process, we select some points on the load-plane and
illustrate the corresponding deformations in Fig. 4(b). Note that
the equilibrium states are obtained by solving the two algebraic
Eqs. (A.8) and their stability is investigated by using the energy
method (see the appendices). The number of equilibrium solu-
tions, their stabilities, and the shapes of the equilibrium solutions
in each region on the load-plane in Fig. 4 are summarized as
follows:

• In region#1, the horizontal line Ê⋆
=

√
γ separates it into

two subregions: region#1a and region#1b. In region#1a,
the dielectric film only has one equilibrium state—a stable
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circular film. In contrast, the film in region#1b has two
equilibrium states: the stable state is a smaller circular film
and the unstable state is a larger circular film.

• In region#2, the dielectric film encounters T–K instability
and has two equilibrium states: one unstable state is a cir-
cular film and the other state is the elliptical configuration.

• In region#3, the dielectric film encounters pull-in instability
and has no equilibrium solutions.

Using the deformation in Fig. 4(b) as a guide, we can now
highlight the prospects of giant electro-actuation induced by the
electromechanical instability. At a given pair of loads (Ŝ⋆, Ê⋆) =

5, 0.4), the original circular film (with a radius of 1) deforms to
stable circular film with a larger radius of 2.591. Interestingly,

f we fix the dead load but decrease the electric field from 0.4
o 0.2, the original film deforms to a stable elliptical film with a
emi-major axis of 3.813 and a semi-minor axis of 1.103. The ratio
f the semi-major axis to the radius is 1.472; however, we have
erely used half of the electric field. It shows that a relatively

arge electro-actuation can be achieved by using a relatively small
lectric field but suitably harnessing electromechanical instabil-
ty.

. Concluding remarks

In conclusion, we have shown that either a pitchfork bifurca-
ion (T–K instability) or a limit point bifurcation (pull-in instabil-
ty), are achievable for a soft dielectric film. The applied electric
ield delays the onset of symmetry-breaking deformations and,
ore interesting, after the onset of T–K instability, an increased
lectric field can induce the symmetry-breaking state to revert
ack to the symmetric deformation prior to the onset of pull-in
nstability. The possibility of the rapid change of shapes between
ircular and elliptical films is capable of providing large actuation;
n the conventional setting, the actuation is severely limited by
he pull-in instability.
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ppendix A. Details of the formulation

Consider a circular dielectric film with radius R and thickness
in the undeformed state. Taking the Cartesian coordinates

X1, X2, X3) with an orthonormal basis (e1, e2, e3), the domain of
the circular film in the reference configuration is represented by
B = {X ∈ R3

: 0 ≤

√
X2

+ X2
≤ R, 0 ≤ X ≤ H}. We consider
0 1 2 3

5

Fig. 4. (a) Phase diagram of a circular film subjected to the mechanical and
electric loads. (b) The original circular film at (Ŝ⋆, Ê⋆) = (0, 0) is denoted by a
olid gray circle. The deformed shapes at some selected points are presented.

he homogeneous thinning in which the deformation x has the
ollowing component form:

1 = α1X1, x2 = α2X2, x3 = α3X3, (A.1)

where αi > 0, i = 1, 2, 3, are constant stretches. By the defor-
mation (A.1), the deformation gradient F = ∇x in the Cartesian
coordinates is given by

F := diag (α1, α2, α3) , (A.2)

which is represented by a diagonal matrix. For incompressible
elastomers, the constraint of incompressibility requires that the
Jacobian J = det F must be one, i.e.,

α1α2α3 = 1. (A.3)

The total nominal stress T within the incompressible dielectric
elastomers can be written as follows [36,48]:

T =
∂W e

∂F
+ TM

− κF−T . (A.4)

Here W e is the strain–energy function of the purely elastic
art, TM is the nominal Maxwell stress, κ serves as the La-

grange multiplier, and F−T is the inverse of the transpose F T .
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or a linear dielectric film subjected to an applied voltage Φ in
he thickness direction, the nominal Maxwell stress is given by
M

:=
1
2εẼ

2α−2
3 diag (−α−1

1 , −α−1
2 , α−1

3 ), where ε is the material
ermittivity and Ẽ = Φ/H .
Assuming isotropy, the strain–energy function W e(F ) in (A.4)

epends on the deformation gradient through the principal
tretches α1, α2 and α3. Thus, the total nominal stress in (A.4)
s expressed as T := diag (T1, T2, T3). The principal stresses are
j = ∂W e/∂αj − (εẼ2α−2

3 /2 + κ)α−1
j , where j = 1, 2, and T3 =

W e/∂α3 + (εẼ2α−2
3 /2 − κ)α−1

3 . With the boundary conditions
e3 = 0 on the top and bottom surfaces, we obtain the Lagrange
ultiplier κ = α3∂W e/∂α3 + εẼ2α−2

3 /2. Then the in-plane
rincipal stresses are

j =
∂W e

∂αj
−

(
α3

∂W e

∂α3
+ εẼ2α−2

3

)
α−1
j , (A.5)

here j = 1, 2. Since the principal stresses are independent of
the coordinates, the equilibrium equation, Div T = 0 that are
differential equations in general, are automatically satisfied here.

