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Abstract

Biological membranes undergo noticeable thermal fluctuations at physiological temperatures. When two membranes

approach each other, they hinder the out-of-plane fluctuations of the other. This hindrance leads to an entropic repul-

sive force between membranes which, in an interplay with attractive and repulsive forces owing to other sources, affects

a range of biological functions: cell adhesion, membrane fusion, self-assembly, binding–unbinding transition among others.

In this work, we take cognizance of the fact that biological membranes are not purely mechanical entities and, owing to

the phenomenon of flexoelectricity, exhibit a coupling between deformation and electric polarization. The ensuing cou-

pled mechanics–electrostatics–statistical mechanics problem is analytically intractable. We use a variational perturbation

method to analyze, in closed form, the contribution of flexoelectricity to the entropic force between two fluctuating

membranes and discuss its possible physical implications. We find that flexoelectricity leads to a correction that switches

from an enhanced attraction at close membrane separations and an enhanced repulsion when the membranes are further

apart.
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1. Introduction

Consider the following biological observations: (1) a lipid bilayer wrapping around a particle or another biologi-
cal entity underlying endocytosis [1]; (2) two cells adhering as a precursor to fusion [2,3]; (3) unbinding of a cell
subsequent to adhesion [4,5]; and (4) formation of a stable aggregate of vesicles with a stable mean separation
distance [6]. These are all examples of the rather complex interplay of repulsive and attractive forces between
cells and vesicles. Adhesion requires the attractive forces to be dominant. Formation of a stable aggregate,
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Figure 1. Schematic of a pair of fluctuating fluid membranes separated by a mean distance of d. Even neutral membranes are

not purely mechanical entities and flexoelectricity is a universal phenomenon whereby changes in curvature lead to polarization.

Accordingly, two fluctuating membranes will also lead to a an electrostatic interaction.

including the experimentally observed lamellar phase in vesicles, alludes to an equilibrium balance between
the attractive and repulsive forces, and finally, unbinding transition is an indicator of repulsive forces dominat-
ing the interaction. The biophysical consequences are evident, e.g., to name just a few: fusion is central to the
beginning of life [2], whereas cell adhesion can play a critical role in bacterial infection [2, 7].

In the context of neutral membranes, around 1977, the key forces known to mediate between biological
membranes1 were the van der Waals attraction and the so-called hydration (repulsive) force. The ubiquitous
van der Waals force provides for a weak long-range attraction that varies as 1/d3 for close separations and
scales as 1/d6 for larger distances [8,9]. Here, d is the mean separation distance between the membranes. In
contrast, hydration force is an extremely short-range repulsion [10] which drops off exponentially after just a
few Ångstroms.2 Several observations led Helfrich [6] to explore the possibility of another (unacknowledged
until then) force of a repulsive character. He argued that in self-assembled systems, an explanation of observed
equilibrium separation distance (10s to 100s of nanometers) could only be explained by postulating a long-
range repulsive force. He further pointed out that some vesicles did not appear to cohere at all and subjecting
the membranes to tension promoted adhesion. Helfrich’s central idea to reconcile these observations can be
summarized as follows: typical fluid membranes have a bending modulus in the range of 15–25kBT . Thus, the
membranes are quite flexible and undergo noticeable mechanical undulations at physiological temperatures.
Consider now two membranes at equilibrium with a thermal bath, placed parallel to each other and undergoing
displacement fluctuations as shown in Figure 1. When sufficiently far apart, each will fluctuate freely unaffected
by the presence of the other. However, when brought close together, the membranes will hinder each other’s out-
of-plane fluctuations. This leads to a decrease in the entropy of each membrane and hence an increase in free
energy. The closer the membranes are brought together, the larger the increase in free energy. This interaction
therefore leads to a repulsive force that acts to push apart the membranes or alternative an external pressure is
then necessary to keep the two membranes at a fixed distance apart. The entropic nature of the repulsive force
is evident, and predicated on a variety of physical arguments and mathematical approximations, Helfrich [6]
proposed that this force scales as 1/d3. The entropic force, in sharp contrast to the only other known repulsive
hydration force, is decidedly long range and competes with the van der Waals force at all distances [8, 9, 11–
14]. We remark that, placing membranes under tension reduces fluctuations and therefore promotes adhesion
(consistent with experimental observations). Furthermore, owing to the competition between two long-range
forces (van der Waals and entropic), self-assembly is also readily explained.

If the change in the elastic energy of a single fluctuating membrane is described by a harmonic function, it
is rather simple to analytically solve the underlying statistical mechanics problem. However, for two interacting
membranes, we must impose an additional constraint: the membranes cannot interpenetrate each other. This
constraint poses a formidable challenge in the ensuing statistical mechanics problem, rendering it anharmonic
even for a harmonic elastic energy and an exact analytical solution becomes all but impossible. Helfrich [6] first
solved this problem using a simple approximation. As we elaborate further in the next section, he simplified
the inter-penetrability constraint in that rather than imposing this constraint at every single point, he assumed
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the membrane to obey it “on average.” Based on this simplification, he successfully obtained an approximate
solution for the entropic pressure: α(kbT)2/κbd3. Here α is a constant and κb is the bending modulus of the
membrane. Since Helfrich’s pioneering work, this topic has attracted significant attention in the literature span-
ning nearly five decades3 ranging from improved analytical approximations [15–27] (which provide a refined
estimate of α) to numerical treatments [15, 18, 28, 29] of one or more fluctuating membranes. Interestingly, this
topic has also inspired exploration of entropic forces in other contexts, e.g., [30–32].

