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Soft robotics requires materials that are capable of large defor-
mation and amenable to actuation with external stimuli such
as electric fields. Energy harvesting, biomedical devices, flexi-
ble electronics, and sensors are some other applications enabled
by electroactive soft materials. The phenomenon of flexoelec-
tricity is an enticing alternative that refers to the development
of electric polarization in dielectrics when subjected to strain
gradients. In particular, flexoelectricity offers a direct linear cou-
pling between a highly desirable deformation mode (flexure)
and electric stimulus. Unfortunately, barring some exceptions, the
flexoelectric effect is quite weak and rather substantial bend-
ing curvatures are required for an appreciable electromechanical
response. Most experiments in the literature appear to con-
firm modest flexoelectricity in polymers although perplexingly,
a singular work has measured a “giant” effect in elastomers
under some specific conditions. Due to the lack of an under-
standing of the microscopic underpinnings of flexoelectricity in
elastomers and a commensurate theory, it is not currently pos-
sible to either explain the contradictory experimental results
on elastomers or pursue avenues for possible design of large
flexoelectricity. In this work, we present a statistical-mechanics
theory for the emergent flexoelectricity of elastomers consisting
of polar monomers. The theory is shown to be valid in broad
generality and leads to key insights regarding both giant flex-
oelectricity and material design. In particular, the theory shows
that, in standard elastomer networks, combining stretching and
bending is a mechanism for obtaining giant flexoelectricity,
which also explains the aforementioned, surprising experimental
discovery.

flexoelectricity | elastomers

Typical hard materials such as ceramics have elastic moduli
on the order of several hundreds of gigapascals. Their defor-

mation, under appropriate levels of mechanical forces, is barely
discernible to the naked eye. On the other end of the spectrum,
a change of area of nearly 1,700% has been demonstrated for
an acrylic membrane (1). While both hard and soft materials
have their respective usages, there are important technologi-
cal imperatives to consider highly deformable soft materials.
An oft-quoted example is that of a robotic appendage clasping
and moving an object (Fig. 1). This requires the capability of
large deformation. Ideally, we also hope that such a motion is
accomplished through the application of a stimulus that is eas-
ily applied (e.g., an electrical field through a battery) and with
a modest expenditure of energy. Soft materials that are highly
deformable, tough (2), and respond easily to stimuli such as
electric field (the focus of this work) have wide applications:
biomedical prostheses and devices (3–7), shape-conforming sen-
sors (8–11), energy harvesting (12–14), stretchable electronics
(15–18), and, of course, robotics (12, 19, 20). As a compelling
illustration of applications, we refer the reader to fascinating
recent works on using magnetic actuation to achieve a soft
robot made essentially of a rubber filament that is capable of

being steered through the complex cerebrovascular system with
aneurysms (20).

The electromechanical coupling that we hope for a soft mate-
rial to possess is piezoelectricity. Materials that are piezoelectric
permit a direct and a linear relation between the development
of an electric field and subjected mechanical stress, and vice
versa. Piezoelectricity can be shown by a linearized relation
between polarization (P) and the strain tensor (ε) as Pi ≈Dijkεjk ,
where D is a third-order tensor reflecting the piezoelectric
properties of the material. Unfortunately, piezoelectricity
requires the atomic structure of the material to conform to a
rather stringent set of symmetry conditions found only in cer-
tain hard ceramics. The rather few piezoelectric polymers such
as polyvinylidene difluoride (PVDF) are (relatively speaking)
fairly stiff.∗ Therefore, the electromechanical coupling mecha-
nism that we rely on in the context of soft dielectric elastomer
is the Maxwell stress effect or electrostriction—indeed, these
are the precise mechanisms operative in the example we quoted
in the preceding paragraph involving the nearly 1,700% areal
increase in the acrylic membrane (1). Both the Maxwell stress
effect and electrostriction are universally present in all dielectrics
where the induced mechanical strain ε scales with the square of
the applied electric field E2. There is no converse effect; hence,
applications such as energy harvesting and sensing are not eas-
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Fig. 1. Schematic of a soft robotic appendage, deforming in order to grab
an object due to electrical stimuli.

ily possible. Further, rather high electric fields must be imposed
to generate sufficient forces for an appreciable actuation. An
exciting alternative is to embed frozen charges and dipoles in
soft matter to create so-called electrets (21–26). Through the
interaction of preexisting immobile charges, electrostriction, and
the inherent softness of the material, electrets effectively act as
piezoelectrics.† While this is a promising research avenue, a key
impediment in the use and development of electret materials is
that the frozen external charges are only metastable and have a
propensity to leak out—especially at elevated temperatures and
under humid conditions (30).

