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Micro-Structural Design of Soft
Solid Composite Electrolytes
With Enhanced Ionic Conductivity
Electrolyte in a rechargeable Li-ion battery plays a critical role in determining its capacity
and efficiency. While the typically used electrolytes in Li-ion batteries are liquid, soft solid
electrolytes are being increasingly explored as an alternative due to their advantages in
terms of increased stability, safety and potential applications in the context of flexible
and stretchable electronics. However, ionic conductivity of solid polymer electrolytes is sig-
nificantly lower compared to liquid electrolytes. In a recent work, we developed a theore-
tical framework to model the coupled deformation, electrostatics and diffusion in
heterogeneous electrolytes and also established a simple homogenization approach for
the design of microstructures to enhance ionic conductivity of composite solid electrolytes.
Guided by the insights from the theoretical framework, in this paper, we examine specific
microstructures that can potentially yield significant improvement in the effective ionic con-
ductivity. We numerically implement our theory in the open source general purpose finite
element package FEniCS to solve the governing equations and present numerical solutions
and insights on the effect of microstructure on the enhancement of ionic conductivity. Spe-
cifically, we investigate the effect of shape by considering ellipsoidal inclusions. We also
propose an easily manufacturable microstructure that increases the ionic conductivity of
the composite electrolyte by 40 times, simply by the addition of dielectric columns parallel
to the solid electrolyte phase. [DOI: 10.1115/1.4053498]

Keywords: sustainable energy, ionic conductivity, solid-state electrolyte, Li-ion battery,
finite element analysis, constitutive modeling of materials, micromechanics

1 Introduction
Rechargeable Li-ion batteries are expected to play a central role

in the future of energy storage—be it in the context of consumer
electronics, or sustainable vehicles [1,2]. The ramifications (and
need) for renewable energy, and the critical role energy storage
will play in that context, hardly needs much discussion due to the
extensive public discourse on the topic and extensive scientific
research [3,4]. Germane to this, scientific research has focused on
both fundamental science as well as the designing the relevant mate-
rials and motifs to engineer efficient, higher energy density, and
safer batteries [5–7].
A typical Li-ion battery consists of several electrochemical cells

connected in series or in parallel. The three primary components
of the cell are a negatively charged electrode (cathode), its
counterpart—the anode, and an intervening electrolyte that
enables ion transfer between the two electrodes. The ionic conduc-
tivity of an electrolyte quantifies how mobile and available the ions
are in an electrolyte [8] and, in addition to other aspects such as the
design and chemistry of the electrodes, plays a critical role in the
determination of the power output of the cell [9]. An electrolyte
should ideally be both an excellent ionic conductor and electronic
insulator; so that ion transport can be facile and self-discharge is
kept to a minimum [10].
Conventionally, electrolytes are liquid. However, increasingly,

solid electrolytes are being considered as alternatives. Liquid elec-
trolytes are extremely flammable and a battery containing liquid
electrolyte can be a fire hazard in case of over-charging or short-
circuiting [11]. In contrast, solid electrolytes are thermally stable.
Furthermore, liquid electrolytes exhibit a greater propensity for

uncontrollable dendritic growth [12], which can cause short
circuit conditions [13]. Finally, due to the growing interest in
stretchable and flexible electronics, there is a strong impetus to
develop soft solid electrolytes that can integrate with such electronic
devices [14–20].
Despite all the advantages that soft (polymer-based) solid electro-

lytes offer, their ionic conductivity is significantly lower than their
widely used liquid counterparts [21]. To that end, several
approaches have been proposed to increase the ionic conductivity
in polymer electrolytes.2 As an example, a common method to ame-
liorate ionic conductance is the addition of plasticizers which
reduces the crystalline nature of the polymer matrix and can
increase the ion mobility of the structure [22]. However, mechanical
properties may be compromised (i.e., mechanical stability) [23].
Another strategy involves creating composite electrolytes by

embedding nanofillers in a polymer matrix [22,25–27]. Using
such an approach, Croce and co-workers demonstrated a significant
enhancement in ionic conductivity [28]. Interestingly, some works
have also shown a decrease in ionic conductivity with the addition
of nanofillers—e.g., Weston and Steele reported no effect in ionic
conductivity by addition of Al2O3 and even reduction in ionic con-
ductivity at high volume fractions [29]. The enhancement of ionic
conductivity because of addition of nanofillers was attributed to
the formation of a spherulite structure in the interphase region of
the matrix-inclusion which consists of both highly crystalline struc-
ture and amorphous region (as shown in Fig. 1). This region pos-
sesses a much higher ion mobility compared to the polymer
electrolyte [30]. Recent studies have also shown that the addition
of nano-scale highly conductive inorganic particulate fillers into
polymer electrolytes can not only significantly enhance the ionic
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conductivity of the electrolytes but also improve its mechanical
strength and stability [31]. Finally, mechanical deformation has
also been found to strongly influence ionic conductivity of
polymer electrolytes [18,32,33]. A linear relation between ionic
conductivity was found by Ref. [33] (for up to 15% strain leading
to 400% improvement in ionic conductivity). This trend was also
confirmed by our previous theoretical work [34] predicated on
small-deformation theory.
Complementary to experimental efforts (some of which we have