We may, at this point, consider the entropic force between two purely mechanical membranes to be largely
settled. However, we must take cognizance of the fact that even neutral membranes are not quite purely mechan-
ical entities. The coupling between strain gradients and polarization is the phenomenon of flexoelectricity
[33–38]. All materials (including biological membranes and even fluid membranes) exhibit the phenomenon of
flexoelectricity. Specifically, in the context of membranes, flexoelectricity is simply the change in the dipole
moment upon changes in the curvature. Thus, for biological membranes that bend quite easily, this phe-
nomenon embodies quite an expedient electromechanical coupling mechanism. The microscopic underpinning
of flexoelectricity for biological membranes were established by Petrov in a sequence of pioneering works, see
[39–44] and references therein. Numerous works appear to indicate that flexoelectricity is an important electro-
mechanical coupling in the context of biology and has been implicated in ion transport [39], hearing mechanism
[39, 42, 45–47], and tether formation [48, 49]. In particular, there is now considerable evidence [33, 45, 50–52]
to indicate that flexoelectricity is the major mechanism behind outer hair cell electromotility, impacting cochlear
amplification, and sharp frequency discrimination.

In this work, acknowledging the universal presence of flexoelectricity in all membranes, we attempt to assess
its role in modifying the entropic force between two fluctuating fluid membranes. Specifically, we employ a vari-
ational perturbative approximation to obtain a closed-form solution to the otherwise intractable problem. We
remark that incorporation of flexoelectricity exacerbates further the already difficult problem of two purely
mechanical fluctuating membranes. On this note, it is germane to mention that most advanced analytical treat-
ments of the mechanical problem (without flexoelectricity) are based on some variant of the renormalization
group theory which has its origins in the high-energy physics literature [53, 54]. Kleinert and co-workers [55,
56] introduced the so-called variational perturbation theory to handle anharmonic problems in quantum statis-
tical mechanics and their approach offers some advantages both in terms of its efficacy as well as transparency.
In particular, Bachmann et al. [27] used this approximation to provide arguably the most accurate analytical
solution to the purely mechanical problem underlying two interacting and fluctuating membranes (i.e., a very
refined estimate of α). To the best of the authors’ knowledge, there is but just a single work that has attempted
to elucidate the effect of flexoelectricity on the entropic force between membranes: Bivas and Petrov [57]. Their
approach closely parallels that of Helfrich and is unable to obtain a complete analytical solution. However they
provide interesting asymptotic limits to the scaling of the entropic force at large separation distances.

The arrangement of this paper is as follows. In Section 2, we briefly summarize some key preliminary
concepts pertaining to the statistical mechanics of membranes and present a derivation of Helfrich’s original
solution. In Section 3 we formulate the complete statistical mechanics problem of two fluctuating flexoelectric
membranes and then outline the solution in Section 4. We discuss our results in Section 5 and compare the effect
of flexoelectricity with hydration and van der Waals forces.

2. Preliminary concepts

In this section, as a prelude to our original work in subsequent sections, we provide a summary of the key con-
cepts pertaining to the statistical mechanics problem underpinning the entropic force between two fluctuating
membranes. In particular, we present the classical solution of Helfrich [6] and note the various approximations.

Consider a thin membrane patch occupying domain of S = {(x, z)|x ∈ (0, L)2, z = 0} at zero temperature
with no spontaneous curvature. Further, we assume that the deformation at each membrane point is only in the
out of plane, i.e., in z direction. The elastic energy associated with the bending of membranes up to a quadratic
order (known in the literature as the Helfrich–Canham model [58, 59]), is

H =
∫

S

1

2
κbH2 + κGK, (1)

where bending modulus and Gaussian modulus, (κb, κG), are material properties that parametrize the change
in elastic energy with changes in the mean curvature H and Gaussian curvature K.4 To consider a “large”
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membrane, we assume periodicity in the in-plane directions. Further, owing to the Gauss–Bonnet theorem,
the contribution of the Gaussian curvature on the energy of a membrane with periodic boundary condition
is merely an additive constant and, thus, has no bearing on the entropic force. As is frequently done in the
literature, in what follows, we employ the Monge representation, i.e., each point on the surface S is defined by
its position vector xi = (x, y) and a height function h(x) describing the deformation at each point that maps
the undeformed flat membrane into the fluctuating deformed membrane. With this representation, the mean and
Gaussian curvatures are [60]

H = ∇ ·
(

∇h(x)
√

1 + |h(x)|2

)

' ∇2h(x),

K = det(∇∇h(x))

(1 + |h(x)|2)2
' ∂2h

∂x2

∂2h

∂y2
−
(

∂2h

∂x∂y

)2

,

(2)

where the linearized approximation5 is reasonable for small deviations from the flat reference state, i.e.,
∇h(x) � 1.

In the absence of a spontaneous curvature, at zero Kelvin, the minimum elastic energy of a membrane
corresponds to a flat state. However, at finite temperatures, the membranes can undulate and the probability of
finding it in a specific configuration with energy Hi is proportional to exp(−Hi/kBT). The probability sum of
all the possible configurations is given by the partition function Z ,

Z =
∫

exp (−H[h]/kBT)D[h], (3)

where H[h] is the bending energy of the system and D[h] indicates that the integration is over all kinematically
admissible deformation modes. Therefore, the probability of occurrence ρ[h] of any configuration with energy
H[h] is

ρ[h] = 1

Z
exp (−H[h]/kBT) . (4)

Moreover, the ensemble average of any quantity may be obtained by

〈2〉 = 1

Z

∫

2 exp (−H[h]/kBT)D[h]. (5)

By having the partition function in hand, the free energy of the system is simply

F = −kBT log(Z). (6)

We now address the situation where there are two fluctuating membranes in close vicinity of each other.
Here, we note that Helfrich [6] showed that by performing a simple mapping, the problem of a pair of fluctuating
membrane separated by a mean distance d is equivalent to a single fluctuating membrane between two hard walls
separated by a distance of 2d. The entropic pressure (P) between the two membranes that are separated by an
average distance of d, can be obtained from the change in free energy of the entire system with respect to the
separation distance [18]