Having established the relevant context regarding electrome-
chanical coupling mechanisms in soft materials, we now turn to
a yet another phenomenon—flexoelectricity—which has gener-
ated much recent attention (31–33). Briefly, it is the coupling
between polarization and strain gradients and can be illustrated
by Pi ≈ fijkl (∂εjk/∂xl), where f is a fourth-order tensor embody-
ing the flexoelectric behavior of the material. Like electrostric-
tion, flexoelectricity is also a universal phenomenon which occurs
in all insulating materials. In nonpiezoelectrics, the symmetry
of the charge density throughout the material is such that the
dipole moment per unit volume, that is, polarization, vanishes.
A homogeneous deformation cannot break the symmetry of the
ground-state charge density; however, strain gradients can and
do, thereby inducing polarization. Very interestingly, the flexo-
electric effect has been used to create apparently piezoelectric
materials without using piezoelectric materials (33–36) and has
broad-ranging applications in energy harvesting (37–42), and
sensors and actuators (43–46). The phenomenon also appears
to be implicated in several biophysical functions, for example,
the mammalian hearing mechanism (47–49). A notable aspect
of flexoelectricity is the associated size effect (31). The devel-
oped polarization due to flexoelectricity scales with the gradient
of the strain. Large strain gradients are most easily produced
when feature size is small (e.g., beam thickness, size of embedded
inclusions in a composite), and, indeed, at least for hard materi-
als, the phenomenon becomes appreciable only at the nanoscale.
For soft matter, due to the corresponding lower elastic modulus,

†Detailed theoretical framework outlining the conditions for when electrets act a piezo-
electric or even pyroelectric are available in refs. 26 and 27. Other illustrative examples
may be found in the literature (25, 28, 29).

a nontrivial flexoelectric response is even possible at micron-
length scales (41, 50, 51). As a notable example, Deng et al. (50)
exploited flexoelectricity to design soft materials whose apparent
piezoelectric strength is nearly 20 times greater than the hard fer-
roelectrics like barium titanate with feature sizes on the order of
0.6 µm.

The phenomenological theory of flexoelectricity, with vari-
ous degrees of sophistication and nuances, appears to be now
well developed (e.g., refs. 32, 52, and 53). In the context of
soft matter, a first attempt appeared in ref. 50, and we high-
light a more recent paper, ref. 53, that is specifically targeted
toward proper accounting for large deformations and the cor-
rect interpretation of the flexoelectric matter property tensor for
large deformations. Significant efforts have also been expended
toward computational approaches (e.g., refs. 53–56). At the
other end of the scale spectrum, extensive research has also
ensued on the microscopic underpinnings of the phenomenon.
The atomistic-scale mechanisms for flexoelectricity are now rel-
atively well understood for crystalline materials (57–61), liquid
crystals (62, 63), and two-dimensional (2D) materials (64–69).
However, a similar molecular-scale understanding of the flexo-
electricity of elastomers has remained elusive (31). This is a key
impediment in the design of next-generation soft materials that
exhibit substantive flexoelectricity. The flexoelectric coefficients
of most soft polymers (like elastomers) exhibit rather modest
values. Attempts were made, in refs. 70 and 71, to explain flexo-
electricity in elastomers through quasi-1D microscopically based
models which utilized linear elastic chains connecting neutral,
positive, and negative ions and a kind of free volume theory,
respectively. These models are useful to assess the order of mag-
nitude of the flexoelectric effect in elastomers but can hardly
capture the nuances of the actual mechanisms and thus are of
limited utility for designing materials. The state of affairs is
complicated further by experiments which indicate a wide range
of flexoelectricity in polymers (72, 73). In this work, we take
inspiration from the fact that statistical mechanics and polymer
network modeling have explained much of what we understand
about the microscopic underpinnings of elasticity (74–77) in elas-
tomers. More recently, a similar success has also been achieved
in the context of electroelasticity (78–80), which has inspired our
current approach.

In this work, we do the following.

1) We create a molecular-scale theory for the emergent
flexoelectricity of elastomers with polar monomers. The
molecular-scale theory is quite general; it is valid for two of
the most common theoretical models for polymers: the freely
jointed chain and the wormlike chain.

2) We provide an explanation for the rather wide and nonintu-
itive range of flexoelectric properties measured for polymers
and specifically explain the unusually large values obtained
when stretching and bending are combined.

3) We provide an interpretation of understanding microscopic
flexoelectricity using the notion of quadrupolar moments and
leverage this connection to develop material design principles
for tuning the direction of the flexoelectric effect, as well as
for stretch-invariant flexoelectricity.

4) Finally, we provide simple and clear guidelines to design soft
elastomers with giant flexoelectricity.

Statistical Mechanics of the Electroelasticity of a Freely
Jointed Chain
As a starting point, we derive the free energy of a polymer chain
in a fixed ambient temperature, T , with a fixed end-to-end vec-
tor, r, subjected to a constant electric field, E. We work in the
constant electric field ensemble as a matter of convenience and
will eventually use a Legendre transformation to arrive at the
Helmholtz free energy. To work in this ensemble, we need the
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variation of the electric field due to the presence of monomer
dipoles to be negligible; that is, the monomers need to be approx-
imately noninteracting.‡ Such an assumption is quite reasonable;
compare ref. 81 and SI Appendix, section 1, where we use Markov
chain Monte Carlo calculations to prove this point.