cited in the preceding paragraphs), several theoretical and computa-
tional works have also appeared to study the coupled effect of defor-
mation, ionic diffusion, and electrostatics. Specifically in the
mechanics community, different groups have approached the
theory of electrolytes in slightly different manners and often with
a different emphasis, or even for applications other than batteries
(e.g., ferroelectrics, polymer-metal actuators) [35–44]. The first
paper (that we know off) that proposed homogenization to design
composite electrolytes specific to the context of batteries is arguably
that of Sillamoni and Idiart [45]. Very recently, we also proposed
[34] a theoretical framework to address the coupling of electrostat-
ics, ionic diffusion, and deformation in composite electrolytes. In
particular, we presented a simple homogenization procedure that
allows the simplification of the rather complicated nonlinear
problem and reconciled the various experimental observations in
the literature. In our prior work, the approach was almost entirely
analytical which limited the modeling to simple microstructures.
Guided and inspired by the insights of our prior work, in this
paper, we undertake a computational study to understand the
effect of some specific microstructures on the possibility of

designing enhanced ionic conductivity. Specifically, we (i) imple-
ment the pertinent governing equations in the open-source code
of FEniCS; (ii) analyze composite electrolytes with ellipsoidal
inclusions to understand the effect of shape effects on ion conduc-
tivity enhancement; (iii) analyze the effect of size of embedded
inclusions; (iv) determine the effect of finite deformation on the
effective ionic conductivity of electrolytes—we remark that our
prior work, due to its analytical nature, focused on small-
deformation, and (v) propose a specific, easily manufacturable,
microstructure that can yield a significant enhancement in ionic
conductivity.
This paper is organized as follows, in Sec. 2, we briefly summar-

ize the theoretical framework. In Sec. 3, we present the relevant
details related to the computational procedure and provide bench-
mark solutions in Sec. 4. We discuss shape effects in Sec. 5, the
effect of deformation on ionic conductivity in Sec. 6 and our pro-
posal of a new microstructure in Sec. 7.

2 Theoretical Framework
In this section, we briefly summarize the mathematical model of

an electro-elastic-diffusive system in an electrolyte we presented in
Ref. [34]. Consider Fig. 2, where we assume that the thermody-
namic state of the system is described by deformation y(0, t):
ΩR →Ω(t), ionic volumetric concentration c(0, t) :ΩR � R, and
the electric potential ξ :ΩR � R in the reference configuration.
The deformation gradient, Cauchy-Green tensor, and the Jacobian
are denoted by

F = ∇y, C = FTF, J = det∇y (1)

Work can be done on the chemo-mechanical-electrical system
body through the following boundary conditions:

• Mechanical boundary conditions:

y(x, t) = yb(x, t) on SD
applied external traction = te(x, t) on SN

{
(2)

where yb(0, t) : SD → R3 is the prescribed boundary position
and SD and SN (as shown in Fig. 2) are the subdivisions of ∂Ω.

• Electrical boundary conditions:

ξ = ξe(x) on ∂ΩR (3)

where ξe(x) is prescribed boundary electric potential on ∂ΩR

which is controlled by an external circuit.
• Chemical boundary conditions:

μ = μe(x,t) on ΥD

J · n = Je on ΥN

{
(4)

Fig. 1 Schematic of the spherulite structure. The figure is from Ref. [24]. Reprinted with the permission of AIP Publishing.

Fig. 2 An ionic-conductive electro-elastic-diffusive body in
reference and current configuration subject to external mechan-
ical traction on SN, prescribed displacement on SD where
SD = ∂Ω/SN. The system is connected to a solution of ions in
ΥD and directional flux perpendicular to the boundary on ΥN is
prescribed where ΥN = ∂Ω/ΥD. The prescribed boundary electric
potential is also defined on ΩR where the electrolyte is subjected
to an electric potential difference.
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where μe(0, t) :ΥD → R is the prescribed boundary chemical
potential which is usually dictated by the materials of active
electrodes, and J(0, t) :ΩR → R3 is the ionic flux. Also, ΥD

and ΥN are another subdivisions of ∂Ω.

By the conservation law of ions, we have

ċ + ∇ · J = 0 in ΩR (5)

The external system does work on the body by mechanical trac-
tion, transportation of ions across the boundary and the applied elec-
tric voltage from the electrodes. The rate of work done on the
continuum body is [34]

Ẇ =
∫
∂ΩR

ẏ · te −
∫
∂ΩR

(μe + qξe)(J · n) −
∫
∂ΩR

ξ( ˙̃D · n) (6)

where q is the electric charge associated with each mobile ion and
as a result the electric current density is given by Je = qJ. Also,
D̃ = −ϵ(x)JC−1∇ξ is the nominal electric displacement.3

To achieve a closed differential system governing the
electro-elastic-diffusion of the body we need to propose the free
energy of the body.
In equilibrium state, we assume the free energy of the body to be

specified by

U(y,c) = Ub(y,c) + Ue

Ub(y,c) =
∫
ΩR

Ψ(∇y, c)
(7)

where Ψ :R3×3 × R � R is the free energy density and Ue is the
electric energy associated with charges and polarization. For simpli-
city, we assume that the material is isotropic so the rate of change of
free energy of the body in isothermal process is given by

U̇b =
d
dt

∫
ΩR

Ψ(∇y, c) =
∫
ΩR

∂Ψ(F, c)
∂F

· ∇ẏ + ∂Ψ(F, c)
∂c

ċ

[ ]
(8)

For brevity, we define the following terms:

P : = DFΨ(∇y, c) =
∂Ψ(F, c)

∂F

μ : = DcΨ(∇y, c) =
∂Ψ(F, c)