Finally, we only have to consider the traction boundary con-
ditions at

√
X2
1 + X2

2 = R, i.e., Ter = Ser with the normal
r = cos θe1 + sin θe2. Together with the diagonal matrix T :=

iag (T1, T2, T3), we obtain

= Tj, (A.6)

here j = 1, 2. The two algebraic Eqs. (A.6), together with the
onstraint of incompressibility (A.3), form a system of algebraic
quations with unknowns (α1, α2, α3) for a given pair of loads
Ẽ, S).

In this paper, we consider a Mooney–Rivlin solid [49] of which
he strain–energy function in (A.5) is

e
=

µ

2

3∑
i=1

{(
α2
i − 1

)
+ γ

(
α−2
i − 1

)}
, (A.7)

here αi, i = 1, 2, 3, are the principal stretches, µ and γ are
material constants. Typically, the case of γ = 0 corresponds
to the strain–energy function of a neo-Hookean solid. Both neo-
Hookean and Mooney–Rivlin models are able to give good agree-
ment with the experiment data at small and moderate strains.
However, an apparent discrepancy is found at large strains. The
Gent model is usually used to capture the stress–strain relation
of an elastomer with nearly full stretched molecular chains [50].

It follows from (A.5)–(A.7) that

S
µ

=
(
αj − γα−3

j

)
−

[
α2
3 +

(εẼ2

µ
− γ

)
α−2
3

]
α−1
j . (A.8)

At a given pair of dead load and electric field, we seek the
olution of α1, α2 and α3 from the two algebraic Eqs. (A.8),
together with the constraint α1α2α3 = 1.

Bearing in mind that the traction dead load S is symmetric, and
the applied electric field is homogeneous and is only applied in
the thickness direction, a common assumption would be that the
deformations of equilibrium states are symmetric, i.e., α1 = α2.
owever, we try to seek the possibility of symmetry-breaking de-
ormations and discuss the ensuing electromechanical behavior.
o directly show the relation between α1 and α2, we factor out S
nd use α1α2α3 = 1 in (A.8), then

0 = (α1 − α2) ×

[
1 +

(εẼ2

µ
− γ

)
α1α2

+ α−3
1 α−3

2

[
1 + γ

(
α2
1 + α1α2 + α2

2

)] ]
.

(A.9)

Of interest is that the second term on the RHS of (A.9) is
ero under some circumstances, which may allow the existence
6

of equilibrium states with a symmetry-breaking deformation,
i.e., α1 ̸= α2. For neo-Hookean solids (γ = 0), it is evident
hat the second term on RHS of (A.9) is always positive, then the
dentity (A.9) holds if and only if α1 = α2. In contrast, Mooney–
ivlin solids can give both symmetric and symmetry-breaking
quilibrium solutions under some circumstances. The aforemen-
ioned statement highlights that too simple a constitutive choice
i.e. Neo-Hookean) may preclude observation of certain types of
ifurcations.

ppendix B. Details of the linear bifurcation analysis

The linear bifurcation analysis here is actually the analysis of
he uniqueness solutions (α1, α2) to the two algebraic equations
6) in the main article. To proceed with the linear bifurcation
nalysis, we rewrite the two equations here:

j(α1, α2; Ẽ, S) = Tj(α1, α2; Ẽ) − S = 0, (B.1)

here j = 1, 2. It should be noted that Ẽ and S are loading param-
ters while α1 and α2 are the unknown variables. For a given pair
f loads (Ẽ, S), the deformed film possesses the stretches (α1, α2)
hrough the solutions of the two algebraic Eqs. (B.1).