We assume that the energy required to deform an individual
monomer is much greater than kT , and, hence, we model the
monomers as rigid with length b. For the freely jointed chain,
monomers are also free to rotate about their neighboring bonds.
We denote the number of monomers per chain as n , the chain
stretch as γ : =r/nb, and the orientation of a monomer as n̂ so
that r = b

∑n
i=1 n̂i . By assumption, the monomers are polar, or,

in other words, have a permanent dipole attached to them. In
general, the dipole vector, µ, need not be aligned with n̂. How-
ever, we do assume that the dipole is a linear transformation
of n̂; that is, µ=Mn̂. If, for example, a dipole of fixed magni-
tude is attached rigidly to the monomer such that it rotates with
the monomer, then M =µQ, where Q∈SO (3). In any case, the
electric potential of a monomer depends on its orientation. Let
E : =MTE. Then the electric potential of a monomer is given by
the expression

u =−µ · E =− (Mn̂)· E =−E · n̂. [1]

In order to formulate the partition function, we divide the unit
sphere into N infinitesimal patches of area with unit normal
n̂i , i =1, 2, . . . ,N . Let mi denote the number of monomers in
the chain with direction n̂i . Then,

Z =
∑
{mj}′

{
exp

[
β

N∑
i=1

miE · n̂i

]
n!∏N

i=1 mi !

}
, [2]

where β=1/kT , and the prime over {mj}denotes that the sum-
mation is over all of the collections of population numbers that
satisfy the constraints:

∑
i mi =n and b

∑
i mi n̂i = r. Enumer-

ating over all of the terms in Eq. 2 is difficult, in general. Instead,
we approximate the logarithm of the sum by the logarithm of its
maximum term and, taking N →∞ (i.e., the continuum limit of
the population numbers), arrive at a mean-field theory. In doing
so, we find that

ρ (n̂)=C exp [βE · n̂+ τ · n̂], [3]

where ρ is a probability density function associated with finding
a monomer with some direction n̂, and C and τ are Lagrange
multipliers that are determined by enforcing the continuum
analog of the normalization and end-to-end vector constraints,
respectively,

n =

∫
S2

dA ρ,
r
b
=

∫
S2

dA ρn̂. [4]

Once the unknown multipliers have been determined, the closed-
dielectric free energy, F , is approximately

F =− 1

β
lnZ ≈

∫
S2

dA ρu +
1

β

∫
S2

dA ρ ln ρ. [5]

Let ξ : =βE + τ . Then the solution for C and ξ is well known
(82), and

C =
nξ csch ξ

4π
, ξ=L−1 (γ)r̂, [6]

‡To be precise, we assume that the energy of dipole–dipole interactions is small relative
to the thermal energy of the chain, nkT . An order of magnitude estimate for this condi-

tion can be obtained from dimensional analysis: µ̃2� 1, where µ̃ : =µ/
√
ε0b3kT , and

µ is a characteristic dipole magnitude.

where ξ= |ξ|, r̂ = r/r , and L−1 is the inverse Langevin function.
Based on cursory examination of Eq. 6, it may seem somewhat
surprising that ρ is independent of the electric field and is, in
fact, equivalent to the ρ that maximizes the entropy. However, it
is easy to show that this is indeed the ρ which minimizes the free
energy for any monomer potential energy which is linear in n̂. To
show this, let ρ′ be any function which satisfies the constraints,
Eq. 4, and let u (n̂)=α+An̂. Now, we can perturb ρ with some
arbitrary function δρ (n̂)and still satisfy the constraints provided,∫

S2
dA δρ=0,

∫
S2

dA (δρ)n̂=0. [7]

Then the change in internal energy due to ρ→ ρ+ δρ is∫
S2

dA (ρ+ δρ)u −
∫
S2

dA ρu =

∫
S2

dA (δρ)(α+An̂),

which vanishes by Eq. 7. Therefore, if the monomer potential
energy is linear in n̂, then all ρ which satisfy Eq. 4 have the same
internal energy. In conclusion, we infer that, in this case, the den-
sity which minimizes the free energy is the same as that which
maximizes the entropy.

Next, using Eqs. 6 and 3 in Eq. 5, we obtain the chain free
energy,

F =n

[
1

β

(
γξ+ ln

ξ csch ξ

4π

)
− γ (E · r̂)

]
. [8]

Finally, we define the chain polarization as p=
∫
S2 dA ρµ. It is

easy to show that −∂F/∂E =p.§ Thus,

p=M
r
b
=nγMr̂, [9]

where r̂ = r/r . By Eq. 9, the chain polarization is determined
uniquely by the chain end-to-end vector, irrespective of the tem-
perature or the electric field. In addition, since γ ∈ [0, 1], we have
that p ∈ [0,nκ (M)], where κ (�) is the spectral radius of �. If
M =µQ, then the maximum polarization simplifies to nµ and
occurs when the chain is fully stretched. Importantly, despite the
fact that dipole–dipole interactions were assumed negligible in
deriving Eq. 9, we note that Markov chain Monte Carlo simula-
tions agree with Eq. 9 nearly exactly, even when dipole–dipole
interactions are significant (SI Appendix, section 1).