∂c

(9)

By substituting them in Eq. (8) and using the conservation law of
ions presented in Eq. (5), we rewrite the equation as follows:

U̇b =
∫
ΩR

[P · ∇ẏ − μ∇ · J] (10)

Neglecting dynamical effects, the electric field in reference con-
figuration satisfies the Maxwell equations:

divD̃ = div(−ϵ(x)JC−1∇ξ) = q(c − c0(x)) in ΩR (11)

where ϵ(x) is the electric permittivity and c0 :ΩR � R is the immo-
bile ion concentration that would neutralize the mobile ions in a
natural equilibrium state. For simplicity, we also assume that the
electric permittivity itself is independent of deformation. Therefore,
polarization in current configuration can be defined by p = −(ϵ − ϵ0)
∇yξ in which ϵ0 is the vacuum permittivity. Hence, the electrical
energy stored in the system (Ue) is defined as follows:

Ue[y, c] =
∫
ΩR

ϵ0
2
|∇yξ|2 + |p|2

2(ϵ(x) − ϵ0)

[ ]
(12)

With a bit of technical calculation, the final form of rate of change

of electrical energy(Ue) [35], can be written as

U̇e[y, c] =
∫
ΩR

[−ẏ · divΣMW + J · ∇(qξ)] +
∫
ΩR

ẏ · (ΣMW )n (13)

where ΣMW is identified as the Piola–Maxwell stress and is denoted
as

ΣMW(x) = −
ϵ(x)
2

J|F−T∇ξ|2F−T + ϵ(x)J(F−T∇ξ)⊗ (F−T∇ξ) (14)

From Eqs. (6), (10), and (13). The rate of energy dissipation is
written as

Ḋ = Ẇ − U̇ = Ẇ − U̇b − U̇e

=
∫
∂ΩR

ẏ · te −
∫
∂ΩR

(μe + qξe)(J · n)

+
∫
ΩR

[div(P + ΣMW ) · ẏ − J∇ · (μ + qξ)]

+
∫
∂ΩR

[−ẏ · (P + ΣMW )n + (J · n)(μ + qξ)] ≥ 0 (15)

The inequality is from the second law of thermodynamics—the
rate of energy dissipation must always be a positive value (Ḋ ≥ 0).
Using the standard Coleman–Noll procedure, the following may

be concluded:

• Non-negative rate of dissipation:

−J · ∇(μ + qξ) ≥ 0 (16)

• Interior mechanical balance:

div(P + ΣMW ) = 0 in ΩR (17)

• Boundary conditions:

(P + ΣMW )n − te = 0 on SN (18)

and

μe + qξe = μ + qξ on ΥD

J · n = 0 on ΩR \ΥD

{
(19)

By Eq. (16), a constitutive response that is consistent with the
second law of thermodynamics (and arguably represents the sim-
plest choice we can make) is linear mobility/diffusion:

v = −γ(x)∇(μ + qξ), J = cv in ΩR (20)

where γ(x) represents the ionic mobility of the material.
In this work, we will consider both finite and infinitesimal defor-

mation to understand not only the effect of deformation but also the
importance (or not) of accounting for large deformation behavior.
For a linearized theory, we expand the free energy density at a refer-
ence equilibrium state as follows:

Ψ(F, c; x) ≈
1
2
(F − I) · C(x)(F − I) + αel(c − c0(x))Tr(F − I)

+
β(x)
2

(c − c0(x))2 + μ̂(x)(c − c0(x)) + Ψ(I, c0; x)

(21)

where I is the identity matrix, μ̂ denotes the chemical potential for
pure ion, and C is the forth-order elasticity tensor.
In the case of infinitesimal deformation, the complete coupled

system of governing equations for (μ, ξ, u) using Eq. (21) can

3We remark that the presence of charge diffusion in a continuum body also relates to
the so-called electret materials except that in the latter, the charges are “frozen” and
convect with deformation in the time-scale of interest [46–48].
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now be written as

∇ · (−ϵr∇ξ) + q2

ϵ0β
ξ = q

ϵ0β
(μ + qξ − μ̂ − αel∇ · u) in ΩR

∇ · C∇u + αal
β (μ − μ̂ − αel∇ · u)I

[ ]
= 0 in ΩR

∇ · [−γc∇(μ + qξ)] = ċ, c − c0 =
(μ−μ̂−αel∇·u)

β in ΩR

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(22)

To account for deformation nonlinearity, we will consider an
incompressible neo-Hookean material. However, we also note
that the permeation of charged ions (or uncharged molecules)
induces significant volume change of the material. To model this
phenomenon, we may enforce a kinematic constraint:

Φ(F, c) = detF − (1 + νi(c − c0)) = 0 (23)

where νi can be interpreted as volume of ions [34]. Accounting for
the constraint, the free energy density of the body ΩR can be written
as

Ψ(F, c) =
1
2
G(|F|2 − 3) +

β

2
(c − c0)

2 + μ̂(c − c0) − ΠΦ(F, c)

(24)

where G is the shear modulus. So the governing equations then
become:

∇ · (−ϵr∇ξ) + q2

ϵ0β
ξ = q

ϵ0β
(μ + qξ − μ̂ − Πνi) in ΩR

∇ · [P + ΣMW ] = 0 in ΩR

∇ · [(−γc∇(μ + qξ)] = ċ, c − c0 =
(μ−μ̂−Πνi)

β in ΩR

⎧⎪⎨
⎪⎩ (25)

where P = GF − JΠF−T .
To demonstrate the fundamental behavior of the system in Eqs.