P = − 1

A

∂F (m)

∂(2d)
, (7)

where A is the area of the membrane and F (m) is the free energy of each membrane.
For a free membrane, i.e., a single membrane fluctuating freely, the partition function is simply

Z =
∫ ∞

−∞
exp

(

−
∫

S

1

2kBT
κb(∇2h)2

)

D[h]. (8)

Either by the use of the equipartition theorem or by direct integration (in Fourier space, the above integral
can be cast into Gaussian form) we can obtain a closed-form solution [61]. However, if we place this membrane
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between two hard walls (which is equivalent to two interacting membranes), the height function of each point
can only vary from −d to d and the partition function is modified

Z =
∫ d

−d

exp (−H[h]/kBT)D[h]. (9)

The modified partition function cannot be computed analytically. Helfrich [6] proposed to avoid the hard
constraint and relaxed its imposition by simply restricting the mean of the square of the height function, i.e.,
〈h2〉 < d2. The relaxed constraint can be imposed by a modification of the Hamiltonian as follows

H =
∫

S

1

2
κbH2 + 1

2
αh2, (10)

where the form of α will be determined in due course. To make further progress we transform the Hamiltonian
to the Fourier space by expanding the height function

h(x) =
∑

k∈K

ĥ(k)eik·x, (11)

where K =
{

k : k = 2π
L

(n1, n2), n1, n2 ∈ Z, |k| ∈ [ 2π
L

, 2π
a

]
}

and a is of the order of the membrane thickness. The
Hamiltonian can be recast as

H = L2
∑

k∈K

1

2
|ĥ(k)|2

(

κb |k|4 + α
)

. (12)

The partition function is obtained as

Z =
∫ ∞

−∞
exp

(

− L2

kBT

∑

k∈K

1

2
|ĥ(k)|2

(

κb |k|4 + α
)

)

∏

k∈K

dĥ(k) =
∏

k∈K

√

2πkBT

L2
(

κb |k|4 + α
) , (13)

and therefore the ensemble average of thermal fluctuations in Fourier and real space can be obtained from (5)
as

〈|ĥ(k)|2〉 = kBT

L2
(

κb |k|4 + α
) ,

〈h2〉 = 1

L2

∫

S

〈h(x)2〉 =
∑

k∈K

〈|ĥ(k)|2〉 = kBT

8
√

ακb

= µd2 < d2,
(14)

where, in applying the soft constraint, we have assumed that 〈h2〉 = µd2 and µ < 1 therefore α is obtained as

α = 1

κb

(

kBT

8µd2

)2

. (15)

The free energy of the system can be obtained from (6) as follows

F = −kBT log(Z) = −kBT
∑

k∈K

log

(√

2πkBT

L2
(

κb |k|4 + α
)

)

= O + kBT

2

∑

k∈K

log

(

κb |k|4 + 1

κb

(

kBT

8µd2

)2
)

= 1

64κbµ

(

kBTL

d

)2

,

(16)
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where O is an inconsequential constant. From (7), the entropic pressure is obtained as

P = − 1

A

∂F

∂(2d)
= (kBT)2

64κbµ

1

d3
. (17)

Helfrich [6, 8] approximated µ = 1/6 by assuming the average of two limiting behaviors: (1) restricting only
a few number of points of the membrane between −d to d and (2) restricting every point of the membrane but
allowing only one specific mode of deformation. As discussed in Section 1, the expression for entropic pressure
shows a scaling of 1/d3.

3. Formulation of the statistical mechanics problem for fluctuating

flexoelectric membranes

We now proceed to formulate the electrostatics–mechanics–flexoelectric problem for two fluctuating and inter-
acting membranes. Consider two identical planar thin polarizable membranes of thickness t whose mid-surfaces
occupy domains of S1 = {(x, z)|x ∈ (0, L)2, z = 0} and S2 = {(x, z)|x ∈ (0, L)2, z = d} at zero temperature
without spontaneous curvature. As before, we assume periodicity within the plane. Similar to the previous sec-
tion, each point on the surface Si is defined by its position vector x = (x, y) and a height function hi(x) which
is the out-of-plane deformation. The state of the membrane can be described by the state variables (P, h) where
P = (Px, Py, Pz) is the electric polarization of the membrane per unit area. A suitable quadratic form for the
energy of fluid membranes incorporating flexoelectric coupling6 can be written as [62, 63]

H[P, h] =
2
∑

i=1

[∫

Si

1

2
ai |Pi|2 + fiPi · niHi + 1

2
κ

(i)
b (Hi)

2

]

+ ε0

2

∫

R3
|E|2, (18)

where the superscript (i) and subscript i denote the ith membrane and ni(x) denotes the normal vector to the
membrane i at point x. The term fi is the flexoelectric constant, ai = 1

(εi−ε0)t
7 and E = −∇ (ξ1 + ξ2) is the

electric field. The last term in (18) is rather difficult to handle and is the nonlocal electrostatic energy of the
electric field induced by polarization of the membranes. In (18), the electric field E and the polarization P must
satisfy Maxwell’s equations of electrostatics8:







div[−ε0∇ξi(x, z) + 1

t
Pi(x)] = 0,

∇ξi(x, z) · ez → 0 as |z| → ∞.
(19)

In the plane of the membrane, the electric field satisfies periodic boundary conditions.9 To impose the non-
interpenetration constraint, we borrow a cue from the work by Kleinert [64] and Bachmann [27], and incorporate
this steric constraint by add a penalizing potential to the Hamiltonian

Vp = 1

2
m4 d2

π2
tan2

[ π

2d
(h1(x) − h2(x))

]

. (20)

The penalty potential is merely a generalized version of the soft constraint imposed by Helfrich in his
original work, however, we note that in the limit of m → 0, we obtain the exact hard-wall constraint. Figure 2
shows the penalty potential versus the normalized distance between two membranes at a specific point x, i.e.,
h(x)/d = (h1(x) − h2(x))/d and its limiting behavior as it approaches the exact rigid-wall constraint.