Statistical Mechanics of the Electroelasticity of a Wormlike
Chain
Ultimately, because we are interested in what universal phenom-
ena may arise from all polymer chains with polar monomers—
not just those that behave as freely jointed chains—we next
consider polar monomers in a wormlike chain. By wormlike
chain, we mean a chain which again consists of rigid monomers
but has some bending stiffness along its contour. That is, the
bond which joins monomer i to monomer i +1 has rotational
stiffness Ki . Recalling E : =MTE, the Hamiltonian reads

H=

n∑
i=1

(
Ki

2b
(n̂i+1− n̂i)

2−EEE · n̂i

)
, [10]

where it is assumed that Kn =0 to simulate a hinged boundary
condition (at the chain’s end). In the limit of b→ 0 and n→∞,

§ In general, the relationship between E and p requires solving a nonlocal boundary
value problem. However, when dipole–dipole interactions are negligible, the nonlocal
relationship simplifies to the local one given in ref. 81.
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Eq. 10 becomes

H'
∫ L

0

(
K (s)

2

∣∣∣∣dn̂
ds

∣∣∣∣2− 1

b
EEE · n̂

)
ds, [11]

where L=nb is the chain length, and the chain is parameter-
ized by its arclength, s ∈ [0,L]. For simplicity, we assume that the
stiffness is same throughout the chain, that is, K (s)=K .

Here we again consider a fixed end-to-end vector ensemble.
Formally, the end-to-end vector and normalization constraints
are

g [n̂]=
1

L

(
b

n∑
i=1

n̂i − r

)
' 1

L

∫
s

n̂ ds − r
L
= 0,

h(s)= n̂i · n̂i − 1' n̂(s) · n̂(s)− 1=0.

[12]

Let g [n̂]= (g1, g2, g3); when evaluating the partition function, the
constraints are enforced through Dirac delta distributions (83)
and functionals (84),

Z =

∫
exp[−βH] δ(g1)δ(g2)δ(g3)δ [h] Dn̂.

Using the Fourier space representations of the Dirac delta
distributions and functional (84), we have

Z =
1

(2π)4

∫
exp

[
−βHeff

]
d3k Dγ Dn̂, [13]

where k= {k1, k2, k3} and γ= γ (s)are wave vectors, and where
the effective Hamiltonian is defined as

Heff'
∫ L

0

(
K

2

∣∣∣∣dn̂
ds

∣∣∣∣2− 1

b
EEE · n̂− i

Lβ
k · n̂

)
ds

+
i

Lβ
k · r−

∫ L

0

i

Lβ
γ(s) (n̂ · n̂− 1) ds.

[14]

The last term in Eq. 14 is anharmonic, and therefore makes
Eq. 13 difficult, if not impossible, to evaluate exactly. As a result,
we proceed to approximate the partition function by dropping
the normalization constraint; that is, we let γ(s)→ 0. This elim-
ination is equivalent to allowing the monomers to stretch or
contract. We show, in SI Appendix, section 2, by using a vari-
ational approach, that this assumption (interestingly) does not
alter our result.

Next, to evaluate (the harmonic approximation of) Z , we use
the Fourier transform of n̂(s) given by

n̂(s)=
∑
q∈K

ω(q) exp [iqs], [15]

where K= {q : q =2nπ/L,n ∈Z, qmin≤ |q | ≤ qmax}, qmin =0, and
qmax =2π/b. The amplitudes of each mode ω(q) can be achieved
by

ω(q)=
1

L

∫ L

0

n̂(s) exp [−iqs]ds. [16]

By definitions Eqs. 15 and 16, we rewrite the effective Hamilto-
nian in Eq. 14 as follows:

Heff
0 =L

∑
q∈K

(
K

2
q2|ω(q)|2

)
− L

b
EEE ·ω(0)

− i

β
k ·ω(0)+ i

Lβ
k · r,

[17]

where Heff
0 is the effective Hamiltonian upon dropping

the normalization constraint, and ω(0)= r/L by defini-
tion. Notice that the partition function is now harmonic
in the unknowns. Indeed, introducing α(q , k)= [ω1(qmin :
qmax),ω2(qmin : qmax),ω3(qmin : qmax), k1, k2, k3], where Size (α)= :
m , we rewrite Eq. 17 as a quadratic function with the linear term

βHeff
0 =

m∑
i,j=1

1

2
αiAijαj + biαi , [18]

where A and b can be achieved from Eq. 17 by straightforward
calculation. Plugging Eq. 18 into Eq. 13,

Z0 =
1

(2π)4

∫
exp

[
−βHeff

0

]
dmα,

=
1

(2π)4

√
(2π)m∏

|q|∈K&q 6=0(2LβK |q |2)3
exp

[
β

b
EEE · r

]
. [19]

Once the partition function is obtained, we can identify the free
energy of the system as follows:

F =− 1

β
ln (Z0)= const+

3

2β

∑
|q|∈K&q 6=0

ln(2LβK |q |2)− 1

b
EEE · r.

Thus recalling E : =MTE, by definition, the polarization can be
achieved by

p=−∂F
∂E

=M
r
b
=nγMr̂, [20]

which is identical to Eq. 9. We remark, as already noted earlier,
that accounting for normalization constraint does not change the
polarization of the system.

In the remainder of the work, we show that the stretch–
polarization relationship (i.e., the relationship between a chain’s
end-to-end vector and its net dipole) is a key component of the
flexoelectric effect of elastomers consisting of polar monomers.
By Eqs. 9 and 20, we can see that this relationship is consis-
tent for both freely jointed and wormlike chains, and is invariant
with respect to the ambient temperature or applied electric field.
Further, although the analytical expressions were determined
by assuming negligible dipole–dipole interactions, Monte Carlo
simulations agree nearly exactly, even when dipole–dipole inter-
actions are significant (SI Appendix). This surprisingly consistent
result is a consequence of the monomer dipole constitutive
response and the correspondence between thermodynamic state
variables and ensemble averages. Indeed, let 〈�〉 denote the
ensemble average of �. Then, the same relationship can be
obtained almost by definition,

r = b

〈
n∑

i=1

n̂i

〉
,

p=

〈
n∑

i=1

µi

〉
=M

〈
n∑

i=1

n̂i

〉
=M

r
b
.