(22) and (25) and analyze the homogenization of composite electro-
lytes, we consider a one-dimensional and homogeneous electrolyte
body between two charge collectorsΔξ= ξ1− ξ0. We also introduce
the electro-chemical potential by

Φ = μ + qξ (26)

and Debye length as the screening length for electrostatic interac-
tions4

λ =

����
ϵ0β

q2

√
(27)

Taking cognizance of the relation between the ionic flux J and the
external electrical current I= qJA, the ionic conductivity of electro-
lyte must satisfy the following equation:

J = −K
Δϕ
d

(28)

where ϕ is the electro-chemical potential and defined as ϕ= μ+ qξ
[34]. The electric potential difference between the electrodes satis-
fies Ohm’s law Δξ= IR= qJAR.
To facilitate the interpretation of ionic conductivity, consider

one-dimensional ion transport in a non-equilibrium process where
J≠ 0 and in the steady-state limit of Eq. (22). In that case, we
have the following relation for the electrochemical potential differ-
ence:

Δϕ = ϕ1 − ϕ0 = −
Jd

K
= −

∫d
0

J

γc(x)
dx = −

∫d
0

J

γ(c + ĉ)
dx (29)

where ĉ is the change of concentration due to ion transportation.

Assuming the change of concentration of ions is mostly due to
the chemical potential difference at the boundaries [34], we can
safely neglect ĉ and rewrite Eq. (29) as below,

ϕ′ =
J

γ(c + ĉ)
≈

J

γc
� Δϕ ≈ −J

∫d
0

1
γc(x)

dx (30)

Therefore, using Eq. (28), the ionic conductivity K in
one-dimension can be defined as,

K =
1
d

∫D
0

1
γc(x)

dx

[ ]−1
(31)

where c(x) is the equilibrium ionic concentration obtained from
solving Eq. (22) in the steady-state limit.

3 Finite Element Implementation
The governing partial differential equations for the

chemo-electro-mechanical system derived in the preceding section
are rather difficult to solve except for some very simple cases. In
this section, we described the finite element implementation to
solve these numerically.

3.1 Dimensionless Form of the Governing Equations. As a
first step to derive the corresponding weak form of the coupled
system of partial differential equations, we non-dimensionalize
them to simplify the calculations and facilitate eventual physical
interpretation. As evident, three primary variables are involved:
(ξ, μ, u). The dimensionless parameters are presented,

�ξ =
ξq

μref
, �u =

u
H
, �μ =

μ

μref
, �c =

c

cref

�t =
t

T
, T =

μrefγref
H2

( )

�β =
βc2ref
Gref

, �̂μ =
μ̂

μref
, �c0 =

c0
cref

�γ =
γ

γref
, �αel =

αelcref
Gref

, �∇ = H∇

(32)

where H and T are the non-dimensionalization parameters associ-
ated with the smallest length scale and the time scale, respectively,
and G is the shear modulus. Also, cref, μref, Gref, and γref are the nor-
malization factors associated with the primary variables. For simpli-
city, we set cref= c0, μref = μ̂, Gref=G, and γref= γ for the
homogeneous electrolyte. With this, the governing equations in
dimensionless form are as follows:

�∇ · (−ϵr �∇�ξ) −Φ2

�β
(�μ − �̂μ) +

�αel
�β

Φ2

Γ
�∇ · �u = 0 (33)

�∇ · C

Gref

�∇�u + �αel
Γ
�β
(�μ − �̂μ)I −

�αel2

�β
�∇ · �uI

[ ]
= 0 (34)

�∇ · −�γ
Γ
�β

�μ − �̂μ
( )

− �∇ · �u �αel
�β

+ �c0

( )
�∇ �μ + �ξ
( )[ ]

=
H2

μrefγref

1
T

d
�dt

Γ
�β
(�μ − �̂μ) − �∇ · u �αel

�β
+ �c0

( )
(35)

where Φ = Hqcref/
�������
ϵ0Gref

√
and Γ= μrefcref/Gref.

For the neo-Hookean case presented in Eq. (25), the additional
dimensionless parameters are

�νi = νicref , �Π =
Π
Gref

(36)

4The conventional homogenization of the conductivity problem (predicated on the
classical Poisson equation) is size-independent. However, in the current framework,
due to the presence of the Debye length, there is a characteristic length scale that
renders the ionic conductivity dependent on the length-scale of the microstructure.
This is reminiscent of surface energy effects [49–51] or gradient-type continuum the-
ories [52,53].
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The dimensionless form of the governing equations become

�∇ · (−ϵr �∇�ξ) −Φ2

�β
(�μ − �̂μ) +

�νi
�β

Φ2

Γ
�Π = 0 (37)

�∇ · [�∇�u + I − det(�∇�u + I)�Π(�∇�u + I)−T ] = 0 (38)

�∇ · −�γ
Γ
�β
(�μ − �̂μ) − �Π

�νi
�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]

=
H2

μrefγref

1
T

d
�dt

Γ
�β
(�μ − �̂μ) − �Π

�νi
�β
+ �c0

( )
(39)

where Φ = Hqcref/
�������
ϵ0Gref

√
and Γ= μrefcref/Gref.