The mean curvature of the membrane i can be simplified to Hi = ∇2hi(x) in the linearized setting. For
simplifying the Hamiltonian in Equation (18) further, we introduce u and v such that

u(x) = h1(x) + h2(x)

2
, v(x) = h1(x) − h2(x)

2
. (21)
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Figure 2. Illustration of the limiting behavior of the penalty potential against the normalized distance between two membranes at a

specific point for different values of m. The exact rigid-wall constraint is obtained in the limit of m → 0.

Therefore, h1(x) = u(x)+v(x) and h2(x) = u(x)−v(x). As u(x) is the rigid-body motion of the whole system,
it makes no contribution to the total elastic energy, and we eliminate it in subsequent calculations. Then, the
Hamiltonian can be expressed as

H[P, v] =
∫

S

1

2
a1 |P1|2 + 1

2
a2 |P2|2 + f1P1 · n1

(

∇2v
)

+ f2P2 · n2

(

−∇2v
)

+ κb

(

∇2v
)2

+ 1

2
m4 d2

π2
tan2

(π

d
v
)

+ ε0

2

∫

R3
|E|2,

(22)

where for simplicity we have assumed S = S1 ∪ S2 and κ
(1)
b = κ

(2)
b =: κb. The penalty term Vp can be

decompossed in terms of a harmonic and an anharmonic part

Vp = 1

2
m4 d2

π2
tan2

(π

d
v
)

= 1

2

(

m4v2 + π2

d2
Vanh(v)

)

. (23)

The anharmonic part can be expanded in Taylor series as

Vanh(v) = m4{α4 (v)4 + α6

(π

d

)2
(v)6 + α8

(π

d

)4
(v)8 + · · · }, (24)

where α4 = 2
3 , α6 = 17

45 , and α8 = 62
315 .

The last term in Equation (18) which is the nonlocal electrostatic energy of the electric field induced by
polarization of the membranes, can be simplified further as [65]

ε0

2

∫

R3
|E|2 =ε0

2

∫

R3
|∇ξ1 + ∇ξ2|2

= 1

2t

∫

S

∫ t/2

−t/2
P1 · ∇ξ1 + 2P1 · ∇ξ2 dz dx + 1

2t

∫

S

∫ d+t/2

d−t/2
P2 · ∇ξ2 dz dx,

(25)

where Ei = −∇ξi denotes the electric field induced from the polarized membrane i and by definition ξi is
called the electric potential of membrane i. Basically, this expression is sum of two different contributions: (1) a
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contribution originated from the interaction of polarization of one membrane with its induced electric field and
(2) the other contribution comes from the interaction of the polarization of a membrane with the electric field
of the other membrane.

In Fourier space(νi := z − d(i − 1)):

Pi(x) =
∑

k∈K

P̂i(k)eik·x,

ξi(x, z) =
∑

k∈K

ξ̂i(k, νi)e
ik·x,

(26)

where K =
{

k : k = 2π
L

(n1, n2), n1, n2 ∈ Z, |k| ∈ [ 2π
L

, 2π
a

]
}

. Substituting the transformed polarization and

potential into Maxwell equations in (19) and solving for the electric potential ξ̂i, we obtain [63]

ξ̂i(k, νi) =



















































(

P̂i

)

z

2tε0 |k|
(

e|k|t/2 − e−|k|t/2
)

e−|k|νi − ı P̂i · k

2tε0|k|2
(

e|k|t/2 + e−|k|t/2
)

e−|k|νi νi > t/2,

(

P̂i

)

z

2tε0 |k|
(

e|k|νi − e−|k|νi

)

e−|k|t/2 − ı P̂i · k

tε0|k|2

[

1 − e−|k|t/2

2

(

e|k|νi + e−|k|νi

)

]

|νi| 6 t/2,

−
(

P̂i

)

z

2tε0 |k|
(

e|k|t/2 − e−|k|t/2
)

e|k|νi − ı P̂i · k

2tε0|k|2
(

e|k|t/2 + e−|k|t/2
)

e|k|νi νi 6 −t/2,

(27)

where ı is the unit imaginary number. By Equation (27), assuming t|k| � 1 which is equivalent to assuming
that the wavelengths of the fluctuations are much larger than the thickness of the membrane, the first term in
Equation (25) can be simplified as follows

∫

S1

∫ t/2

−t/2

1

2t
P1 · ∇ξ1 dz dx =

∑

k∈K

L2

2t

∫ t/2

−t/2

[

(

P̂1(−k)
)

z

dξ̂1(k, ν1)

dν1
+ iP̂1(−k) · kξ̂1

]

dν1

=
∑

k∈K

L2

2tε0
|P̂1(k)|2 + O(t|k|),

(28)

and we have assumed
(

P̂i(k)
)

z
= P̂i(k). As the in-plane polarization of the membranes do not have any

correlation with the out-of-plane deformation of membranes, we may neglect the in-plane polarization in the
subsequent calculations. By retaining only the leading terms in Equation (25) we obtain

1

2

∫

S1

∫ t/2

−t/2

1

t
P1 · ∇ξ1 dz dx =

∑

k∈K

L2

2tε0
|P̂1(k)|2,

1

2

∫

S2

∫ d+t/2

d−t/2

1

t
P2 · ∇ξ2 dz dx =

∑

k∈K

L2

2tε0
|P̂2(k)|2.