The broad applicability of the monomer dipole constitutive
model [i.e., dipolar molecules are not uncommon (85)] and the
consistency of the stretch–polarization relationship together sug-
gest that the theory developed herein is potentially quite general;
that is, it is expected to be valid for a wide range of types
of elastomers, and for a variety of loading and environmental
conditions.

Network Polarization: Coarse Graining from Chain Scale to
the Continuum Scale
In coarse graining from the chain scale to the continuum scale,
we assume that each material point can be represented by a prob-
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ability distribution of chains and that these chains are in weak
interaction with each other [that is, the free energy density at a
material point is approximately the product of the average chain
free energy—as if the chains were in isolation—and the density
of chains per unit volume (86)]. This assumption is standard in
elastomer elasticity (74, 77, 87–89), and has been used recently in
elastomer electroelastictiy (78–80, 90). It is also consistent with
our assumption that monomer–monomer interactions are negli-
gible within a chain itself. Let 〈�〉r denote the average of � over
chains in the current configuration. Then, by the weak interac-
tion assumption, the closed-dielectric free energy density, W∗,
at a material point is

W∗=N 〈F〉r , [21]

where N is the number of chains per unit volume. Similarly, we
take the (continuum-scale) polarization (i.e., dipole moment per
unit volume), P, as the average over chain polarizations; that is,

P =N 〈p〉r =NM
〈 r
b

〉
r
. [22]

Note that, as a consequence of Eqs. 5 and 22, and, since aver-
aging is a linear operation, P =−∂W∗/∂E.¶ This result, in
congruence with a rigorous thermodynamic treatment of the
consequences of deriving the chain-scale free energy in a fixed
electric field ensemble, leads us to the conclusion that W∗ is
the Legendre transform (with respect to polarization) of the
Helmholtz free energy density,W . Thus,

W =W∗− P · E. [23]

The chain averaging considered thus far has been in the cur-
rent configuration. To, instead, understand these quantities in
terms of the reference configuration and continuum-scale defor-
mations, we must make a kinematic assumption regarding how
chains in the reference configuration are mapped into the cur-
rent configuration.# Here we assume that chain end-to-end
vectors are mapped from the reference to the current configu-
ration under the deformation gradient, F. In the literature, this
is known as the affine deformation assumption (74).

Finally, let 〈�〉r̃ denote the average of � over chains in the
reference configuration, J : = detF, N0 : =JN , and P̃ : =JP. (We
say that P̃ is the pullback of P.) Then

W∗ (F; E)=N0 〈F (Fr̃, E)〉r̃ ,

W (F; E)=W∗ (F, E)− J−1P̃ (F)· E,

P̃ (F)=N0 〈p (Fr̃)〉r̃ ,

where we write P̃ = P̃ (F) to reinforce the fact that, in the case
when monomer–monomer and chain–chain interactions are neg-
ligible, the polarization is determined uniquely by the deforma-

¶This follows, in part, because their nonlocal relationship at the chain scale simplifies to
a local one (80).

#Historically, there has been some controversy related to this. The two most common
kinematic assumptions are what we will refer to as the affine deformation assump-
tion and the cooperative network assumption. In either case, the reference chains are
arranged in a unit cell, and the cell is deformed in relation to the deformation gradi-
ent, F. According to the affine deformation assumption, the chain end-to-end vectors in
the reference configuration, r̃, are mapped to the current configuration by r = Fr̃ (74),
whereas, for the cooperative network assumption, the unit cell is first rotated such that
its axes are aligned with the principal frame (76). Then the cell is deformed along each
of its axes according to its respective principal stretch. In the context of both elasticity
(74, 77) and electroelasticity (91, 92), there are important differences between the two
assumptions, which can sometimes even lead to qualitatively different behaviors. In this
work, we will focus on deformations which, in the frame of reference of interest, are
such that F is diagonal. Thus, the two kinematic assumptions will be equivalent.

tion. We also mention that E is not a freely varying parameter
but is determined from Gauss’s law; that is,

divE =
1

ε0
(%f − divP),

where ε0 is the permittivity of free space, and %f is the density of
free charges.

Before moving on, we pause to consider P̃. It is certainly true
for an isotropic distribution of chains, but—since polymer chains
are essentially entropic springs with a minimum energy length
of r =0—even for a general stress-free distribution of chains,
we expect that 〈r̃〉r̃ =0. For any such reference distribution of
chains, we find that, under the affine deformation assumption,
the polarization vanishes for all F. Indeed, since averaging is
linear,

P̃ =N0

〈
M

Fr̃
b

〉
r̃

=
N0

b
MF 〈r̃〉r̃ = 0.

It would seem then that our model, at least thus far, is not
very interesting. More precisely, this model does not give rise to
piezoelectricity. This is also reassuring in the sense that a conven-
tional elastomer is indeed not piezoelectric; however, we will (in
due course), aside from flexoelectricity, be able to comment on
the precise conditions for the design of emergent piezoelectricity
as well.