By the implicit function theorem [51,52], the necessary con-
ition for the onset of bifurcation requires a zero determinant,
amely⏐⏐⏐⏐⏐⏐⏐⏐⏐

∂L1
∂α1

∂L1
∂α2

∂L2
∂α1

∂L2
∂α2

⏐⏐⏐⏐⏐⏐⏐⏐⏐ = 0. (B.2)

For Mooney–Rivlin solids, the explicit forms of Eqs. (B.1) are

L1 = α1 − γα−3
1 − α−3

1 α−2
2 + (γ −

εẼ2

µ
)α1α

2
2 −

S
µ

= 0, (B.3a)

L2 = α2 − γα−3
2 − α−2

1 α−3
2 + (γ −

εẼ2

µ
)α2

1α2 −
S
µ

= 0. (B.3b)

To make a straightforward presentation of the relation be-
tween α1 and α2 in equilibrium, we subtract the two Eqs. (B.3a)
and (B.3b), then we obtain

0 = (α1 − α2) ×

[
1 +

(εẼ2

µ
− γ

)
α1α2

+ α−3
1 α−3

2

[
1 + γ

(
α2
1 + α1α2 + α2

2

)] ]
,

(B.3c)

which is exactly equation (A.9). For the three Eqs. (B.3a)–(B.3c),
any two can yield the solutions of (α1, α2). The linear bifurcation
nalysis provides the conditions for the uniqueness solution. We
ow consider the entries of the matrix in (B.2). It follows from
B.3a) and (B.3b) that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂L1
∂α1

= 1 + 3γα−4
1 + 3α−4

1 α−2
2 + (γ −

εẼ2

µ
)α2

2,

∂L1
∂α2

=
∂L2
∂α1

= 2α−3
1 α−3

2 + 2(γ −
εẼ2

µ
)α1α2,

∂L2
∂α2

= 1 + 3γα−4
2 + 3α−2

1 α−4
2 + (γ −

εẼ2

µ
)α2

1 .

(B.4)

Consider a trivial solution that corresponds to the symmetric
tretching α1 = α2 = α. Eqs. (B.3a) and (B.3b) reduce to

α − γα−3
− α−5

+ (γ −
εẼ2

)α3
−

S
= 0, (B.5)
µ µ
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he entries (B.4) become⎧⎪⎪⎨⎪⎪⎩
∂L1
∂α1

=
∂L2
∂α2

= 1 + 3γα−4
+ 3α−6

+ (γ −
εẼ2

µ
)α2,

∂L1
∂α2

=
∂L2
∂α1

= 2α−6
+ 2(γ −

εẼ2

µ
)α2,

(B.6)

nd the condition (B.2) gives

0 =

(
1 + 3γα−4

+ 5α−6
+ 3(γ −

εẼ2

µ
)α2

)

×

(
1 + 3γα−4

+ α−6
− (γ −

εẼ2

µ
)α2

)
.

(B.7)

ppendix C. Neo-Hookean vs Mooney–Rivlin Constitutive Law

In this section, we briefly contrast two types of hyperelastic
onstitutive laws—the neo-Hookean vs Mooney–Rivlin by ex-
mining the loading of a cube. Specifically, We show how the
aterial parameters affect the stress–strain curve, especially the
nusual stress–strain response in Mooney–Rivlin solids with a
egative parameter (γ < 0). That is the reason we drop the
iscussion of the case of γ < 0 in the main article.

.1. Uniaxial loading

Subjected to a uniaxial loading in the X1 direction, the cube
eforms from 1 to λ in the X1 direction. Due to the constraint
f incompressibility, the cube deforms from 1 to λ−1/2 in the X2
nd X3 directions, respectively. Consider the neo-Hookean model
f hyperelastic materials. The strain–energy function of the cube
an be expressed as

e
=

µ0

2

(
λ2

+ 2λ−1
− 3

)
, (C.1)

here µ0 is the shear modulus at small deformation. The nominal
tress T in the X1 direction is

T =
∂W e

∂λ
= µ0(λ − λ−2). (C.2)

Consider the Mooney–Rivlin model that makes the strain–
energy function of the cube as

W e
=

µ

2

{(
λ2

+ 2λ−1
− 3

)
+ γ

(
λ−2

+ 2λ − 3
)}

, (C.3)

here µ and γ are material constants. The nominal stress T in
the X1 direction becomes

T =
∂W e

∂λ
= µ

{
(λ − λ−2) + γ

(
−λ−3

+ 1
)}

. (C.4)

.2. Equibiaxial loading

Subjected to the equibiaxial loading, the cube deforms from
to λ in both the X1 and X2 directions. Due to the constraint,

the cube deforms from 1 to λ−2 in the X3 directions. In this
xample, we exclude the discussion of asymmetric deformation.
onsider the neo-Hookean model of hyperelastic materials. Then
he strain–energy function of the cube is expressed as

e
=

µ0

2

(
2λ2

+ λ−4
− 3

)
, (C.5)

nd the equibiaxial nominal stress T in the X1 and X2 directions
is

T =
1 ∂W e

= µ0(λ − λ−5). (C.6)