3.2 Weak Form. We write the weak forms of governing equa-
tions by employing three test functions ν, ω, and ρ for the scalar
electric potential ξ, displacement vector u, and the chemical poten-
tial μ. By multiplying the governing equations by the test functions,
integrating over the volume, and using the divergence theorem, the
weak forms can be written as follows:∫

∂Ω

�∇ · (−ϵr �∇�ξ)ν.ni dS −
∫
Ω
(−ϵr �∇�ξ)�∇ν dV

−
∫
Ω

Φ2

�β
(�μ − �̂μ)ν +

�αel
�β

Φ2

Γ
�∇ · (�u)

( )
ν dV = 0 (40)

∫
∂Ω

C

Gref

�∇�u + �αel
Γ
�β
(�μ − �̂μ)I −

�αel2

�β
�∇ · �uI

[ ]
ω · ni dS

−
∫
Ω

C

Gref

�∇�u + �αel
Γ
�β
(�μ − �̂μ)I −

�αel2

�β
�∇ · �uI

[ ]
�∇ω dV = 0

(41)

∫
∂Ω

−�γ
Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]
ρ · ni dS

−
∫
Ω

−�γ
Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]
�∇ · ρ dV

=
∫
Ω

H2

μrefγref

1
T

d
�dt

Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
ρ dV (42)

Test functions ω, ν, and ρ on the boundary are constrained to be
zero.

ω = ρ = ν = 0 on ∂Ω (43)

Using Eq. (43) the first terms of Eqs. (40), (41), (42) are equal to
zero, as follows, ∫

∂Ω
∇ · ( − ϵr∇�ξ)ν · ni dS = 0 (44)

∫
∂Ω

C

Gref

�∇�u + �αel
Γ
�β
(�μ − �̂μ)I −

�αel2

�β
∇ · �uI

[ ]
ω · ni dS = 0 (45)

∫
∂Ω

−�γ
Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]
ρ · ni dS = 0 (46)

Using Eqs. (44), (45), and (46), Eqs. (40), (41), and (42) will be
shorten to the following forms,

−
∫
Ω
(−ϵr �∇�ξ)�∇ν dV −

∫
Ω

Φ2

�β
(�μ − �̂μ)ν +

�αel
�β

Φ2

Γ
�∇ · (�u)

( )
ν dV

= 0 (47)

∫
Ω

C

Gref

�∇�u + �αel
Γ
�β
(�μ − �̂μ)I −

�αel2

�β
�∇ · �uI

[ ]
�∇ω dV = 0 (48)

−
∫
Ω

−�γ
Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]
�∇ · ρ dV

=
∫
Ω

H2

μrefγref

1
T

d
�dt

Γ
�β
(�μ − �̂μ) − �∇ · �u �αel

�β
+ �c0

( )
ρ dV (49)

For the system in Eq. (25), the weak form can be written as
follows:

−
∫
Ω
(−ϵr �∇�ξ)�∇ν dV −

∫
Ω

Φ2

�β
(�μ − �̂μ)ν +

�νi
�β

Φ2

Γ
�Π

( )
ν dV = 0 (50)

∫
Ω

�∇�u + I − det(�∇�u + I)�Π(�∇�u + I)−T
[ ]

�∇ω dV = 0 (51)

−
∫
Ω

−�γ
Γ
�β
(�μ − �̂μ) − �Π

�νi
�β
+ �c0

( )
�∇(�μ + �ξ)

[ ]
�∇ · ρ dV

=
∫
Ω

H2

μrefγref

1
T

d
�dt

Γ
�β
(�μ − �̂μ) − �Π

�νi
�β
+ �c0

( )
ρ dV (52)

3.3 Implementation in FEniCS. The governing equations
presented in the previous section (in their weak form) are solved
using the general-purpose open-source PDE solver FEniCS. The
weak forms and the corresponding finite element discretization
are specified using a domain-specific language, named UFL
(Unified Form Language) embedded in PYTHON. The computational
domain is partitioned into non-overlapping triangular elements with
quadratic interpolation for displacement and linear interpolation for
chemical and electric potential in a continuous Galerkin function
space. The discrete trial and test spaces are defined by constructing
finite element shape functions over the union of all elements in Ω
[54].

4 Benchmark Solutions
Before proceeding to analyze microstructures that are intractable

analytically, to ensure first that our finite element implementation is
correct, we compare our numerical calculations with some known
analytical results.

4.1 Uniform Electrolyte. We first analyze the the simplified
problem of a one-dimensional and homogeneous electrolyte as
shown in the Fig. 3 with electric potential difference between two
charge collectors Δξ= (ξ1− ξ0). Elasticity is decoupled for this
illustrative problem so we set α= 0. The analytical result for the
chemical potential along the thickness of the electrolyte is given by

μ(x) =
μ0 − ημd
1 − η2

e−(x/λ) +
−ημ0 + μd
1 − η2

e(x−d)/λ (53)

Fig. 3 Schematic of a system of uniform electrolyte and elec-
trodes in a battery
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where λr is the Debye length and η = e−(d/λr ) [34]. In Fig. 4, we con-
trast the results of our finite element calculation with the closed-
form solution.