Flexoelectricity and the Elastomer Unit Cell
Moving forward, we will be interested in the polarization as a
function of GradF, where F is the deformation gradient; that
is, we are interested in P̃ = P̃ (GradF) and whether or not this
relationship is as trivial as the polarization as a function of merely
F. The GradF term could, for instance, be the result of a bending
deformation and, hence, result in flexoelectricity. To model the
effects of GradF at a material point, we must now think beyond
the probability distribution of r̃ and consider also the geometry
of the unit cell.

Prior work [mentioned in the previous section (74, 78, 87–89)]
which developed and made use of a unit cell in the reference
configuration in order to relate continuum-scale deformations to
chain-scale deformations was focused primarily on the statistical
distribution of chain end-to-end vectors and the choice of kine-
matic assumption. To the authors’ knowledge, the geometry of
the unit cell was not ever considered significant in and of itself
(other than to ensure that r̃ = b

√
n for all r̃). We are therefore

in the position of being interested in defining a unit cell geometry
but of being more or less without precedent. Therefore, as a first
example, we will assign dimensions to the Arruda–Boyce eight-
chain model (or rather, determine the dimensions and let them
have physical significance) (see refs. 76 and 77, for example). The
unit cell Fig. 2A consists of eight chains, each emanating from the
center of the cell to one of the eight corners of the cube.

Each chain is assumed to satisfy r̃ = b
√
n; thus, the length

of an edge of the unit cell is ` : =2b
√

n/3.‖ The kinematic
assumption that we now make—similar to the affine deformation
assumption—will be that 1) the unit cell deforms under F (where
F is allowed to vary throughout the cell) and 2) the beginning and
end of the chain end-to-end vectors remain rigidly attached to
their corresponding points in the unit cell. For the eight-chain
model, this means that each of the end-to-end vectors, in the
deformed configuration, still begins at the center of the cell and
ends at its respective corner.

‖The length b
√

n is motivated by random walk statistics. It is the most likely distance
(from the starting point) for a random walk of n steps with step length b. Assuming all
chains in the reference configuration have length r̃ = b

√
n is a standard assumption in

the constitutive modeling of rubber (74, 76, 87–89).
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Fig. 2. Schematic of a unit cell of an eight-chain model in (A) reference and (B) deformed state upon bending. The yellow arrows indicate the chain
polarization in both configurations. While the unit cell in the reference configuration is electrically neutral, the net polarization is upward in the deformed
configuration under bending.

Having decided on an example unit cell, we next identify defor-
mations of interest. As mentioned previously, we will limit our
investigation, for the time being, to diagonal F. In addition,
since most elastomers are approximately incompressible, we will
consider F such that J =1. Thus, let

F (x)= diag
(
λ1 (x),λ2 (x), (λ1 (x)λ2 (x))

−1), [24]

where x is the position of a material point in the refer-
ence configuration. For ease of notation, let λi,j : =∂λi/∂xj .
Then, we assume F varies gradually enough relative to
the size of a unit cell such that GradF is approximately
constant. To be precise, we assume ε : =maxi,j |r̃λi,j |� 1.
Next, let y denote a position within the eight-chain unit
cell so that yi ∈ [xi − `/2, xi + `/2]. Then, λi (y)=λi (x)+∑3

j=1 λi,j (x)yj +O
(
ε2
)
. Neglecting O

(
ε2
)

terms, we have the
result

〈r〉r =
r̃

3
(r̃λ1,1, r̃λ2,2,α3), [25]

where

α3 =

√
3

8

2∑
i=1

2∑
j=1

2∑
k=1

{
(−1)k

×
[
λ1 +

r̃√
3

(
(−1)iλ1,1 +(−1)jλ1,2 +(−1)kλ1,3

)]
−1

×
[
λ2 +

r̃√
3

(
(−1)iλ2,1 +(−1)jλ2,2 +(−1)kλ2,3

)]
−1

}
.

The expression for α3 is still complicated, however. To sim-
plify further, and because we are ultimately interested in
flexoelectricity, consider λ1 and λ2 of the form

λj =λj +λj ,3x3, [26]

as this could correspond to a bending about some axis in the
ê1, ê2 plane. In this case,

〈r〉r =

0, 0,
−3r̃2

(
λ2λ1,3 +λ1λ2,3

)(
3λ1

2− r̃2λ2
1,3

)(
3λ2

2− r̃2λ2
2,3

)
, [27]

such that, in general, we have a nonzero polarization. Further,
we can see from Eq. 22 that, if M =µI (where I is the identity
operator), then P is aligned (or antialigned) with Gradλ1 and
Gradλ2 (i.e., the ê3 direction).

We can make the following observations regarding Eq. 27.

1) It is interesting to see, in Eq. 27, that 〈r〉r can diverge if 3λ1
2
=

r̃2λ2
1,3 or 3λ2

2
= r̃2λ2

2,3. For this to occur, roughly speaking,

the deformation gradient F must change appreciably relative
to the size of the unit cell (more precisely, r̃λi,3 =O (1)). This
violates a prior assumption, and so it should not be surprising
that it leads to nonphysical results. If F changes apprecia-
bly relative to the size of the unit cell, then perhaps our unit
cell is too large or we need to resort to a different modeling
approach altogether.