2 ∂λ

m

7

Fig. C1. Loading of neo-Hookean and Mooney–Rivlin solids with different ma-
terial parameters. (a) Stress–stretch curve for uniaxial loading. For neo-Hookean
solids with a shear modulus of µ0 = 0.95µ, the stress–stretch curve can also be
represented by a Mooney–Rivlin solid with material parameters (µ, γ ) = (1, 0.3)
qualitatively and quantitatively. (b) Stress–stretch curve for equibiaxial loading.
Note that for negative parameters γ < 0, a tensile stress (T > 0) in (a) can even
lead to compression (λ < 1); moreover, a compressive stress (T < 0) in (b) can
make a tension (λ > 1). To exclude these unusual stress–stretch responses,
we thus omit the discussion of the case of γ < 0 in the electromechanical
instabilities in the main article.

If we take the Mooney–Rivlin model, the strain–energy func-
tion of the cube is

W e
=

µ

2

{(
2λ2

+ λ−4
− 3

)
+ γ

(
2λ−2

+ λ4
− 3

)}
, (C.7)

nd the nominal stress T in the X1 and X2 directions is (see Fig. C1)

T =
1
2

∂W e

∂λ
= µ

{
(λ − λ−5) + γ

(
−λ−3

+ λ3)} . (C.8)

ppendix D. Free energy of the electrostatic system

The linear bifurcation analysis can neither distinguish the type
f bifurcation nor determine the stability of the bifurcated branch.
e therefore carry out the stability analysis by using the energy
ethod. Consider the free energy of an electrostatic system [30,
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8]. Then the free energy G of a circular dielectric film subjected

to an applied voltage Φ in the thickness direction and an in-plane
symmetric dead load S can be written as

G = πR2HW (α1, α2, D̃) −

∫
∂B0

Ser · (x − X) − ΦQ , (D.1)

where ∂B0 is the lateral surface, i.e., ∂B0 = {X ∈ R3
:√

X2
1 + X2

2 = R, 0 ≤ X3 ≤ H}. Consider the homogeneous
hinning (1) in the main article, i.e., x1 = α1X1, x2 = α2X2, x3 =

α3X3. On the boundary ∂B0, we have the displacement

x − X = (α1 − 1)R cos θe1 + (α2 − 1)R sin θe2, (D.2)

and the inner product is

Ser · (x − X) = SR[α1 cos2 θ + α2 sin2 θ − 1], (D.3)

where 0 ≤ θ ≤ 2π . Thus,∫
∂B0

Ser · (x − X)

=

∫ 2π

0
SR2H[α1 cos2 θ + α2 sin2 θ − 1]dθ

= SπR2H(α1 + α2 − 2).

(D.4)

On the other hand, we consider the following form

ΦQ = πR2HẼD̃, (D.5)

where the nominal electric field is Ẽ = Φ/H and the nominal
lectric displacement is D̃ = Q/(πR2). Now the free energy
ensity is

=
G

πR2H
= W (α1, α2, D̃) − S(α1 + α2 − 2) − ẼD̃. (D.6)

For linear dielectrics, the energy function of the Mooney–
Rivlin type dielectrics is

W (α1, α2, D̃) =
µ

2

(
α2
1 + α2

2 + α−2
1 α−2

2 − 3
)

+
µ

2
γ
(
α−2
1 + α−2

2 + α2
1α

2
2 − 3

)
+

D̃2

2ε
α−2
1 α−2

2 .

(D.7)

y substituting (D.7) into (D.6), the equilibrium in electric quali-
ies, ∂g/∂D̃ = 0, gives

˜ =
D̃
ε

α−2
1 α−2

2 . (D.8)

It follows from (D.7) and (D.8) that the free energy density g in
(D.6) becomes

g =
µ

2

(
α2
1 + α2

2 + α−2
1 α−2

2 − 3
)

+
µ

2
γ
(
α−2
1 + α−2

2 + α2
1α

2
2 − 3

)
− S(α1 + α2 − 2) −

εẼ2

2
α2
1α

2
2 .

(D.9)

Consider the normalizations

ˆ =
g
µ

, Ŝ =
S
µ

, Ê =
Ẽ

√
µ/ε

. (D.10)

We then have the normalized free energy density

ĝ =
1
2

(
α2
1 + α2

2 + α−2
1 α−2

2 − 3
)

+
1
2
γ
(
α−2
1 + α−2

2 + α2
1α

2
2 − 3

)
− Ŝ(α1 + α2 − 2) −

Ê2
α2α2.

(D.11)
2 1 2

8

For certain loads Ŝ and Ê with a given material parameter γ ,
e can plot the contour of the free energy density ĝ on the α1−α2

plane.
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