4.2 Multi-Layer Composite Solid Electrolyte. As partially
discussed the context of Fig. 1, past research appears to indicate
that addition of nano-particles in a polymer alters the region in
the vicinity of the particle thus forming an interphase layer. The
interphase layer, while substantively the same as the polymer
matrix in physical and mechanical behavior, exhibits significantly
higher ionic mobility than the polymer [55]. In short, a three-phase
composite consisting of an inclusion (typically ceramic), its sur-
rounding matrix (typically soft polymer) and an interphase region,
is an adequate description of actual solid composite electrolyte
systems. We note that [45] also utilizes this observation. Arguably,
the simplest possible composite electrolyte is a multi-layer lami-
nate. The problem essentially becomes one-dimensional in nature.
In this section, we benchmark our numerical results for a three-layer
solid electrolyte laminate structure (Fig. 5).
Denoting the total thickness of the system by d, we refer to the

inclusion, polymer and interphase dimensions as dp, dint, and df,
respectively. We define a constant of proportionality, α, called inter-
phase extension factor, to introduce the normalization of dint with
respect to the size of the inclusion as follows:

dint = αdf = ανf d (54)

To generate numerical results and study the effect of volume frac-
tion, we fix the inclusion size to a thickness of 2 nm and vary the
thickness of the polymer (dp). The calculations are performed for
different interphase extension factors. We note that the results are
size-dependent unlike classical conductivity problems.
Figure 6 shows the normalized effective ionic conductivity with

respect to the volume fraction of the filler νf= df/d for different
values of α. We remark that K0 is the ionic conductivity of the

case when νf = 0. The α= 0 corresponds to an absence of an inter-
phase and, as expected, the effective ionic conductivity of the com-
posite does not vary much with an increase in volume fraction of the
inclusion phase. However, when α> 0, we see a significant
enhancement. This is hardly surprising since the interphase region
has been found to be highly conductive and larger this phase,
higher the effective ionic conductivity. This corresponds well
with the thesis (and experimental observation) that even though
second-phase particles may not be by themselves ionically conduc-
tive, they alter the region around the particles to make it more
conductive.

5 Heterogeneous Electrolytes With Ellipsoidal
Inclusions—Shape Effects
We now turn to one of the central results of our paper where

we analyze a microstructure that is not amenable to analytical
solution—ellipsoidal inclusions.The ellipsoidal shape allows us to
study the effect of particle shape on the effective conductivity
enhancement. We remark that this specific insight does not
appear to have been discussed in the literature so far.
As shown in Fig. 7, we consider the two-dimensional case of an

elliptical inclusion with the major and minor axes, 2b and 2a in a
square unit cell of polymer matrix (of length L). The interphase
of thickness t is assumed to be uniform and we will analyze the
steady-state limit of the governing equations.
In what follows, we fix the interphase thickness (t) and vary the

interphase extension factor (α) which can be defined as α= t/a.
We first analyze the simplified case of circular geometry (a= b).
We remark that the case of a single circular inclusion case can
indeed be solved analytically (c.f. Ref. [34]); however, homogeniza-
tion can only proceed approximately. Of course, in the case of a
general elliptical inclusion neither the problem of a single inclusion
nor the homogenization are analytically tractable. For the circular
inclusion case study, we fix the size of the particle (a= b= 1 nm)
and volume fraction is altered by varying L. The unit cell is subject
to a constant electric potential difference Δμ= 200 × μref= 100eV.
In equilibrium situation (ϕ= 0), the Δξ=−(Δμ/q)=−100 V.
Figure 8 illustrates the normalized effective ionic conductivity

versus volume fraction of an embedded circular filler in a square
unite cell. Here, K0 represents the ionic conductivity of a uniform
polymer electrolyte. We observe essentially the same trend as in

Fig. 4 Normalized chemical potential across the normalized
thickness of rectangular uniform unit cell material

Fig. 5 Schematic of a multi-layer composite electrolyte consist-
ing of a filler, an interphase, and polymer

Fig. 6 Normalized effective ionic conductivity with respect to the
volume fraction of the inclusion phase. γfiller=γpolymer=γinterphase/
1000 the initial concentration is considered as zero (cfiller0 = 0) and

for interphase and polymer we have cinterphase0 = cpolymer
0 = 50

mol
m3 .

The numerical values are λinterphaser = λfillerr = λpolymer
r = 4nm,

ϵfillerr = 10, ϵpolymer
r = ϵinterphaser = 3, μ̂polymer = μ̂interphase = 0.5 eV,

and μ̂polymer − μ̂filler = 1eV.
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Fig. 6 where the effective ionic conductivity of the composite
reaches a maximum point (for some specific volume fraction) and
then decreases to its initial value. Consistent with the one-
dimensional study in the preceding section, the interphase plays a
dominant role and (as example), for α= 2, we see that the ionic con-
ductivity enhances by an order of magnitude. For any α> 0, the
composite reaches its maximum effective ionic conductivity at the
point where the interphase reaches it’s maximum volume fraction
in a unit cell.
To better illustrate this phenomenon, we show in Fig. 9, a square

unit cell with an embedded circular filler with α= 1 for three

different values for volume fractions 0.78, 0.43, and 0.12. Each
of these three figures shows an individual point on the graph in
Fig. 8 where α= 1. Evidently, the maximum effective ionic conduc-
tivity occurs when the interphase content is maximized.
Figures 10–12 illustrate the chemical potential, electric potential,

and concentration contours, respectively, for all three different
values of volume fraction of the filler, 0.78, 0.43, and 0.12 from