(29)

For obtaining the last integral contributing to the interaction of the electric fields in Equation (25), we use
the electric potential from Equation (27)

∫

S1

∫ t/2

−t/2

1

t
P1 · ∇ξ2 dz dx =

∑

k∈K

L2

t

∫ t/2

−t/2

[

(

P̂1(−k)
)

z

dξ̂2(k, ν2)

dν2
+ iP̂1(−k) · kξ̂2

]

dz

=
∑

k∈K

−L2e−|k|d |k|
2ε0

(

P̂1(−k)
)

z

(

P̂2(k)
)

z
+ O(t|k|).

(30)

Expanding the height function in Fourier space we obtain

v(x) =
∑

k∈K

v̂(k)eik·x, (31)
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where v̂(k) is the height function in Fourier space and can be obtained as follows

v(k) = 1

L2

∫

S

v̂(x)e−ik·x. (32)

Therefore, assuming a1 = a2 =: a, the Hamiltonian in Fourier space becomes

H =L2
∑

k∈K

κb |k|4
∣

∣v̂(k)
∣

∣

2 + 1

2
azP̂

2
1(k) + 1

2
azP̂

2
2(k) − |k|2 f1P̂1(k)v̂(−k)

+ |k|2 f2P̂2(k)v̂(−k) − e−|k|d |k|
2ε0

P̂1(−k)P̂2(k) + 1

2
m4
∣

∣v̂(k)
∣

∣

2 +
∫

S

π2

2d2
Vanh(v(x))

(33)

where az = a + 1
tε0

. The partition function is

Z =
∫

e−βH[P1,P2,v]
D[P1, P2, v]. (34)

As we do not have any anharmonicity with respect to the polarization, we can integrate it out of the
Hamiltonian and obtain the modified partition function as

Z =
∫

{

e−βH[P1,P2,v]
D[P1, P2]

}

D[v]

= Zp × Zv,
(35)

where

Zp =
∏

k∈K

4π

√

azβL2

√

4azβL2 − e−2|k|d |k|2βL2

azε
2
0

,

Zv =
∫

e
−βL2 ∑

k∈K

[

|k|4(−2ed|k|ε0(f 2−azκb)+κb|k|)
2azed|k|ε0+|k| + 1

2 m4

]

|v̂(k)|2−β
∫

S

π2

2d2 Vanh(v) ∏

k∈K

dv̂(k)

=
∫

e−βHeff
∏

k∈K

dv̂(k).

(36)

By this simplification, the effective Hamiltonian Heff is only the function of v̂(k) and the polarization terms
are integrated out to Zp.

4. Variational perturbation solution

The partition function in (36)2 is not analytically tractable owing to the penalty used to impose the steric
constraint and the well-known equipartition theorem often used for harmonic Hamiltonians does not apply.
Therefore, in this section, we proceed to adopt a variational perturbation theory to approximate the partition
function. In partition functions of such types, a purely perturbative approach leads to a divergent expansion [55]
and the specific variational approach that we use in conjunction has been shown to yield highly convergent and
accurate approximations [27, 55]. The method consists of addition and subtraction of an unknown harmonic
potential Vh as follows

Heff = Heff + Vh − Vh. (37)
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Splitting the Hamiltonian to a harmonic and an anharmonic part and assuming the unknown harmonic
potential to be Vh = L2 1

2 M4
∣

∣v̂(k)
∣

∣, we can write

Hh = Hh + Vh − Vh

= Hh + L2 1

2
M4

∣

∣v̂(k)
∣

∣

2 − L2 1

2
M4

∣

∣v̂(k)
∣

∣

2

= L2
∑

k∈K

[

|k|4
(

−2ed|k|ε0

(

f 2 − azκb

)

+ κb |k|
)

2azed|k|ε0 + |k| + 1

2

(

√

M4 − gr
)2
]

∣

∣v̂(k)
∣

∣

2
,

(38)

where we used the trial identity10 m2 =
√

M4 − gr with r = M4−m4

g
and g = π2

d2 . From (36), the anharmonic
part of the effective Hamiltonian becomes

Hanh = Heff − Hh = g

2

∫

S

Vanh(v)

= g

2
m2

∫

S

α4v4 + gα6v6 + · · · .
(39)

In the absence of the anharmonic Hamiltonian Hanh, the partition function Zh and free energy Fh can be
obtained analytically. The effect of the anharmonic term on the total free energy of the system F , can be
then estimated by a perturbative expansion of the free energy around harmonic free energy Fh. Expanding the
partition function of the system Z around the harmonic Hamiltonian yields

Z = Zp

∫

exp(−β(Hh + Hanh))
∏

k∈K

dv̂(k) = ZpZh〈exp(−βHanh)〉Hh , (40)

where 〈·〉Hh denotes the ensemble average with respect to the harmonic Hamiltonian Hh and the harmonic
partition function Zh can be obtained trivially by usual Gaussian integral relation

Zh =
∫

e−βHh
∏

k∈K

dv̂(k) =
∏

k∈K

√

√

√

√

π

βL2
( |k|4(−2ed|k|ε0(f 2−azκb)+κb|k|)

2azed|k|ε0+|k| + 1
2 m4

)
. (41)

The free energy of the system is then obtained as

F = Fp + Fv = Fp + Fh − 1

β

∞
∑

n=1

(−β)n

n!
〈(Hanh)n〉c

Hh
, (42)

where Fi = − 1
β

log (Zi) , i = p, v. The superscript 〈·〉c represents the cumulant averages.11 Obviously, because
the splitting of the anharmonic and harmonic parts is essentially arbitrary, the complete infinite series of the
above expansion should not be a function of the unknown harmonic potential Vh. However, owing to finite
truncation, in practice, the sum of the series has a dependence on this potential. This then leads to the variational
principle of minimal sensitivity which allows us to optimize the approximation, i.e.,