2) It is also interesting that, if λ2λ1,3 =−λ1λ2,3, then P̃ vanishes.
This is, in part, because of incompressibility. Indeed, let λ3

denote the stretch in the ê3 direction. Then,

λ3 =
(
λ1λ2 +

(
λ2λ1,3 +λ1λ2,3

)
x3 +λ1,3λ2,3x

2
3

)−1,

such that
(
λ2λ1,3 +λ1λ2,3

)
=0 implies λ3 (x3) is an even func-

tion, and, therefore, all of the chains experience the same stretch
in the ê3 direction.

3) To see how the flexoelectric effect scales with stretch, con-
sider λ3 : =

(
λ1λ2

)−1. Neglecting O
(
ε2
)

terms in the denom-

inator of Eq. 27 results in P̃3∼O
((
λ2λ1,3 +λ1λ2,3

)
λ
2
3

)
. As

a result, we see that our theory agrees with the surprising
experimental result that prestretching the elastomer in the
direction of GradF can lead to giant flexoelectricity (93).
Note that, if λ1 =λ2 =λ

−1/2
3 , then this enhancement scales as

λ
3/2
3 ; however, if 1=λ1�λ2 =λ

−1
3 (or vice versa), then the

enhancement is quadratic in λ3.

Elastomer Design and the Conditions for the Piezoelectric
Effect
Although not the primary focus of the current work, since piezo-
electricity is arguably the most well-known and direct form of
electromechanical coupling, it would be illuminating to under-
stand the precise conditions under which an elastomer can be
designed to exhibit such a property. We emphasize once again
that, while flexoelectricity is universal, piezoelectricity is not, and
we know of no piezoelectric elastomers.∗∗ To make progress on
this, we assume that M differs from chain to chain. By doing so,
from Eq. 22, the polarization becomes

P̃ = JP = JN 〈p〉r =N0

〈
M

r
b

〉
r
. [28]

A special case can be constructed by considering a relation of
M(2) =−M(1) in which M(1) (M(2)) belongs to the upper (lower)
half of chains in the ê3 direction of the eight-chain model, as
shown in Fig. 3.

**Certain polymers—but not elastomers—do exhibit piezoelectricity, such as PVDF (94)
and polymer–ceramic composites (95).
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3

Fig. 3. Schematic of an eight-chain model exhibiting piezoelectric behav-
ior. The arrows show the direction of the polarization of each chain.

Here, by considering the eight-chain model, we are assuming
that the system is isotropic from a mechanical (elastic) perspec-
tive, while the linear transformation M is not unique in the entire
cell and thus not isotropic from an electrostatic point of view.
This assumption gives us a nonvanishing polarization, even in the
reference configuration.

We consider a deformation which varies along the unit cell;
that is, λi (y)=λi (x)+

∑3
j=1 λi,j (x)yj +O

(
ε2
)
. Based on the

model we introduced for flexoelectricity in previous section, we
obtain

〈Mr〉r =
1

2

[〈
M(1)r

〉
r
+
〈

M(2)r
〉

r

]
=M(1) r̃

3
(0, 0,α3),

where

α3 =

√
3

8

2∑
i=1

2∑
j=1

2∑
k=1{[

λ1 +
r̃√
3

(
(−1)iλ1,1 +(−1)jλ1,2 +(−1)kλ1,3

)]
−1

×
[
λ2 +

r̃√
3

(
(−1)iλ2,1 +(−1)jλ2,2 +(−1)kλ2,3

)]
−1

}
.

Again, our ultimate goal is to investigate flexoelectricity. There-
fore, restricting our attention to the bending about some axis
in the ê1, ê2 plane the same as Eq. 26, we obtain the net
polarization after the deformation of the unit cell as follows:

P̃ =N0

〈
M

r
b

〉
r

=N0M(1)

0, 0,

√
3r̃
(
3λ1λ2 + r̃2λ1,3λ2,3

)(
3λ1

2− r̃2λ2
1,3

)(
3λ2

2− r̃2λ2
2,3

)
T .

Here, there are few observations that can be made.

1) The net polarization after the deformation has contributions
from two different types of deformations. The first term (in
the numerator) is from the deformation gradient itself, which

is an indication of the piezoelectric effect; meanwhile, the sec-
ond term originates from the gradients of the deformation
gradient, which is an indication of the flexoelectric behavior.

2) By assumption, maxj |r̃λj ,3|=O (ε) is small. Thus, the sec-
ond term, which is attributed to the flexoelectric effect, is
much smaller than the flexoelectric response of the electrically
isotropic case in the previous section (to be precise, it isO

(
ε2
)

compared to O (ε)). The conclusion is that, in this case, while
we have increased the piezoelectric effect, it has been at the
expense of flexoelectricity.

3) Similar to the previous setup of the unit cell, stretching the
unit cell in the ê3 direction can enhance both piezoelec-
tric and flexoelectric response in a linear and quadratic way,
respectively.