Fig. 7 Schematic of an embedded elliptical inclusion

Fig. 8 Normalized ionic conductivity with respect to the volume
fraction of the filler for different interphase extension factors (α).
γfiller= γpolymer= γinterphase/1000 the initial concentration is consid-
ered as zero (cfiller0 = 0) and for interphase and polymer we have

cinterphase0 = cpolymer
0 = 50

mol
m3 . The numerical values are

λinterphaser = λfillerr = λpolymer
r = 4nm, ϵfillerr = 10, ϵpolymer

r = ϵinterphaser = 3,
μ̂polymer = μ̂interphase = 0.5eV, and μ̂polymer − μ̂filler = 1eV

Fig. 9 Schematic of a square unit cell matrix with an embedded circular filler inclusion for α=1
with different values for volume fraction: (a) νf=0.78, (b) νf=0.43, and (c) νf=0.12 where the inclu-
sion (light blue), coating (dark blue), and matrix (yellow) represent the filler, interphase, and
polymer, respectively

Fig. 10 Chemical potential contour for a square unit cell matrix with an embedded circular filler inclusion for α=1
with different values for volume fraction: (a) νf=0.78, (b) νf=0.43, and (c) νf=0.12
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(a) to (c), respectively, under the same boundary conditions for the
unit cell in equilibrium situation (ϕ= 0), where Δμ= 200 × μref=
100 eV and Δξ=−(Δμ/q)=−100 V. In a battery-like system, the
electrolyte is subjected to a potential difference from the electrode-
s(anode and cathode), therefore as a result we can see in Fig. 12 that
the concentration in all three situations reaches its maximum value,

4.6, at the point where the chemical potential is at its maximum
value on the top boundary. Also, the minimum concentration is
reported exactly at the point we have the minimum chemical poten-
tial on the bottom boundary. Therefore, the difference in effective
conductivity in all these three situations is not a result of the differ-
ence in maximum and minimum value of concentration, but rather,

Fig. 11 Electric potential contour for a square unit cell matrix with an embedded circular filler inclusion for α=1
with different values for volume fraction: (a) νf=0.78, (b) νf=0.43, and (c) νf=0.12

Fig. 12 Concentration contour for a square unit cell matrix with an embedded circular filler inclusion for α=1
with different values for volume fraction: (a) νf=0.78 (b) νf=0.43, and (c) νf=0.12

Fig. 13 Normalized ionic conductivity with respect to the normal-
ized radius of the circular inclusion with a constant volume frac-
tion of the filler (νf=0.2) for different interphase thickness (tint)
from 0 to 2 nm which is normalized with debye length (λr=
4 nm). γfiller= γpolymer= γinterphase/1000 the initial concentration is
considered as zero (cfiller0 = 0) and for interphase and polymer

we have cinterphase0 = cpolymer
0 = 50

mol
m3 . The numerical values are

λinterphaser = λfillerr = λpolymer
r = 4nm,

ϵfillerr = 10, ϵpolymer
r = ϵinterphaser = 3, μ̂polymer = μ̂interphase = 0.5eV, and

μ̂polymer − μ̂filler = 1eV.

Fig. 14 Normalized ionic conductivity with respect to the
volume fractionof theellipticalfiller for different interphaseexten-
sion factors (α) γfiller= γpolymer= γinterphase/1000 the initial concen-
tration is considered as zero (cfiller0 = 0) and for interphase and

polymer we have cinterphase0 = cpolymer
0 = 50

mol
m3 . The numerical

values are λinterphaser = λfillerr = λpolymer
r = 4nm,

ϵfillerr = 10, ϵpolymer
r = ϵinterphaser = 3, μ̂polymer = μ̂interphase = 0.5eV,

and μ̂polymer − μ̂filler = 1eV.
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it is due to the concentration distribution and the difference in ion
mobility of within each layer.
Since we now have insight into the filler volume fraction at which

the maximum ionic conductivity in a composite electrolyte is
achieved, we can examine the effect of inclusion size. To that
end, we assume a constant volume fraction of filler (νf = 0.2) and
vary the radius of the inclusion from 1 nm to 14 nm for four differ-
ent interphase extension factors. Figure 13 illustrates the ionic con-
ductivity of the composite with respect to the radius of the
inclusion. For a given volume fraction, there is an optimal size
and thus our model correctly resolves experimental observations
that both an increase and decrease in ionic conductivity can occur
with addition of fillers—the tuning of volume fraction and size is
an important element to decide what behavior will be observed.
We remark that for large inclusion size, we approach the matrix
ionic conductivity (K/K0= 1).

We now turn to elliptical shaped fillers where a= 1 nm, b=
0.5 nm in Fig. 14. We note a similar trend as in Fig. 8.
Comparing Figs. 14 and 8, we see that the maximum for elliptical

fillers is higher compared to circular counterparts. This prompts a
closer examination of the role of ellipse aspect ratio. For that, we con-
sider a square unit cell matrix with fixed L= 10 nm and elliptical
inclusions with lengths a and bwith interphase expansion factor of α.
Figure 15 illustrates five different case with different value of a/b

for tint= 1 in (a), (b), (c), (d ), and (e) which represent five cases in a
range of a/b from 0+ up to 4.
Figure 16 illustrates the normalized ionic conductivity of the

square unit cell matrix with an embedded elliptical filler with
respect to the ratio a/b of the elliptical filler for three different
values of α and otherwise the same boundary conditions. We can
conclude that as a/b increases, the effective ionic conductivity of
the composite is enhanced. Also, as the interphase thickness (tint)
increases, the effect of a/b becomes more pronounced.