∂F

∂Vh
= 0 −→ ∂F

∂M2
=0. (43)

The free energy of the harmonic part of the effective Hamiltonian Hh is calculated by substituting (41) into
(6) as follows

Fh = O +
∑

k∈K

1

2β
log





L2|k|4
(

|k|κb − 2e|k|dε0

(

f 2 − azκb

))

|k| + 2aze|k|dε0
+ L2

2
m4





= O + L2

4π2

∫ 2π/a

2π/L

1

2β
log





L2k4
(

kκb − 2ekdε0

(

f 2 − azκb

))

k + 2aze|k|dε0
+ L2

2
m4



 2πk dk

' O + L2

4π2

∫ 2π/a

2π/L

1

2β
log

[

κeffk
4 + 1

2
m4
]

2πk dk = L2

8β

m2
√

2κeff
,

(44)
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where O is constant of no consequence and κeff = κb − f 2

az
illustrating a result already known [62, 66] that

flexoelectricity causes a renormalization of the bending modulus. By substituting the anharmonic Hamiltonian
in (39) in the free energy of the system in (42) we obtain [27]

F = Fp − 1

β
log[Zv] = Fp + Fh − 1

β

∞
∑

n=1

(−gβ/2)n

n!

〈 (∫

S

Vanh

)n 〉c

Hh

= Fp + L2

8β
m2 1√

2κeff

+ m2
∞
∑

n=1

γn

( g

m2

)n

,

(45)

where coefficients γi can be obtained from expanding the free energy in (42) with respect to g as follows

γ1 = m4

2
α4

∫

S

〈v4(x)〉c
Hh

,

γ2 = m6

2
α6

∫

S

〈v6(x)〉c
Hh

− m10

8
βα2

4

∫

S

〈v4(x)v4(x′)〉c
Hh

.

(46)

We remark that an inspection of Equations (45) and (46) shows the necessity to calculate ensemble averages
to obtain the free energy of the system. By Wick’s theorem, we can expand the higher-order ensemble averages
as follows

〈v4(x)〉c
Hh

= 3〈v2(x)〉2
Hh

,

〈v6(x)〉c
Hh

= 15〈v2(x)〉Hh

(47)

The ensemble averages of the square of the height function in real and Fourier space can be derived to be

〈|v̂(k)|2〉Hh =
∫

|v̂(k)|2e−βHh
∏

k∈K
∫

e−βHh
∏

k∈K

= 1

L2β (m4 + 2κeff|k|4)
,

〈v2〉Hh = 1

L2

∫

S

〈v2(x)〉Hh =
∑

k∈K

〈|v̂(k)|2〉Hh =
∑

k∈K

1

L2β (m4 + 2κeff|k|4)

' L2

4π2

∫ 2π/a

2π/L

2πk

L2β (m4 + 2κeffk4)
dk = 1

8βm2
√

2κeff

.

(48)

In addition, by the use of Wick’s theorem, the higher-order correlations can be expressed in terms of the
lower-order correlations which can be obtained by the use of Feynman diagrams [27]

∫

S

〈v4(x)v4(x′)〉c
Hh

= 72

∫

S

〈|v(x)|2〉Hh〈
∣

∣v(x′)
∣

∣

2〉Hh〈v(x)v(x′)〉2
Hh

+ 24

∫

S

〈v(x)v(x′)〉4
Hh

= 21L2

512
√

2β4m10κ
3/2
eff

.
(49)

The free energy F can be obtained by substituting Equations (47)–(49) into Equation (42). Our ultimate goal
is to impose the hard wall constraint by assuming m → 0. This limit must be handled carefully and we adopt
the following procedure. Assuming r is an independent variable of g and expanding m2 =

√

M4 − gr in powers
of g, in the limit of m → 0, we obtain [67]

m2 =
√

M4 − gr = M2 − 1

2

r

M2
g − 1

8

r2

M6
g2 + O(g3). (50)
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Substituting this expansion back in our free energy in Equation (45), assuming r → M4−m4

g
and m → 0 (hard

wall constraint), the free energy is obtained as [27]

FN = Fp + Fhb
(N)
0 +

N
∑

n=1

angnM2(1−n)b(N)
n

= Fp + M2 L2

8β
√

κeff
bN

0 +
∑

n=1

γnb(N)
n gnM2(1−n),

(51)

where b(N)
n is defined as

b(N)
n =

N−n
∑

k=0

(−1)k

(

1−n
2
k

)

. (52)

4.1. Approximation of the entropic pressure assuming a penalty potential up to quartic order

Up to a quartic order in the penalty potential, the free energy can be approximated as

F1 = Fp + Fh + b
(1)
1

2

∫

S

g
(

M2
)2

α4〈v4(x)〉c
Hh

= Fp + M2 L2

8β

b
(1)
0√

2κeff

+ 3

2
L2b

(1)
1 gM4α4

(

1

8M2β
√

2κeff

)2

= Fp + M2 L2

8β

b
(1)
0√

2κeff

+ gL2b
(1)
1

128β2κeff
.