The Design of Elastomers for Emergent Flexoelectricity
Clearly, we should maximize the spectral radius of M if we aim
to maximize the flexoelectric effect. For the case of a fixed dipole
rigidly attached to each monomer (i.e., M =µQ), this amounts to
maximizing the magnitude of the dipoles, µ. We could poten-
tially engage in such a design process (computationally) by using
density functional theory (see ref. 96, for example). However,
we also note that it is often trivial to increase the density of
cross-links in an elastomer. In addition, we could theoretically
influence the alignment of chains in the network by weakly cross-
linking, applying an external electric field, and then cross-linking
further. Therefore, it is also conceivable that the unit cell itself
can be taken as a design variable (80). This may prove to be a
fruitful endeavor, since, for elastomers that consist of the type of
polymer chains considered herein, the geometry of the unit cell
and the arrangement of chains within the unit cell influence the
magnitude and direction of the flexoelectric effect.

The main goal that we now focus on is to design an elas-
tomer unit cell to tune the flexoelectric response. In particular,
we propose (in analogy with the dominant role a dipole moment
plays in the phenomenon of piezoelectricity) that flexoelectric-
ity is primarily dictated by the next-order multipole expansion
term—the quadrupolar moment. In particular, we anticipate
unit cells with large variations to have a stronger flexoelectric

3

(1)
(2)

(3)

(4)

Fig. 4. Design of an eight-chain unit cell to tune the flexoelectric response.
Polymers are paired together through an inversion symmetry as shown by
numbers, and, when the electrical properties of the four pairs are tuned
to maximize the gradient of the quadruple moment of the unit cell, the
flexoelectric response is stretch invariant.
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response. The quadrupole moment can be constructed from
two dipole moments in opposite directions. The quadrupole
moment (Q) is a second-order moment of charges and can be
formulated as (97)

Q=

n∑
i=1

[
3xi ⊗ xi − |xi |2I

]
qi , [29]

where the sum is over all discrete charges (qi), xi is the position
vector of the charge qi , and I is the identity matrix. Analogous
to the fact that dipole distribution can be architected to design
materials with high piezoelectricity, quadrupole moment and its
gradient can play the same role in designing giant flexoelectric
materials.

Here we aim to establish a reference unit cell with vanishing
net polarization but finite quadrupole moment and its gradient.
We claim that the higher gradient in quadrupole moment will
result in higher flexoelectric effect. The simplest example can
be achieved by enforcing an inversion symmetry about the cen-
ter of the eight-chain unit cell (as shown in Fig. 4), which leaves
four pairs of chains, each with a different M and each acting as a
quadrupole moment.

We make the choice

M =
1

K1
M(1) =

1

K2
M(2) =

1

K3
M(3) =

1

K4
M(4),

where Ki (i =1 : 4) are some arbitrary real numbers. Again, con-
sider a deformation gradient of the form Eq. 24 and its associated
assumptions. By restricting the deformation to the bending of the
unit cell similar to Eq. 26, the polarization after the deformation
is obtained as

P̃ =
∑
i

N
(i)
0

b

〈
M(i)r(i)

〉
r
=

N0

b
M(1)r̃2 (α1,α2,α3),

where αi are defined as

α1 =
1

12
(K2 +K3−K1−K4)λ1,3,

α2 =
1

12
(K3 +K4−K1−K2)λ2,3,

α3 =
−3(K1 +K2 +K3 +K4)

(
λ2λ1,3 +λ1λ2,3

)
4
(
3λ1

2− r̃2λ2
1,3

)(
3λ2

2− r̃2λ2
2,3

) .

Upon a closer examination, we notice that the third term is
exactly the flexoelectricity constant we obtained in Eq. 27 for
the case K1 =K2 =K3 =K4 =1, which is equivalent to the
electrically isotropic case.

However, if we allow the Ki to vary, we see that we can obtain
flexoelectricity in the plane orthogonal to ê3. Indeed, if we make
the choice K1 =K4 =−K2 =−K3, this results in enhancing the
α1 while eliminating α3. Interestingly, we see that, in this case,
the flexoelectric effect is invariant with respect to λ1 and λ2. This
property may be particularly useful for applications in soft sen-
sors and robotics where we may expect finite stretches to occur
but would prefer the flexoelectric response to remain constant,
or, at the very least, not diminish.

Concluding Remarks
In this work, we have established the mechanisms (and the
underlying theory) underpinning flexoelectricity in elastomers.
Surprisingly, our theory shows that giant flexoelectricity can be
attained in incompressible elastomers by prestretching the mate-
rial in the strain gradient direction. In particular, the scaling of
the flexoelectric effect with respect to prestretch is at least super-
linear (with exponent 3/2) and, for certain loading conditions,
can scale quadratically with prestretch. This suggests a facile
route to achieve high-output energy harvesting and high-fidelity
soft sensors.

We also considered the design of the polymer network archi-
tecture. By poling the chains (e.g., using an applied electric
field), we can develop a piezoelectric elastomer. This piezoelec-
tricity is at expense of the flexoelectric effect which diminishes
in the poled architecture. The emergent flexoelectric effect
can also be 1) made stretch invariant, and 2) tuned in dif-
ferent directions relative to the direction of the strain gradi-
ent by adjusting the quadrupolar moment of the material unit
cell. Stretch invariance may prove useful for soft sensors, and
the tunable nature of the flexoelectric direction may be use-
ful for producing soft robots with larger degree-of-freedom
actuators.

Data Availability. All study data are included in the article and SI
Appendix.
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