6 Effect of Deformation on the Ionic Conductivity of an
Electrolyte
In the preceding sections, for simplicity and to facilitate insights,

we had neglected the coupling between elasticity and electro-
diffusion. In this section, for studying the effect of deformation
on ionic conductivity of an electrolyte, we consider the full time-
dependent fully coupled electro-elasto-chemical system of equa-
tions and also attempt to ascertain the impact of considering nonlin-
ear deformation. We consider the configuration in Fig. 17, where an
electrolyte is assumed to be stretched from two ends.
To study the effect of deformation on composite electrolytes, we

consider a multi-layered system as previously shown in Fig. 5.

Fig. 15 Schematics of a square unit cell matrix with an embedded elliptical inclusion with inter-
phase thickness of tint=1 nm with different a/b: (a) 0.25, (b) 0.5, (c) 1, (d ) 1.5, and (e) 3.5

Fig. 16 Normalized ionic conductivity with respect to a/b for dif-
ferent interphase thickness from 0 to 2 nm which is normalized
by Debye length (λ=4 nm). The ionic conductivity is normalized
with the case of the α=0 and a/b= 0.2. The detailed numerical
values are adapted from Fig. 12 caption. Fig. 17 Schematic of a unit cell under a stretch of ϵ
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Figure 18 illustrates the normalized ionic conductivity of a multi-
layer composite electrolyte with respect to the applied strain for
two different extension factors. The dashed lines show the case for
small deformation while the solid lines are for the neo-Hookean elas-
tically incompressible model. Clearly, deformation can significantly
enhance ionic conductivity. The small deformation model predicts
a linear relation between ionic conductivity and strain—also reported
in experiments [33]. While there is a departure from this linear rela-
tion at large strains, the deviation is perhaps not that high. We would,
however, like to state that the polymer system examined in this work
is not too soft. For softer materials (like gels) nonlinear deformation
effects are likely to be more significant.

7 A Proposal for a Microstructure to Enhance Ionic
Conductivity: Columnar Dielectric Spacers
In this section, based on the insights at hand, we propose a novel

microstructure that simply involves the addition of columnar dielec-
tric spacer in parallel with the electrolyte—as shown in Fig. 19. The
key idea is that when we set columnar spacers parallel to the elec-
trolyte, the effective ionic resistance of the composite decreases to a
smaller value.
The governing equation for the electrostatics problem is as

follows:

−λ2∇2ξ + ξ = ϕ
q in electrolyte

∇2ξ = 0 in dielectrics

{
(55)

The interfacial condition across the electrolyte-dielectric inter-
faces should be

[[ξ]] = 0, [[ϵ∇ξ]] · n = 0 (56)

Physically, the interfacial conditions imply that there is no accu-
mulation of free charges at the interface, though the free charge
density (per unit volume) may be nonzero in the electrolyte.
Though the general solution to Eq. (55) and (56) may be compli-
cated, from linearity, we observe that the electric potential differ-
ence should depend on Δϕ linearly:

Δξ = α1Δϕ + α0 (57)

Figure 20 illustrates the normalized effective ionic conductivity
with respect to volume fraction of the columnar spacers. In this
model, the size of the electrolyte is constant and the size of the
dielectric increases from zero to a large number to ensure that the
range of volume fraction is from 0 to 1. The graph shows enhance-
ment in the ionic conductivity of the composite electrolyte by the
addition of dielectric columnar spacers, and more importantly,
increase in the size of the spacers further improves the enhancement
of ionic conductivity. We remark that for this microstructure, the
effective ionic conductivity can potentially increase by an order
of magnitude. The addition of the dielectric spacers in parallel
with the electrolyte also helps enhance the electric field in the elec-
trolyte which facilitates ionic conduction. The compelling feature
related to this microstructure is that it is very easy to fabricate.
However, we do caution that the significant enhancement does
appear to be at very high volume fractions which may not be
very practical.

8 Concluding Remarks
In this paper, we have presented a numerical implementation of

the governing equations that dictate the electro-chemo-mechanical
behavior of soft deformable solid electrolytes within an open-source
finite element package FEniCS. The implementation is validated
with known analytical solutions for some simplified cases. The
numerical implementation allows us to design complex microstruc-
tures for the enhancement of ionic conductivity of solid electrolytes.
Specifically, we were able to obtain insights into how the shape of
embedded particles can influence the overall ionic conductivity of a
composite electrolyte in addition to proposing a new type of micro-
structure to achieve this objective. A good future direction would be
the use of topology optimization tools (including machine learning)
to find optimal microstructures. With composite electrolytes, such

Fig. 18 Normalized ionic conductivity versus average strain for
different interphase extension factors α. The dashed lines are the
case of small deformation and the solid lines are for the case of
elastically incompressible model. The ionic conductivity is nor-
malized with the case of the homogeneous system. The detailed
numerical values are adapted from Fig. 13 caption. Also, νi=1.8 ×
10−28 m3, νf=0.3, αel=10−6 × [80,3,3] and Ey= [70,0.03,
0.03] GPa.

Fig. 19 Schematic of a battery with an electrolyte and columnar
dielectric spacers

Fig. 20 Normalized ionic conductivity with respect to the
volume fraction of dielectric. γdielectric/γelectrolyte≈0 the initial
ionic concentration of the dielectric is considered as zero
(cdielectric0 = 0) while for electrolyte we have celectrolyte0 = 100 mol

m3
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as those discussed in this paper, durability of the
chemo-mechanical-electrical system under cyclic loading such as
discussed in other contexts also [56] is likely to become a significant
issue.
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