(53)

As the free energy should be independent of M , the truncation should have the minimum sensitivity.
Therefore,

∂F1

∂M2
= 0 −→ L2

8β

b
(1)
0√

2κeff

= 0. (54)

There is no solution for M2, therefore we assume M2 → 0. By this assumption, the free energy becomes

F1 = Fp + gL2b
(1)
1

128β2κeff
= Fp + π2L2

128d2β2κeff
. (55)

The free energy contribution from the polarization(Fp) can be obtained from Equation (36)

Fp = − 1

β
log(Zp) =

∑

k∈K

1

2β
log

[

4a2
z − e−2|k|d |k|2

ε2
0

]

= L2

4π2

∫

1

2β
log

[

4a2
z − e−2kdk2

ε2
0

]

2πk dk

= O + L2

4πβ

∫ 2π/a

2π/L

log
[

4a2
zε

2
0 − e−2kdk2

]

k dk,

(56)
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where O is constant of no consequence. Following (7), we find the entropic pressure to be

P = − 1

4L2

(

∂F1

∂d

)

= π2

256d3β2κeff
− ∂

∂d

(

1

16βπ

∫ 2π/a

2π/L

log
[

4a2
zε

2
0 − e−2kdk2

]

k dk

)

= π2

256d3β2κeff
− 1

16βπ

∫ 2π/a

2π/L

∂

∂d

(

log
[

4a2
zε

2
0 − e−2kdk2

]

k
)

dk

' π2

256d3β2κeff
− 1

8βπ

∫ 2π/a

2π/L

k4

4e2dka2
zε

2
0

dk

'







π2

256d3β2κeff
− 3

128a2
z d5πβε2

0
e−4πd/L large distances

π2

256d3β2κeff
− 3

128a2
z d5πβε2

0
short distances

(57)

4.2. Approximation of the entropic pressure assuming a penalty potential up to a hexic order

We may go a step further to ensure higher accuracy and approximate the free energy up to the hexic order as
follows

F2 =Fp + M2 L2

8β

b
(2)
0√

2κeff

+ b
(2)
1

2

∫

S

gM4α4〈v4(x)〉c
Hh

+ b
(2)
2

2

∫

S

g2M4α6〈v6(x)〉c
Hh

− β

8
b

(2)
2

∫

S

g2M8α2
4〈v4(x)v4(x′)〉c

Hh

=Fp + M2 L2

8β

b
(2)
0√

2κeff

+ b
(2)
1 g

(

1

8β
√

2κeff

)2

+ 17

6
b

(2)
2 g2 1

M2

(

1

8β
√

2κeff

)3

− 1

18
βb

(2)
2 g2L2 21

512
√

2M2β4κ
3/2
eff

.

(58)

Minimizing the sensitivity of this truncated free energy to the variational parameter M we obtain M as

∂F2

∂M2
= 0 −→ M2 = g

16β

√

√

√

√

b
(2)
2

b
(2)
0 κeff

. (59)

Hence, the free energy yields as

F2 = Fp +

(√
3 + 2

)

π2

256β2d2κeff
. (60)

The entropic pressure is then obtained as

P = − 1

4L2

(

∂F2

∂d

)

=

(√
3 + 2

)

π2

512β2d3κeff
− ∂

∂d

(

1

16βπ

∫ 2π/a

2π/L

log
[

4a2
zε

2
0 − e−2kdk2

]

k dk

)

'

(√
3 + 2

)

π2

512β2d3κeff
− 1

8βπ

∫ 2π/a

2π/L

k4

4e2dka2
zε

2
0

dk

'







(
√

3+2)π2

512β2d3κeff
− 3

128a2
z d5πβε2

0
e−4πd/L large distances

(
√

3+2)π2

512β2d3κeff
− 3

128a2
z d5πβε2

0
short distances

(61)
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5. Results and discussion

5.1. Accuracy of our model and comparison with other works

Before proceeding to present our results, we comment on our choice of model parameters. The typical bending
modulus of the biological membranes varies in the range of κ = 15 − 25kBT [45]. In addition, the typical
thickness of the biological membranes is reported as t = 4–8 nm [57]. The well-known flexoelectric constant
fe := −f /az of the biological membranes is predicted to take value of fe = 0.3–150 × 10−19 C [41, 42, 63]. We
assume that the temperature in the biological temperature of the human body (T = 310◦K) and ε = 2ε0 (see
[68]).

As shown earlier by [27], the series expansion with the variational perturbation procedure in the preceding
section leads to a convergent series as opposed to a naive perturbation method. The assessment of the accuracy of
our results can simply be done by going one step further in the free energy expansion. In addition, comparison
between the entropic pressure obtained by our method and the entropic pressure obtained by Monte Carlo
simulations by Janke and Kleinert [18] confirms the accuracy of our model.

Figure 3 shows a comparison of the entropic pressure obtained from various models including Helfrich’s
original work that excluded flexoelectricity [6, 8], Bachmann’s model [27, 69] which (like ours) is also based
on a variational perturbation approach but excluded flexoelectricity, and our model which accounts for both
flexoelectricity and polarization. We do not present the model of Bivas and Petrov [57] in the figure because
they only presented asymptotic limits. We simply remark that qualitatively, our model confirms their asymptotic
limit. Upon ignoring electrostatic effects (flexoelectricity and polarization), our constructed model identically
matches Bachmann’s model. Note that for inter-membrane distances smaller that 0.5 nm, our final estimation of
Equation (61) is supposed to become less precise. Accordingly, we performed numerical integration to obtain
the exact behavior of the entropic pressure for d < 0.5 nm and found that our approximation of Equation (61)
matches well with numerical integration of the pressure for d > 0.5 nm. Our main conclusion is that flexo-
electricity induces a strong attraction for small inter-membrane separations and increases the repulsion for very
larger separations. Thus, flexoelectricity acts as an “amplifier.” Interestingly, the role of flexoelectricity as an
amplifier is also observed in the context of the mechanics of hair cells and the hearing mechanism [50,52]. The
amplification behavior may be rationalized by examining the expression derived earlier for the force. Electro-

statics appears to affect the entropic pressure in two ways: the bending modulus is softened, i.e., κeff = κb − f 2

az

and, hence, the entropic repulsion is amplified. There is a second term that is attractive in nature but varies as
1/d5 for short distances and decays exponentially at larger separations.

5.2. Comparison with van der Waals and hydration forces

As we highlighted in the introduction, in addition to the entropic repulsion (owing to purely mechanical origins),
the other two main forces (for electrically neutral membranes) are the hydration and van der Waals. Therefore,
the net interacting potential per unit area can be written as [13]

Vnet(d) = VH (d) + VW (d) + Vs(d), (62)

where VH (d), VW (d), and Vs(d) denote hydration, van der Waals, and entropic interaction potentials. The
hydration potential can be written as [13]

VH (d) = AH exp[−d/λH ], (63)

where AH ' 0.2 J/m2 and λH ' 0.3 nm denote the hydration strength and length scale. A good approximation
for the van der Waals potential between two interacting membranes is [13]

VW (d) = − WH

12π

(

1

d2
− 2

(d + t)2
+ 1

(d + 2t)2

)

, (64)

where WH ' 0.61 − 8.2 × 10−21 J is the Hamaker constant. The hydration repulsion is very short ranged and
the cut-off length is around a few Ångstroms [8, 70]. For specific strength of entropic repulsion and van der
Waals interaction, we can expect to have up to two stable states which indicate bounded and totally separated
states [8].



Mozaffari et al. 15

2 4 6 8 10 12 14 16 18 20

10
2

10
3

10
4

10
5

10
6

0 0.1 0.2 0.3

-4

-2

0

2

10
9

Figure 3. Comparison of Helfrich’s model [6, 8] and Bachmann’s model [27, 69] with our work (up to hexic order). The blue line

indicates our model without accounting for flexoelectricity which matches Bachmann’s model at large distances where the polarization

effect fades. The dotted lines are the same approximations where the penalty potential is up to quartic order from Equation (57). The

numerical parameters for this plot are κ = 25kBT , t = 4 nm, ε = 2ε0, and f = −0.31 × 10−19az NM/C.
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Figure 4. The net pressure on each of the membranes in proximity of another membrane that are apart with distance of d. The

numerical values are κ = 25kBT , t = 4 nm, ε = 2ε0, f = −0.31 × 10−19az NM/C, and WH = 2 × 10−21 J. The inset is the net

normalized potential VN = Vtot × L2/kBT with respect to the inter-membrane distance d to highlight the existence of a stable state

around inter-membrane distance of 4 nm.

To obtain an idea about the binding and unbinding transition between two membranes, we add up the relevant
forces and obtain the equilibrium state.12 In Figure 4, we illustrate the net force (per area) on each of the mem-
branes in a pair membrane system. As in the previous subsection, our main conclusion is that flexoelectricity
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and polarization have a meaningful impact primarily at small inter-membrane separations or when quite further
apart. In those regimes, the electrostatic contribution can indeed become competitive with other forces. From
the viewpoint of unbinding–binding transition and adhesion, we also show the potential energy in the inset to
highlight how the energy minima is altered due to flexoelectricity as well as its spatial location.

6. Concluding remarks

In conclusion, we have obtained an approximate but highly accurate closed-form solution to the entropic
force between two fluctuating flexoelectric membranes. We have found an enhanced attractive force for close-
membrane separations and an enhanced repulsion for larger separations. A detailed physical consequence of
our calculation on biology is beyond the scope of the present work, but we anticipate its utility in nearly all the
phenomena described in the topical paragraph of this paper. It remains to be seen what consequence our work
will have (or not) on those problems.

Notes

1. We use the word biological membrane and fluid membrane interchangeably. A fluid membrane is the central component of the
biological membrane but the latter is richer with several other embellishments, e.g., embedded proteins. This distinction is of not
much consequence to the current work. Furthermore, the word “membrane” connotes something different within the biophysics
community than for mechanicians. In the biophysics community, whose nomenclature we have adopted, a membrane is merely
any two-dimensional elastic surface and can resist bending.

2. There is quite a bit of debate regarding the precise physical origins of the hydration force but that issue is not central to the
current work and we refer the reader to the following reference: [71].

3. The literature is understandably extensive and we do not claim to be comprehensive in our citations. The papers we do mention
and the references therein, however, provide an adequate starting point to explore this topic.

4. The elastic energy may be augmented further by incorporating surface tension or higher-order effects.
5. We have performed rather arduous calculations that do not utilize this kinematic linearization, however the effect of the omitted

nonlinear terms are quite small and, therefore, in the interest of brevity and simplicity, we restrict ourselves to the geometrically
linear setting.

6. Some very interesting work involves derivation of the precise form of elastic energy membranes from three-dimensional theories
of elasticity, cf. [72–79] however we directly propose a linearized constitutive response known in the literature, and physical
considerations.

7. Here, for simplicity, we take the assumption that the in-plane and out-of-plane dielectric permittivity of the membrane are equal.
The reason behind this assumption is that the in-plane polarization has no effect on the entropic pressure and will be eliminated
later.

8. The reader is referred to the discussion in [63] for details on obtaining the nonlocal electric field.
9. The reader is also referred to the appendix in [80] for a discussion on constant electric field ensemble.
10. Here we follow the square root substitution method introduced by Kleinert [56] which is a shortcut to the regular variational

perturbation method [67].
11. The cumulant averages, up to third order, are

〈Hanh〉c
Hh

= 〈Hanh〉Hh
,

〈H2
anh〉c

Hh
= 〈H2

anh〉Hh
− 〈Hanh〉2

Hh
,

〈H3
anh〉c

Hh
= 〈H3

anh〉Hh
− 3〈H2

anh〉Hh
〈Hanh〉Hh

+ 2〈Hanh〉3
Hh

.

12. It is worthwhile to mention that it is not appropriate to just add up the forces due to different origins. A systematic statistical
mechanics study must be done ab initio. However, for qualitative conclusions, such an approximation is certainly worthwhile.
More accurate estimation of the equilibrium state have been done through renormalization-based approaches [8, 17, 70].
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